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Abstract

A FCC model is used to compare five different Model Predictive Control (MPC) strategies. The FCC process is a complex petrochemical unit
with catalyst recycling that makes its behaviour highly nonlinear. The FCC comprises a riser, a separator and a regenerator with important
heat coupling due to the endothermic cracking reactions of gas oil in the riser and the exothermic combustion reactions in the regenerator.
The riser and the regenerator exhibit fast and slow dynamics respectively. The temperatures at riser top and in the regenerator should be
controlled by manipulation of catalyst and air flow rates. All these nonlinear and coupled characteristics render the multivariable control
problem difficult and thus the FCC process constitutes a valuable benchmark for comparing control strategies. Here, the performances of
Dynamic Matrix Control, Quadratic Dynamic Matrix Control, MPC control with penalty on the outputs, NonLinear MPC control, Observer
Based MPC control are compared.

Keywords: multivariable control ;model predictive control ; fluidized catalytic cracker ; step response ; benchmark.

1. Introduction

Catalytic cracking has been used for more than seventy years [1, 2, 3]
in petrochemical plants for conversion of heavy gas oil into high-
value gasoline and lighter components. It is considered as the main
unit in a refinery. Its major economic importance has fostered many
technical developments and several versions of Fluidized Catalytic
Cracking (FCC) units have been patented and installed, such as
Exxon Model IV FCC [4], UOP type FCC [3], Kellog Orthoflow
Model F FCC [5].

The simulation of FCCs is performed at many different levels of
detail [6, 7, 8, 9, 10, 11, 12], either for the riser or the regenerator.
Even CFD models describe the behaviour of the riser [13] or the
regenerator. Generally, the riser model complexity depends only on
the number of lumps used to describe the cracking kinetics. However,
the regenerator model differs much more according to the studies. In
some of them, the regenerator is modelled as a Continuously Stirred
Tank Reactor (CSTR), whereas in other studies the two-phase model
of Kunii-Levenspiel [14]. is used as the basis for describing the
dense bed mainly composed of the bubbles and the emulsion phase
with a high density of catalyst particles. Even, in this latter case,
sometimes the bubbles are considered like the dense phase as a
CSTR [15], sometimes as a plug flow system [9, 10].

Many researchers underline the nonstationary behavior of FCCs
evidently due to the catalyst recycling which provokes an important
heat coupling between the riser and the regenerator. Thus, some
authors have signaled multiple steady states [16, 17, 18, 19] though
it is not a general case. In our case, we did not find multiple steady

states.
Because of its economic importance and the control difficulties en-
coutered due to its multivariable characteristics, large interactions,
important nonlinearities and the presence of constraints, FCCs have
been the subject of many control studies such as controllability anal-
ysis and control structure [20, 21], [12], [22], [23], model predictive
control [24, 25, 26, 5, 27], nonlinear model predictive control [4, 28],
PI observers [29]. Different control configurations are studied by
these authors with various choices for inputs, outputs and their re-
spective numbers. It remains that, owing to the complexity of the
FCC dynamics, the multivariable characteristics and the presence
of constraints, MPC is often considered as the reference control
method.
On-line optimization with large economic benefits is also reported
by [30, 31, 32].
In this work, multivariable control of an FCC process by several MPC
strategies using two manipulated inputs and two controlled outputs
is addressed. The present paper is organized as follows. Section
2 is related to the FCC description together with its constitutive
units. Section 3 deals with the different model predictive control
strategies followed by their respective simulation results. Finally, the
conclusions of the paper are presented in Section 4.

2. FCC model

Basically, the FCC process is a complex petrochemical unit the role
of which is to produce lighter components such as gasoline, diesel
from gas oil by cracking reactions. These latter take place in the riser
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by contact between vaporized gas oil and the fluidized rising catalyst
on the surface of which coke, a reaction product and a poison for
the catalyst, is deposited. The FCC process (Figure 1) comprises
a riser, a separator and a regenerator with important heat coupling
between the endothermic cracking reactions of gas oil in the riser
and the exothermic combustion reactions of coke and oxygen in
the regenerator. The riser and the regenerator are the main units
which exhibit fast and slow dynamics respectively. One of the main
features of FCCs is the catalyst recycle that makes its behaviour
highly nonlinear.
Cracking reactions occurring in the riser reactor are highly complex
due to the nature of feed oil and for that reason, they are modelled
using lumps, i.e. groups of chemical components having close
chemical properties, such as gasoline. The number of lumps involved
in the models of the literature varies a lot and some models, especially
those with a large number of lumps, do not provide the heats of
reaction which are necessary for describing the energy balance in the
riser. Among these cracking models, can be mentioned three lumps
[33], four lumps [34, 35], five lumps [36], six lumps [37], seven
lumps [38], eight lumps [39, 40], nine lumps [41], ten lumps [42],
fourteen lumps [13, 43]. For control purposes, a large number of
lumps is not necessary but the energy balance is of prime importance.
The role of the regenerator is to regenerate the spent catalyst coming
from the separator by allowing the combustion of the coke deposited
on the catalyst [26, 44, 45, 46]. It is operated either in full or partial
combustion. The regenerated catalyst is returned to the foot of the
riser.
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Figure 1: Schematic diagram of a FCC unit

