

Copyright © 2018 Jagatjot Singh, Sumit Sharma. This is an open access article distributed under the Creative Commons Attribution License,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (1) (2018) 53-56

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET
doi: 10.14419/ijet.v7i1.7870

Research paper

Fault detection technique for test cases in software engineering

Jagatjot Singh 1*, Sumit Sharma 2

1 P.G. Student, Department of Computer Science and Engineering, Chandigarh University, Chandigarh, India

2 Assistant Professor, Department of Computer Science and Engineering, Chandigarh University, Chandigarh, India

*Corresponding author E-mail: jagatjotsingh22@gmail.com

Abstract

The processing of software and performing various operations on it is known as a software engineering process. The application of test

cases for detecting the faults within the software is done through the testing process. There are various types of faults that occur within a

software or test case which are to be identified and preventive approaches are to be applied to prevent them. In this paper, the Learn-to-

rank algorithm is utilized which helps in detecting the faults from the software. The Back-Propagation technique is included with the LRA

approach for enhancing its performance and improving the detection of fault rate. 10 test cases of different types are used for running

various experiments and the MATLAB tool is utilized for performing various simulations. It is seen through the various simulation results

that the fault detection rate is increased as well as the execution time is minimized with the help of this approach.

Keywords: Faults; Test Cases; Neural Networks; Back Propagation; Learn-to-Rank.

1. Introduction

Once any defect occurs within the software it can result in providing

some completely different outcomes. There is a need of designing

a prediction model for predicting the defective files using the pre-

dictors. These predictors are gathered from one project or variety of

other projects. For the purpose of building prediction models for

each project, a universal defect prediction model is designed from

variety of projects. The software metrics is used for predicting the

amount of defect present within the software as well as its distribu-

tion within it. On the basis of the program properties of the previous

software versions, the software defect classification prediction is

designed [10]. The defects that can occur can also be predicted with

the help of such studies. The software defect prediction model is

partitioned into three different parts. They are the software metrics,

the classifier and the evaluation of the classifier.

Whenever a software fault is identified within the system it results

in causing a defect within it. Any difference between the achieved

performance of the system and the assumed performance is known

as the error occurring within it. When there is a change in the out-

come achieved or it behaves differently as compared to the require-

ments proposed by the user, the software failure occurs. The iden-

tification of a problem within the system without knowing its cause

is known as the fault detection process. There are various quantita-

tive as well as qualitative techniques that will help in detecting the

faults within the system. There are varieties of multi-variable

model-based techniques within this method. The identification of at

least one of the main causes which results in causing defect within

the system is known as fault diagnosis. This is done so that various

preventive measures can be taken to prevent it. It is not necessary

that there is a complete failure of the system due to the occurrence

of a fault or any other problem. There are various root causes for

non-optimal operation of the various failures occurring at the hard-

ware. There can be variety of reasons that can result in causing

failure within the system such as the operating targets or some error

caused by human.

There are various software-based Fault Detection Techniques,

some of which are listed below:

a) Control Flow Checking (CFC): An application program is di-

vided into important blocks or the parts of code that do not

have branch parts, in the CFC method. For each block a de-

terministic signature is provided. Comparisons are made with

the run-time signature and the pre-computed signature for

identifying the faults within the system. The matching of test

granularity which is to be utilized within the system is very

difficult to be done within the CFC methods.

b) Fingerprinting: The fingerprinting method differentiates the

execution over a dual modular redundant (DMR) processor

pair. A processor’s execution history is seen with the help of

a hash-based signature. Through the comparisons made

across the fingerprints achieved, the differences amongst two

mirrored processors are depicted.

c) Reconfiguration: The reconfiguration method attempts to

eliminate the failed modules from the system. Whenever,

there is any failure identified within a module, the segments

that are isolated from the rest of system are also affected. For

the purpose of replacing a failed module, various functional

modules are utilized which are also switched automatically.

d) Algorithm Based Fault Tolerance (ABFT): With the help of

a specific software procedure, the detection, location and cor-

rection of faults are done within the ABFT technique. The

structure of numerical operations can be exploited through

this technique and is not much generally available even

though it is effective enough. The applications which involve

regular types of structures can use this method.

e) Procedure Duplication (PD): Most of the important proce-

dures here are duplicated by the programmer within this sys-

tem. The achieved results are compared when these proce-

dures are executed on two different processors. The proce-

dures that are to be duplicated are chosen by the programmer.