2.1. Riser model

The riser is considered as a plug flow reactor. At the inlet, the feed is
assumed to be instantaneously vaporized [12]. In the present model,
it is assumed that no slip occurs between the solid phase and the gas
phase, i.e. the velocities of both phases are equal. The residence time
of catalyst and gas stream in the riser is supposed to be a few seconds.
Consequently, the riser is only described by spatial equations and
considered as an algebraic system with respect to time, opposite to
the separator and regenerator whose equations are time-dependent.
The kinetic model is based on a three-lump scheme [33] (Figure 2)
to describe the cracking reactions in the riser [47]. The formation
of coke is given by a simple algebraic equation at the outlet. In the
literature, there exist many different models for the cracking in the
riser, with lumps from three components up to fifteen components.
Even if the number of components is particularly low in the present
model, the main characteristics of the riser are taken into account
such as the consumption of gas oil, the formation of gasoline and
the endothermicity of the reaction with the decrease of temperature
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Gas oil
✘
✘
✘
✘
✘
✘
✘
✘
✘
✘
✘✘✿

❳
❳
❳
❳
❳
❳
❳
❳
❳
❳
❳❳③

❄

Gasoline

Coke + light gases

k1

k2

k3

Figure 2: Three lump kinetics

In the riser model, a dimensionless spatial variable z is used, i.e. at
bottom z = 0 and at top z = 1 corresponding to the actual height
L. The feed temperature Tris(z = 0) at riser inlet results from the
following heat balance

Fcat,reg Cpcat(Treg −Tris,0) = Ff eed [Cp,ol(Tboil −Tf eed)+

∆Hvap +Cp,og(Tris,0 −Tboil)]

that describes the heating of the liquid feed, its vaporization and
finally the heating of the gas feed. Fcat,reg is the catalyst flow rate
from the regenerator. Mass balance of gas oil
dygo

dz
=−k1 y2

go Cowr φ tc (1)

where k1 is the kinetic constant for gasoil consumption, Cowr is the
ratio of catalyst flow rate to oil flow rate, ygo is the mass fraction of
gasoil in the riser, tc is the residence time of the catalyst in the riser.
φ is the deactivation factor of the catalyst due to coke deposition.
Mass balance of gasoline
dyg

dz
= (α2 k1 y2

go − k3 yg)Cowr φ tc (2)

where yg is the mass fraction of gasoline.
Energy Balance

dTris

dz
=

∆HcrackFf eed

(Fcat,regCpcat +Ff eedCpo +λFf eedCp,steam)

dygo

dz
(3)

where ∆Hcrack is the heat of reaction and Ff eed and Fcat,reg are the
respective flow rates of the gasoil and catalyst. The kinetic constants
follow Arrhenius law. λ is the weight fraction of steam in the feed
stream to the riser. The deactivation of the catalyst by the coke
deposition is given as

φ = (1−mCcoke,reg) exp(−α tc zCowr) (4)

Following [48], the produced coke concentration is empirically given
by

Ccoke,prod = kc

√
tc

CN
rc

exp(
−Eac f

RTris,1
) (5)

where Tris,1 is the temperature at the riser outlet. The amount of coke
leaving the riser is given by

Ccoke,ris,1 =Ccoke,reg +Ccoke,prod (6)

2.2. Separator model

The residence time of catalyst in the separator is frequently of the or-
der of one minute. This separator can be modelled as a Continuously
Stirred Tank Reactor (CSTR).
Mass balance of coke on catalyst

dCcoke,sep

dt
=

Fcat,spent (Ccoke,ris,1 −Ccoke,sep)

mcat,sep
(7)

where Ccoke,sep is the coke concentration in the separator, Fcat,spent is
the flow rate of catalyst from the riser, mcat,sep is the catalyst holdup.
Energy balance

dTsep

dt
=

Cp,cat Fcat,spent (Tris,1 −Tsep)

mcat,sep Cp,cat
(8)

where Tsep is the separator temperature.



International Journal of Engineering & Technology 183

2.3. Regenerator model

The regenerator model is inspired from [15]. The regenerator is a
fluidized bed where air bubbles cross the dense bed formed by the
catalyst. This bed is considered as a CSTR where the residence time
of catalyst is frequently between ten and twenty minutes. The air
bubbles through the bed could be modelled as a plug flow, however
for ease of simulation, they are modelled as a CSTR. The temperature
and amount of coke are considered uniform throughout the dense
bed as well as the oxygen concentration. An important feature of the
FCC is that the reactions in the riser are mainly endothermic whereas
those in the regenerator are exothermic, thus the heat released in the
regenerator is used by the riser by means of the transported catalyst.
As the process involves a recycle, the behavior of a FCC is difficult
to simulate correctly in both steady and transient states. In the FCC,
partial combustion is assumed, i.e. carbon monoxide leaves the
dense bed and is later oxidized to carbon doxide in the freeboard,
not represented here. The model equations are derived from mass
and energy balances.
Mass Balance of coke on the catalyst

dCcoke,reg

dt
=

(Fcat,spent Ccoke,sep −Fcat,reg Ccoke,reg)−Rcb

mcat,reg
(9)

where Ccoke,reg is the coke concentration on catalyst, mcat,reg is the
catalyst inventory, Fcat,reg is the catalyst flow rate leaving the regen-
erator. The rate of coke combustion is given by