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET

54 International Journal of Engineering & Technology

The results achieved here are provided a legitimate checking

as well. There is a manual modification done for the codes,

and various errors might be identified within the system.

f) Error Detection by Duplicated Instructions (EDDI): Before

the computed outcomes achieved from master and shadow

instructions are written within the memory, they undergo var-

ious comparisons. The program restarts in case where a mis-

match occurs upon which the program also jumps to an error

handler.

g) Replication: This technique has higher cost with respect to

the hardware and the runtime. However, the reliability within

the system is ensured here. The main objective here is to

achieve a majority vote on the calculation that is repeated nu-

merous numbers of times. Each processor is made to run N

copies related to the surrounding computations through the

software solution.

h) Restore Architecture: Within the Restore architecture, the

transient errors as well as soft errors are recognized with the

help of time redundancy. The method uses the transient error

symptoms.

i) Periodic Memory Scrubbing: On the basis of periodic reload-

ing of the code on an immutable memory, the periodic

memory scrubbing method is proposed. Due to the repetitions

occurring for memory reading, the performance penalty oc-

curs.

j) Assertions: There are various assertions or logic statements

present at different points within the program. They help in

depicting various relationships among the variables that are

mentioned within the program. There are various issues that

are also prompted within this method as the assertions are not

easily understood by the programmer.

2. Literature survey

Xiaoxing Yang et.al (2015) proposed in this paper [1], the descrip-

tion of construction of previous work and new study that is benefi-

cial for the construction of software defect prediction model. There

are two aspects to be considered in this paper. First is the new ap-

plication of learning-to-rank technique to real-world data sets which

will help in predicting the software defect. The second is the com-

prehensive evaluation of the procedure. It is seen through the em-

pirical studies that the performance measures of the learning-to-

rank approach are very effective as compared to the already existing

approaches.

Shaik Nafeez Umar et.al (2013) proposed in this paper [2] the

method through which the statistical model predicts the defects for

the newly designed software projects. Here, the earlier released 20

data points, and 5 parameters are utilized for designing a model.

The descriptive statistics, correlation as well as multiple linear re-

gression models are also applied with various confidence intervals

(CIs). The R-square value within this multiple regression model is

0.91 as well as the standard error is 5.90%. Through the simulation

results achieved it is seen that there is a precision of 90.76% be-

tween the actual defects and the predicted defects.

Muhammad Dhiauddin et.al (2012) in this paper [3] they described

that an initial effort of building a prediction model for defects in

system testing carried out by an independent testing team. The mo-

tivation to have such defect prediction model is to serve as early

quality indicator of the software entering system testing and assist

the testing team to manage and control test execution activities.

Mathematical equation that has p-value of less than 0.05 with

Rsquared and R-squared (adjusted) more than 90% is selected as

the desired prediction model for system testing defects. This model

is verified using new projects to confirm that it is fit for actual im-

plementation.

Mrinal Singh Rawat, Sanjay Kumar Dubey (2012) in this paper [4]

they proposed that software defects may lead to degradation of the

quality which might be the underlying cause of failure. In today’s

cutting edge competition it is necessary to make conscious efforts

to control and minimize defects in software engineering. However,

these efforts cost money, time and resources. This paper identifies

causative factors which in turn suggest the remedies to improve

software quality and productivity. The paper also showcases on

how the various defect prediction models are implemented resulting

in reduced magnitude of defects.

Christopher Henard, (2013) in this paper [5], they explained that

mass customization and economics force to design software prod-

uct line. Due to large size of products present within the software,

product line is a challenging. In this paper, existing technique based

on the feature model of the product line by selecting limited set of

products. In this paper test suites are used to detect such errors. In

particular, two mutation operators are proposed to derive erroneous

feature models (mutants) from an original feature model and assess

the capability of the generated original test suite to kill the mutants.