Rcb = kcb exp(− Eacb

RTreg
)xO2 Ccoke,reg mcat,reg (10)

Energy balance

dTreg

dt
=

1
(mcat,reg Cp,cat)

[Cp,cat(Fcat,spent Tsep −Fcat,reg Treg)

Fair,reg Cp,air(Tair −Treg)−∆Hcb
Rcb

Mw,coke
]

(11)

where Treg is the regenerator temperature, ∆Hcb is the enthalpy of
coke combustion.
Mass balance of oxygen in the dense bed

dxO2

dt
=

1
mair,reg

[ Fair,reg/Mw,air (xo2,in − xo2,reg)

−((1+σ)nCH +2+4σ)/(4(1+σ))Rcb/Mw,coke)]

(12)

where σ is the molar ratio of CO2 to CO in the dense bed, nCH is
the number of moles of hydrogen per mole of carbon in the coke.
The signification of parameters as well as their values for the FCC
are given in Table 1. Typical steady-state values of the states and
manipulated inputs are given in Table 2.
The code representing the FCC behaviour and all the Model Predic-
tive Control codes were written in Fortran90. Efficient numerical
and optimization routines were used [49], lsoda [50] for integration
of differential equations, NLPQL [51] and BFGS [52] for nonlinear
optimization. In the particular case of quadratic optimization, the
only routines necessary for its solution were extracted from NLPQL
code.

3. Comparison of Model Predictive Control
Strategies

Several Model Predictive Control (MPC) strategies will be compared
on the FCC process. Thus the simple model of the FCC can be
considered as a valuable benchmark to perform a comparison of
multivariable control schemes. The intention is not to provide the

Table 1: FCC parameters, variables and initial data

Symbol Meaning Value
Cp,air Heat capacity of air (J.kg−1.K−1) 1074
Cp,cat Heat capacity of catalyst (J.kg−1.K−1) 1005
Cp,o Heat capacity of liquid oil (J.kg−1.K−1) 2671
Cp,steam Heat capacity of steam (J.kg−1.K−1) 1900
Eac f Activation energy for coke formation (J.mol−1) 20 103

Ea1 Activation energy for cracking of gas oil (feed) (J.mol−1) 101.5 103

Ea3 Activation energy for cracking of gasoline (J.mol−1) 112.6 103

Fair,reg Mass flow rate of air to regenerator (kg.s−1) 25.378
Fcat,reg Mass flowrate of catalyst (kg.s−1 ) 294
Ff eed Mass flow rate of feed (kg.s−1) 40.63
kc Reaction rate constant for catalytic coke formation (s−0.5) 0.0093
k1,0 Reaction rate constant for the total rate of cracking of gas oil 9.65 105

k3,0 Reaction rate constant for the total rate of cracking of gas oil 4.22 105

m Empirical deactivation parameter 80
mair,reg Holdup of air in the regenerator (mol) 20000
mcat,reg Holdup of catalyst in regenerator (kg) 175738
mcat,sep Holdup of catalyst in separator (kg) 17500
Mw,coke Molecular weight of coke (kg.mol−1) 14 10−3

nCH Number of moles of hydrogen per mole of carbon in the coke 2
Tair Temperature of air to regenerator (K) 360
Tboil Boiling temperature of the feed (K) 700
tc Residence time in the riser (s) 9.6
Tf eed Feed temperature (K) 434.63
α Catalyst decay rate constant (s−1) 0.12
α2 Fraction of gas oil which cracks to gasoline 0.75
∆Hvap Heat of feed vaporization (J.kg−1) 1.56 105

∆Hcrack Heat of cracking (J.kg−1) 506.2 103

λ Weight fraction of steam in feed stream to riser 0.035
σ Molar ratio of CO2 to CO in the dense bed

Table 2: FCC steady-state values of the states for Fair,reg = 25.571kg.s−1

and Fcat,reg = 295.03kg.s−1 at a given temperature set point

Symbol Meaning Value
Ccoke,ris,1 Coke concentration at top of riser (kg coke/kg cat) 0.00974
Ccoke,reg Coke concentration in the regenerator (kg coke/kg cat) 0.00305
Tris,0 Temperature in the riser at inlet (K) 805.70
Tris,1 Temperature in the riser at top of riser (K) 780.00
Tsep Temperature in the separator (K) 780.00
Treg Temperature in the regenerator (K) 972.00
xO2 Oxygen mole fraction in regenerator 0.00591
ygo Mass fraction of gas oil at top of riser 0.458
yg Mass fraction of gasoline at top of riser 0.383

best control tuning for each control strategy, but rather to demon-
strate how, by means of FCC model, it is possible to highlight the
differences between different strategies and choices of control pa-
rameters. Table 3 shows the two manipulated inputs and the two
controlled outputs of the FCC. Table 4 gives a brief summary of the
different strategies which are compared in the present paper. All
these strategies are very well detailed in [53, 54].

Table 3: Manipulated inputs and controlled outputs

Manipulated input u1 Mass flow rate of catalyst Fcat,reg
Manipulated input u2 Mass flow rate of air Fair,reg
Controlled output y1 Temperature at top of riser Tris,1
Controlled output y2 Temperature in the regenerator Treg

3.1. Identification by open loop responses

In many cases, open loop responses of the system are necessary to
identify a model of the system which is later used for closed loop
control. The sampling period is taken equal to 250s. In all cases, the
model horizon was equal to 60 sampling time. In several of the MPC
strategies (DMC, QDMC, MPC-penalty), the linear model of the
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Table 4: Summary of control strategies

Control strategy (Symbol) Basis (Type of optimization)
Dynamic Matrix Control (DMC)
Linear model using step response coefficients,
without constraints
(analytical solution)
Quadratic Dynamic Matrix Control (QDMC)
Linear model using step response coefficients,
with hard constraints on u and ∆u
(quadratic programming)
Model Predictive Control (MPC-penalty)
Linear model using step response coefficients,
with hard constraints on u, ∆u and soft constraints on y
(nonlinear optimization with penalty function)
NonLinear Model Predictive Control (NLMPC)
Nonlinear model of the process, with hard constraints on u, ∆u
(nonlinear optimization)
Observer Based Model Predictive Control (OBMPC)
State-space linear model using step response coefficients,
with hard constraints on u, ∆u,
Kalman filter
(quadratic programming)

process is given by the dynamic matrix from equation (18) formed by
the unit step response coefficients of the studied controlled outputs
with respect to all the manipulated inputs. Even, OBMPC uses this
information, but in a different way. Thus, step variations of mass flow
rate of catalyst (5%) and mass flow rate of air (0.5%) are imposed
to the process around a steady state (Figure 3). The responses of
the controlled outputs with respect to the mass flow rate of catalyst
are shown in Figure 4 as they are particularly interesting. The
normalized time is indicated in numbers of sampling periods. When
the step on u1 is imposed at normalized time 81, immediately the
temperature at the top of the riser increases abruptly. This is due to
the algebraic character of the riser model equations, i.e. its dynamics
is neglected with respect to that of the rest of the system. After that,
the riser temperature decreases and then increases, thus showing an
inverse response characteristics. The first decrease is due to the fact
that the endothermic heat of reaction overcomes the sensible heat
brought by the catalyst, but later the regenerator temperature will
increase and finally cause increase of bottom riser temperature and
consequently top riser temperature. The regenerator temperature
is influenced by the riser temperature and will vary in a relatively
similar way to the step of mass flow rate of catalyst. The responses
of the top riser temperature and regenerator temperature to steps of
mass flow rate of air are simpler and close to first order responses.
Of course, the step response coefficients (Figures 5 and 6) display
the same dynamical tendencies that were previously described.
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Figure 3: Mass flow rate of catalyst and mass flow rate of air imposed for
open loop identification
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used for open loop identification
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manipulated mass flow rate of catalyst

0 10 20 30 40 50 60 70
0

5

10

15
h i

Normalized time

 

 

Response y
1
 / u

2

0 10 20 30 40 50 60 70
2

4

6

8

10

12

14

16

18

20

22

Normalized time

 

 

Response y
2
 / u

2

Figure 6: Unit step response coefficients for both outputs with respect to
manipulated mass flow rate of air

3.2. Dynamic Matrix Control

3.2.1. General presentation

To simplify the presentation, DMC is first presented in a SISO
framework [55, 56, 53, 54]. At time k, the following quadratic
criterion taking into account the differences between the estimated
outputs ŷ(k+ i|k) and the references on the prediction horizon Hp

J =
Hp

∑
i=1

(ŷ(k+ i|k)− yre f (k+ i))2 (13)

is minimized, in the absence of constraints, with respect to the vari-
ations of ∆u(k) of the manipulated input considered over a control
horizon Hc.
The plant is represented by a stable step reponse, i.e. the step re-
sponse coefficients. The prediction of the ouput based on past and
future inputs is given by

ŷ(k+ l|k) = yss +
Hm−1

∑
i=l+1

hi∆u(k+ l − i)+hM(u(k+ l −M)−uss)

l

∑
i=1

hi∆u(k+ l − i)+ d̂(k+ l|k)

(14)

where hM is the model horizon which must be larger than or equal to
the prediction horizon Hp. The influence of unmodelled dynamics
and disturbances is globally taken into account by the disturbance
term

d(k) = y(k)− y∗(k|k) (15)
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Given the measured output ym(k), the future disturbances are esti-
mated as

d̂(k+ l|k) = d̂(k|k) = ym(k)− y∗(k|k) (16)

i.e. all the future predicted disturbances are equal to the present
disturbance estimation.
The output prediction based on past inputs is defined as

y∗(k+ l|k) = yss +
M−1

∑
i=l+1

hi∆u(k+ l − i)+hM(u(k−1)−uss) (17)

The vector of output predictions ŷ(k+ l|k) is related to the vector of
ouput predictions y∗(k+ l|k) based on past inputs, to the vector of
inputs ∆u(k) and to the vector of predicted disturbances as ŷ(k+1|k)

...
ŷ(k+Hp|k)

=

 y∗(k+1|k)
...

y∗(k+Hp|k)

+A

 ∆u(k)
...