Experimental results demonstrate that dissimilar tests suites have

higher mutant detection ability than similar ones, thus validating the

relevance of similarity-driven product line testing.

Jan Peleska, (2013) in this paper [6], they explained that model

based testing is one of the leading technologies. The key factors are

essential for industrial scale application of MBT. Both are identified

from the feature extraction. With former view they had described

techniques for automated test cases, test data and test procedure

generation for concurrent reactive real times system which enables

for MBT. Their experience introduced MBT approaches in MBT

for testing teams. There are many scientific problems to improve

the acceptance and effectiveness of MBT.

3. Learn to rank algorithm

The various machine learning techniques that are designed for train-

ing the models present within a ranking task are known as learn-to-

rank techniques. The performance of the model can also be calcu-

lated through this approach. For the purpose of optimizing the rank-

ing performance directly the LTR linear model is utilized. As com-

pared to other existing approaches the LTR method is widely used

which is also comparable with other already existing non-linear

models. The utilization of trained data is mainly done here and this

method can be used on variety of data sets as well. For various ap-

plications related to information retrieval, natural language pro-

cessing and data mining LTR is utilized. The ranking performance

can be optimized directly which further results in providing a linear

model within the LTR method. There are varieties of models pre-

sent and the LTR method can work with almost all such variety of

models. For the purpose of evaluating ranking of software defects,

various types of date sets can be utilized within this method. There

is a need to provide comparisons amongst various types of tech-

niques for providing a proper evaluation on the outcomes achieved.

The LTR method is very efficient in terms of various parameters

[17]. There are three different categories present within this ap-

proach. They are explained below:

a) The pointwise approach: The feature vector of each of the

individual document is present within the input space of the

pointwise approach. Within the output space the relevance

degree of each of the document is present. The functions

which take the feature vector of a document are taken as input

which further predicts the relevance degree of that particular

document.

b) The pairwise approach: There is a pair of documents present

within the input space of the pairwise approach. The pair is

depicted as feature vectors.

c) The listwise approach: There is a complete group of docu-

ments which are connected with query q with the input space

of the listwise approach. The output space is of two types as

per the relevance degrees present within the documents.

4. Boltzmann learning

The connection of symmetrically connected units which depend on

stochastic decisions to be on or off are known as Boltzmann ma-

chines. The complex distributions related to the observed data are

International Journal of Engineering & Technology 55

identified with the help of the simple learning algorithms provided

by the Boltzmann machines. There are various scientific tasks that

are used here for learning. There is a settlement of weights on con-

nections and thresholds for solving the inference issues. A cost

function is also represented here through these methods. There are

various advancement issues that are solved by using the Boltzmann

machines as a tool within those inferences. The accuracy of the cor-

relations that are estimated with the help of mean field strategy is

enhanced with the utilization of linear response approximation

(LRA). The empirical moments are matched here with the help of

various approximation methods within the learning systems. The

inexact learning method is similar to the pseudo-moment matching

whether it involves the LRA method or not. There are various stud-

ies being proposed related to the pseudo-moment matching issues

within the Boltzmann machines. The BPA technique when com-

bined with the LRA method is tested in terms of accuracy. It is seen

that the LRA technique enhances the estimation of correlations

which is mainly done due to the impacts of loops on a specific sys-

tem which is absent in case of BP algorithm.

The global energy, E, in a Boltzmann machine is identical

𝐸 = − (∑ 𝑤𝑖,𝑗𝑠𝑖𝑠𝑗 + ∑ 𝜃𝑖𝑠𝑖

𝑖𝑖,𝑗

)

Where, wij is the connection strength between unit j and unit i.

si is the state, si 𝜖 {0,1}, of unit i.

ϴi is the bias of unit i in the global energy function.

Often the weights are represented in matrix form with a symmetric

matrix W, with zeros along the diagonal.