∆u(k+Hc −1)

+

 d̂(k+1|k)
...

d̂(k+Hp|k)


where A is the dynamic matrix made of step response coefficients
hi of the plant outputs to the manipulated inputs.

A =



h1 0 . . .0

h2 h1
...

...
...

. . .
hM hHc−1 . . .h1
...

...
...

hM hM−1 . . . hM−Hc+1
...

...
...

hM hM . . .hM
...

...
...

hM hM . . .hM



(18)

For a multivariable system of dimension nu ×ny, the dynamic matrix
is simply composed of submatrices as

A =

A11 . . . A1nu

...
...

Any1 . . . Anynu

 (19)

According to past equations, the vector of future input moves is
given as

∆u(k) = [∆u1(k)T . . .∆unu(k)
T ]T (20)

which is the least-squares solution of the following linear system yre f (k+1)− y∗(k+1|k)− d̂(k|k) = e(k+1)
...

yre f (k+Hp)− y∗(k+Hp|k)− d̂(k|k) = e(k+Hp)

= e(k+1)=A ∆u(k)

(21)

In the absence of constraints, the least-squares solution is

∆u(k) = (A T A )−1A T e(k+1) (22)

Only the first component of u(k) is implemented at time k.
In fact, the modified criterion (24) of QDMC will be used even for
DMC to rigorously use the same criterion.
The different MPC strategies which are presented were developed
in Fortran90 and they can be applied for a stable system having any
number of inputs and outputs. The values of the main parameters
which influence the studied MPC strategies are given in Table 5.

3.2.2. Numerical results

In the open loop responses, it has been observed that when a step on
the catalyst flow rate was imposed,the outputs exhibited an inverse
response behaviour. It will be shown in the following that it has
important consequences. The inverse response is even more difficult
to handle than a pure delay to which it could be compared. For
that reason, a modified criterion with a lower Hp,low bound of the
prediction horizon which can be varied is implemented as

J =
Hp

∑
i=Hp,low

(ŷ(k+ i|k)− yre f (k+ i))2 (23)

The lower bound is used in MPC to avoid problems arising from
the inverse response of processes and in our case we have a case of
an inverse response. The set points have been chosen as positive
and negative steps occurring at different times to emphasize the
interaction effects that can influence the closed loop control of such
a process. Thus, with respect to the steady state, the set point of
the riser temperature undergoes an increase of 5K at t = 20000s
and a decrease of 5K at t = 40000s whereas the set point of the
regenerator temperature undergoes an increase of 5K at t = 60000s
and a decrease of 5K at t = 80000s, the total simulation time being
equal to 100000s.

DMC case with Hp,low = 1.
The first choice of parameters was Hp = 20, Hp,low = 1, Hc = 3.
When the original criterion (13) is used (Figures 7 and 8), i.e. with
Hp,low = 1, strong oscillations of the riser temperature are visible
at each set point change corresponding to strong oscillations of
the catalyst flow rate and also sharp variations of the air flow rate.
The oscillations are due to the inverse response behaviour of the
temperatures to variations of the catalyst flow rate. The set points
are well tracked for the riser and regenerator temperatures.
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Regenerator temperature (K).

0 2 4 6 8 10

x 10
4

280

285

290

295

300

305

310

315

320

u 1

Time (s)
0 2 4 6 8 10

x 10
4

24.5

25

25.5

26

26.5

27

27.5

u 2

Time (s)

Figure 8: DMC control with Hp,low = 1. Left: Catalyst flow rate (kg/s).
Right: Air flow rate (kg/s).

DMC case with Hp,low = 10.
To avoid the oscillations visible with Hp,low = 1, a larger value of
Hp,low equal to 10 is considered. It must be noticed that the duration
of the inverse response (Figure 4) is about 15 sampling periods so
that the value of Hp,low is close to that duration. In these conditions,
compared to the previous case where Hp,low = 1, the behaviour of
the closed loop system is much improved with a smoother tracking
of the set points (Figure 9). However, the interaction effects are
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Table 5: Conditions of Model Predictive Control Strategies

Dynamic Matrix Control, first case
Prediction horizon Hp 20
Lower bound of prediction horizon Hp,low 1
Control horizon Hc 3

Dynamic Matrix Control, second case
Prediction horizon Hp 20
Lower bound of prediction horizon Hp,low 10
Control horizon Hc 3

Quadratic Dynamic Matrix Control
Prediction horizon Hp 20
Lower bound of prediction horizon Hp,low 10
Control horizon Hc 3

Model Predictive Control with
nonlinear optimization by NLPQL

Prediction horizon Hp 20
Lower bound of prediction horizon Hp,low 1
Control horizon Hc 3

Nonlinear Model Predictive Control
Prediction horizon Hp 3
Lower bound of prediction horizon Hp,low 1
Control horizon Hc 1

Observer Based Model Predictive Control, first case
Measurement standard deviation σy 0.5
Prediction horizon Hp 3
Lower bound of prediction horizon Hp,low 1
Control horizon Hc 1
Observer Based Model Predictive Control, second case
Measurement standard deviation σy 0.01
Prediction horizon Hp 3
Lower bound of prediction horizon Hp,low 1
Control horizon Hc 1

increased, for example on the riser temperature, around t = 60000s
and t = 80000s. The profiles of the manipulated inputs are also
different with smoother variations (compare Figures 8 and 10). Other
sets of parameters Hp,low, Hp and Hc could have been chosen, but we
recall that our objective is to show the potential of this FCC model
for demonstrating the differences between various MPC strategies.
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Figure 9: DMC control with Hp,low = 10. Left: Riser temperature (K). Right:
Regenerator temperature (K).
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Figure 10: DMC control with Hp,low = 10. Left: Catalyst flow rate (kg/s).
Right: Air flow rate (kg/s).

3.3. Quadratic Dynamic Matrix Control

In order to take into account the constraints, quadratic dynamic
matrix control (QDMC) is used instead of DMC. Furthermore, a
modification of the quadratic criterion as the sum of a performance
term and an energy term is introduced in QDMC [56] as

J =
Hp

∑
i=Hp,low

γ
2
i (ŷ(k+ i|k)− yre f (k+ i))2 +

Hc

∑
i=1

λ
2
i (∆u(k+ i))2 (24)

where the weights γi for the outputs are the elements of a diagonal
matrix Γ, and the weights λi for the inputs are the elements of a
diagonal matrix Λ. Hard constraints with respect to the manipulated
variables and their moves are taken into account

umin ≤ u ≤ umax
∆umin ≤ ∆u ≤ ∆umax

(25)

These constraints can be gathered as a system of linear inequalities
incorporating the dynamic information concerning the projection of
constraints [57]

B∆u(k)≤ c(k+1) (26)

where B is a matrix and c a vector.
In the presence of constraints (25), the QDMC problem can be
formulated as a quadratic programming problem [51] such as

min
∆u(k)

[
1
2

∆u(k)T H∆u(k)−g(k+1)T
∆u(k)

]
(27)

subject to constraints (25). H is the Hessian matrix which is equal to

H = A T
Γ

T
ΓA +Λ

T
Λ (28)

where A is the dynamic matrix, g is the gradient vector equal to

g(k+1) = A T
Γ

T
Γe(k+1) (29)

In all cases, the weights Γ and Λ were diagonal matrices with respec-
tive values equal to 10 and 1, putting more weight on the controlled
outputs. The constraints on u were chosen in such a way that they
were never reached and no constraints on ∆u were considered. The
choice of parameters Hp = 20, Hplow = 10, Hc = 3, resulted in the
same results as DMC with the same set of parameters. For that
reason, the Figures are not shown. This is due to the absence of
constraints so that the problems are exactly of the same nature and
the numerical solution by optimizer NLPQL obtained for QDMC
is the same as the analytical solution as DMC provided the same
criterion (24) is minimized.

3.4. Model Predictive Control with nonlinear optimiza-
tion by NLPQL

When soft constraints on the controlled outputs y are considered, the
nature of the optimization problem changes with respect to QDMC.
These soft constraints are taken into account by addition of a penalty
term to the quadratic criterion (24) used in QDMC. To be able to
compare with DMC and QDMC, the soft constraints on y were taken
large so that they were never reached, making the penalty term equal
to zero. In spite of this, the code was required to perform the non-
linear optimization as if soft constraints were present. Thus, the
control problem results in a general problem of nonlinear optimiza-
tion which is solved by NLQPL optimizer [51]. The same values of
prediction horizon Hp = 20 and control horizon Hc = 3 were taken.
However, between the two values of Hp,low equal to 1 and 10, the
value Hp,low = 1 gave much better results which are presented in
Figures 11 and 12. This Hp,low = 1 is due to the difficulty of the
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nonlinear optimization for the FCC. The set point tracking is excel-
lent and the interaction effects at the set point changes are relatively
small. The difference between these results and those of QDMC may
be explained by the numerical approximations of the Lagrangian
function and its gradient that are performed during the nonlinear
minimization by a quasi-Newton method and which would result in
a filtering and smoothing of the oscillations previously present in
QDMC
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Figure 11: MPC control with nonlinear optimization by NLPQL and
Hp,low = 1. Left: Riser temperature (K). Right: Regenerator temperature (K).
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Figure 12: MPC control with nonlinear optimization by NLPQL and
Hp,low = 1. Left: Catalyst flow rate (kg/s). Right: Air flow rate (kg/s).