5. Proposed methodology

The fault prediction is the technique which is applied to predict the

percentage of faults in the test cases. This work is based on to detect

faults from the test cases using learn-to-rank algorithm. The learn-

to-rank algorithm is based on three steps. The first step is selection

of population. The second step is calculation of mutation value. The

last step is calculation of fitness value. The calculation of fitness

value depends upon the initial population value which is selected

randomly. In this work, Back Propagation technique is applied in

which system learns from the experience values and derives new

values. The selection of population value is not random. It depends

upon the system condition which is derived using back propagation

algorithm.

5.1. Proposed algorithm

Init population P (t)

Evaluate P (t);

T: = 0;

Network Construct Network Layers ()

Initialize Weights Network, test cases)

For (i=0; i= test cases; i++)

 Select Input Pattern (Input fault values)

 Forward Propagate (p)

 Backward Propagate Error (P)

 Update Weights (P)

End

Return (P)

 while not done do

 t := t + 1;

 P’:= test case P (t);

 recombine P' (t);

mutate P' (t);

 evaluate P' (t);

 P: = survive P, P’ (t);

End

Fig. 1: Proposed Flowchart.

6. Simulation results

The Learn-to-rank and improved Learn-to-rank algorithms are im-

plemented in MATLAB. The dataset is considered for the imple-

mentation which is described in the table 1.

Table 1: Properties of Dataset

Attributes Values

Number test cases 10

Repeated Test cases No

Fault in the Test cases Yes
Number of applications 1

The proposed algorithm is implemented and interface is designed

for the implementation which is described in the figures shown be-

low

STAR

T

Generate test cases of selected software

Check the initial ranking of the test cases

Apply learning to rank approach on test cases

Apply Boltzmann learning technique

by using APFD matrix

Desire

value

achieved

Compare results of learning-to-rank

approach with Boltzmann learning

STOP

Yes

No

56 International Journal of Engineering & Technology

Fig. 1: Interface Is Designed for Implementation.

As shown in figure 1, the interface is designed for the implementa-

tion of Learn-to-rank and improved rank-learn algorithm. Ten test

cases are shown within the interface. Here the existing and pro-

posed algorithms are executed. The result is analyzed in terms of

the parameter of fault detection rate.

Fig. 2: Comparison Graph.

As illustrated in figure 2, the comparison graph is drawn between

proposed and exiting algorithm. The existing algorithm is Learn-to-

rank algorithm and proposed algorithm is improved Learn-to-rank

algorithm. When the back propagation algorithm is implemented

with Learn-to-rank algorithm the fault detection rate is improved as

shown the graph

7. Conclusion

For detecting the faults from the software or input test cases the

fault detection technique is utilized. For this purpose, the Learn-to-

rank method is utilized which helps in identifying the various faults

present within the particular software. The fault detection rate is

minimized here by selection the population on random basis

through this algorithm. The method known as Back Propagation

method is utilized here that involves a detailed evaluation of the

already existing techniques and helps in deriving new values. The

method helps in enhancing the fault detection rate and minimizing

the execution time. A bio-inspired technique will be proposed in the

future work for detection the fault rate.

References

[1] Graves T. L. , Karr A. F. , Marron J. S. , and Siy H. , “Predicting fault
incidence using software change history,” in Proc. IEEE Trans.

Softw. Eng., Vol.26, no. 7, pp. 653–661, 2000.

https://doi.org/10.1109/32.859533.
[2] Ostrand T. J., Weyuker E. J., and Bell R. M., “Predicting the location

and number of faults in large software systems,” IEEE Trans. Softw.

Eng., Vol. 31, no. 4, pp. 340–355, 2005.
https://doi.org/10.1109/TSE.2005.49.

[3] Gao K. and Khoshgoftaar T.M. , “A comprehensive empirical study

of count models for software defect prediction,” in Proc. IEEE 28th
Int. Conf. Trans. Rel., Vol. 56, no. 2, pp. 223–236, June. 2007

[4] Zimmermann T. , Premraj R. , and Zeller A. , “Predicting defects for

eclipse,” in Proc. IEEE Int. Workshop Predictor Models in Software
Engineering(PROMISE'07), pp. 9–15, 2007.

https://doi.org/10.1109/PROMISE.2007.10.