3.5. Nonlinear Model Predictive Control with prediction
from the nonlinear model described by ordinary differ-
ential equations

Nonlinear Model Predictive Control exists under several different
forms [53, 58]. In particular, it can be performed by local lineariza-
tion of the nonlinear state space model [59, 60] at each sampling
instant. In the three previously described versions of MPC (DMC,
QDMC, MPC with penalty on y), the outputs were predicted using
the linear model based on the step response coefficients. In the
nonlinear MPC described in this section, the nonlinear model

ẋ = f (x,u)
y = h(x)

(30)

constituted by the equations of the riser, the separator and the regen-
erator, is directly used to obtain the predicted states and consequently
the predicted outputs as follows. At each sampling instant k, the
nonlinear model (30) is integrated from k until k+Hp, i.e. over the
prediction horizon by the integrator lsoda [50] well suited to stiff sys-
tems. From the calculated values of the states x(k+ i), 1 ≤ i ≤ Hp,
considered as the predicted states x̂(k + i), the predicted outputs
ŷ(k+ i) are deduced. They are directly used in the calculation of
the same criterion (24) as QDMC, but now the criterion depends
in a nonlinear way on the manipulated inputs, opposite to the two
first MPC control strategies (DMC, QDMC). Consequently, the op-
timization to be performed with respect to the future variations of
the manipulated inputs ∆u(k+ i) is nonlinear. Thus, the NLPQL
optimizer [51] and BFGS routine [52] are used in the Fortran90
code to perform the nonlinear optimization. In the optimization
process, it appears that it is more difficult to achieve a successful
optimization at each sampling instant than in the other cases. This
may be due to the highly nonlinear character of the FCC. Thus, the

large value of the prediction horizon Hp = 20 resulted in a failure of
optimization. Considering Hp = 20 and Hp,low = 10 was no more
successful. The best choices which were found corresponded to
small values of prediction horizon Hp and very small control horizon
Hc, typically Hp = 3 and Hc = 1. Moreover, at each sampling instant
k, to find the optimum solution with respect to the manipulated input
variations, the optimizer calculates the criterion a large number of
times until some tolerance is reached, and for each calculation of
the criterion, the nonlinear equations must be integrated. This re-
sulted in a very long computation time which would not be adapted
for on-line optimization and control. An important drawback of
such a nonlinear optimization problem to be solved for control and
on-line implementation is that it is required to guarantee successful
optimization at each sampling instant. Other forms of nonlinear
control are presented in the literature such as by [59, 60], but the
local linearization which is proposed by these latter authors make it
closer to linear MPC than real Nonlinear MPC.

Figure 13 shows that the regulation and tracking are well performed,
but that the way to reach the setpoints and the interactions shows
significant improvement with respect to the linear MPC strategies as
the outputs exhibit lower deviations with respect to their respective
set points around the set point changes. Figure 14 shows that, in
general the variations of the manipulated inputs are smooth, espe-
cially the flow rate of catalyst. However, the set point tracking is less
satisfactory.
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Figure 13: Nonlinear MPC control with Hp = 3, Hc = 1. Left: Riser tem-
perature (K). Right: Regenerator temperature (K).
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Figure 14: Nonlinear MPC control with Hp = 3, Hc = 1. Left: Catalyst flow
rate (kg/s). Right: Air flow rate (kg/s).

3.6. Observer Based Model Predictive Control

3.6.1. General presentation

Many state-space approaches exist for MPC. They were first devel-
oped for linear MPC [61, 62, 63] and some of them have been later
extended to nonlinear MPC [58]. As well as for DMC and QDMC, a
predictor of the output is first built, then a state observer is developed
to estimate the states. This observer-based model predictive control
(OBMPC) developed by [61, 62], is briefly presented [49, 54] in the
following.

A fundamental idea [64] is to represent the entire trajectory for a
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SISO system as a sequence of states

x1(k) = x2(k−1)+h1 ∆u(k−1)
...
xi(k) = xi+1(k−1)+hi ∆u(k−1), i = 1,M

(31)

where hi are the step response coefficients. These equations are then
used to obtain the predicted output corresponding to the influence of
past variations

y∗(k+ i−1|k) = y∗(k+ i−1|k−1)+hi ∆u(k−1) (32)

In the case of a MIMO system with nu inputs and ny outputs, the
matrix Sk is defined at each instant k

Sk =


h1,1,k h1,2,k . . . h1,nu,k
h2,1,k h2,2,k . . . h2,nu,k
...

... . . .
...

hny,1,k hny,2,k . . . hny,nu,k

 (33)

where h j,i,k is the step coefficient at instant k of output j with step
input i.
At time k, the future control actions ∆u(k+ l) are to be determined
over the control horizon.
In the absence of disturbances, the state-space form corresponding
to the step response model can then be written as

Y (k) = ΦY (k−1)+S∆u(k−1)
y∗(k|k) = ΨY (k)

(34)

with

Y (k) = [y∗(k|k)T y∗(k+1|k)T . . .y∗(k+M−1|k)T xu(k)T xw(k)T ]T

y∗(k+ i|k) = [y∗1(k+ i|k) . . .y∗ny
(k+ i|k)]T

∆u(k) = [∆u1(k) . . .∆unu(k)]
T

(35)

Similarly to the the LQG state-space model, the state-space model
(34) can be extended [62] to take into account disturbances w and
output noise v as

Y (k) = ΦY (k−1)+S∆u(k−1)+T ∆w(k−1)
y(k) = y∗(k|k)+ v(k)
y∗(k|k) = ΨY (k)

(36)

with the matrix Φ equal to

Φ =



0 Iny 0 . . . 0 0 0

0 0 Iny

. . . 0
...

...
...

...
. . . . . .

0 0 . . . Iny 0 0
0 0 . . . Iny Cu Cw
0 0 . . . 0 Au 0
0 0 . . . 0 0 Aw


(37)

the matrix S equal to

S =
[
S1 . . . SM Bu 0

]T (38)

the matrix Ψ equal to

Ψ =
[
Iny 0 . . . 0

]
(39)

and the matrix T equal to

T =
[
0 0 . . . Bw

]T (40)

Residual plant dynamics and disturbance dynamics are considered
under a state-space form using matrices Au, Aw, Bu, Bw, and Cu, Cw
[54, 62].

The future outputs are predicted by means of a state observer such as
the optimal linear Kalman filter of matrix gain K, operating in two
stages, first, the model prediction

Ŷ (k+1|k) = ΦŶ (k|k)+S∆u(k) (41)

then, the correction based on measurements

Ŷ (k|k) = Ŷ (k|k−1)+K [y(k)− ŷ∗(k|k−1)] (42)

with

Ŷ (k|k−1) = [ŷ∗(k|k−1)T ŷ∗(k+1|k−1)T . . . ŷ∗(k+M−1|k)T

x̂u x̂w]
T

ŷ∗(k|k−1) = ΨŶ (k|k)
(43)

After state estimation, the optimization is performed as a quadratic
programming problem like QDMC [56]. The objective function to
be minimized with respect to ∆U (k) is

J = ‖Γ [Y (k+1|k)−R(k+1|k)]‖2 +‖Λ∆U (k|k)‖2 (44)

In the absence of constraints, the least-squares solution of OBMPC
expressed by criterion (44) is

∆U (k|k)= [S T
Hp

Γ
T

ΓS Hp +Λ
T

Λ ]−1 S T
Hp

Γ
T

Γ [R(k+1|k)−ΦHp Ŷ (k|k)]
(45)

where S Hp is composed of matrices Si [54, 62].
Thus, opposite to DMC, OBMPC uses an optimal state observer, the
Kalman filter, for the predictor part. According to [62], the different
decomposition of OBMPC as a predictor-optimizer avoids limita-
tions of DMC-type algorithms, such as excessive number of step
response coefficients, poor behaviour when submitted to ramp-like
disturbances or in presence of strong interactions and the necessary
stable behaviour of the plant.

3.6.2. Numerical results

The general parameters were always Hp = 20, Hp,low = 10, Hc = 1,
as they gave very satisfactory results for tracking and regulation.

OBMPC with σy = 0.01

The case where the standard deviation σy = 0.01, i.e. close to zero,
for both measured outputs, is first considered to compare this strategy
based on a state space approach with the strategies based on step
responses such as QDMC. In Figures 15 and 16, the set points
are very well tracked, the multivariable interactions are much less
important than with DMC and QDMC, the manipulated inputs vary
very smoothly. Thus, globally the control is well improved.
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Figure 15: Observer Based Model Predictive Control with Hp = 20, Hp,low =
1, σy = 0.01. Left: Riser temperature (K). Right: Regenerator temperature
(K).
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Figure 16: Observer Based Model Predictive Control with Hp = 20, Hp,low =
1, σy = 0.01. Left: Catalyst flow rate (kg/s). Right: Air flow rate (kg/s).

OBMPC with σy = 0.5

When a realistic noise of standard deviation σy = 0.5 is added to
simulate noise on temperature measurement, the tendencies observed
in the absence of measurement noise are preserved, i.e. outputs
(Figure 17) follow very well the set points and variations of the
manipulated inputs are smooth (Figure 18). Compared to all the
previous MPC strategies, OBMPC presents the best performance.
Obviously, the strong interactions present in the plant are better
handled than by DMC-type algorithms, as claimed by [62].
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Figure 17: Observer Based Model Predictive Control with Hp = 20, Hp,low =
1, σy = 0.5. Left: Riser temperature (K). Right: Regenerator temperature
(K).
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Figure 18: Observer Based Model Predictive Control with Hp = 20, Hp,low =
1, σy = 0.5. Left: Catalyst flow rate (kg/s). Right: Air flow rate (kg/s).

4. Conclusion

A nonlinear model of a Fluidized Catalytic Cracker (FCC) is pre-
sented. It can serve as a benchmark for Model Predictive Control
(MPC) as several multivariable control structures can be tested. Fur-
thermore, it presents important nonlinearities, interactions between
the outputs and the outputs display an inverse response behaviour
with respect to the catalyst flow rate that is one of the manipulated
inputs. Several MPC strategies are presented and tested on this
FCC model, DMC with analytical solution, QDMC with quadratic
optimization, linear MPC with a penalty function and nonlinear
optimization, Nonlinear MPC with model integration over the pre-
diction horizon and nonlinear optimization, Observer Based MPC
with a state-space model, an observer and quadratic optimization.
The best performance was obtained by OBMPC, but QDMC and
MPC-penalty gave also very good results. The most difficult con-
trol strategy was Nonlinear MPC which was not easy to tune and
is not suited for on-line control, at least under the presented form.

Hard constraints on the manipulated inputs and their moves and soft
constraints on the controlled outputs could be added to this problem,
however, for comparison purpose, it was judged not necessary to
introduce them.
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