[5] Jiang Y., Cukic B., and Ma Y., “Techniques for evaluating fault pre-
diction models,” in Proc. Empiric. Softw. Eng., Vol. 13, no. 5, pp.

561–595, 2008. https://doi.org/10.1007/s10664-008-9079-3.

[6] Lessmann S. , Baesens B. , Mues C. , and Pietsch S. , “Benchmarking
classification models for software defect prediction: A proposed

frame work and novel findings,” in Proc. IEEE Trans. Software En-

gineering., Vol. 34, no. 4, pp. 485–496, 2008.
https://doi.org/10.1109/TSE.2008.35.

[7] Moser R. , Pedrycz W. , and Succi G. , “A comparative analysis of

the efficiency of change metrics and static code attributes for defect
prediction,” in Proc. ACM/IEEE 30th Int. Conf. Software Engineer-

ing, pp. 181–190 , Dec.2008.

https://doi.org/10.1145/1368088.1368114.
[8] Mende T., and Koschke R., “Revisiting the evaluation of defect pre-

diction models,” in Proc. 5th Int. Conf. Predictor Models in Software

Engineering, 2009, pp. 1–10.
https://doi.org/10.1145/1540438.1540448.

[9] Arisholm E. , Briand L. C. , and Johannessen E. B., “A systematic

and comprehensive investigation of methods to build and evaluate
fault prediction models,” in Proc. J. Syst. Softw., Vol. 83, no. 1, pp.

2–17, 2010. https://doi.org/10.1016/j.jss.2009.06.055.

[10] Weyuker E.G., Ostrand T. J. and Bell R. M., “Comparing the effec-
tiveness of several modeling methods for fault prediction,” in Proc.

IEEE Int. J. Empiric. Softw. Eng., Vol. 15, no. 3, pp. 277–295, 2010.

https://doi.org/10.1007/s10664-009-9111-2.
[11] D'Ambros M., Lanza M., and. Robbes R., “Evaluating defect predic-

tion approaches:A benchmark and an extensive comparison,” in Proc.

IEEE Conf. Softw. Eng., pp. 1–47, 2011
[12] Wang H., Khoshgoftaar T. M., and Seliya N., “How many software

metrics should be selected for defect prediction,” in Proc. 24th Int.

Florida Artificial Intelligence Research Society Conf., pp. 69–74,
2011.

[13] Khoshgoftaar T. M., Gao K., and Napolitano A., “An empirical study

of feature ranking techniques for software quality prediction,” in
Proc. IEEE Int. J. Softw. Eng. Knowl. Eng., Vol. 22, no. 2, pp. 161–

183, 2012. https://doi.org/10.1142/S0218194012400013.
[14] Wang Y., Cai Z., and Zhang Q., “Differential evolution with compo-

site trial vector generation strategies and control parameters,” in Proc.

IEEE Trans. Evol. Computat, Vol. 15, no. 1, pp. 55–66, 2011.
https://doi.org/10.1109/TEVC.2010.2087271.

[15] Rawat S. M, Dubey K .S, “Software Defect Prediction Models for

Quality Improvement: A Literature Study”, in Proc. International
Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September

2012 ISSN (Online): 1694-0814.

[16] Yang X., Tang K., and Yao X., “A effective algorithm for construct-
ing defect prediction models,” Int. J. in Intelligent Data Engineering

and Automated Learning-IDEAL, pp. 167–175, 2012.

%
 o

f
fa

u
lt

No of iterations

Fault Detection

ELTR

LTR

https://doi.org/10.1109/32.859533
https://doi.org/10.1109/TSE.2005.49
https://doi.org/10.1109/PROMISE.2007.10
https://doi.org/10.1007/s10664-008-9079-3
https://doi.org/10.1109/TSE.2008.35
https://doi.org/10.1145/1368088.1368114
https://doi.org/10.1145/1540438.1540448
https://doi.org/10.1016/j.jss.2009.06.055
https://doi.org/10.1007/s10664-009-9111-2
https://doi.org/10.1142/S0218194012400013
https://doi.org/10.1109/TEVC.2010.2087271

