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Abstract 
 

A hybrid Power Series (PS) and Cuckoo Search via L´evy Flights (CS) optimization algorithm (PS-CS) method is utilized to obtain a 

solution for the deflection and pull-in instability of a nano cantilever switch in the presence of the van der Waals attractions, electrostatic 

forces and fringing filed effects. In order to obtain a relation for deflection of the beam, a trial solution including adjustable coefficients, 

satisfying the boundary conditions of the governing, is proposed. The cuckoo search optimization algorithm is executed to find the ad-

justable parameters of the trial solution satisfying the governing equation of the nanobeam. The results are compared with the available 

results in the literature as well as numerical solution. The results indicate the remarkable accuracy of the present approach. The minimum 

initial gap and the critical free standing detachment length of the nano actuator that does not stick to the substrate due to the van der 

Waals attractions, as an important parameter in pull-in instability of the nano switches, is calculated. Utilizing the results of the PS-CS, 

the stress distribution inside the nano actuator is determined at the onset of the pull-in instability. 
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1. Introduction 

Many of the micro and nano devises including, switches in some 

microchips, pressure sensors, chemical sensors, values and pumps, 

are constructed using suspended beams and plates [1-3]. A canti-

lever nano switch is a beam suspended over a substrate. Applying 

voltage difference between the beam and the substrate attracts the 

beam into the substrate and causes the deflection of the beam. As 

the voltage difference between the beam and substrate increases, 

the deflection of the beam into the substrate increases. An increase 

of the voltage beyond a critical voltage, pull-in instability voltage, 

results in instability of the beam. In this case, the suspended beam 

suddenly jumps and sticks to the substrate. In the nanoscale, the 

nanobeam is also subject to the intermolecular forces. When the 

separation space between the beam and substrate is less than the 

retardation length, typically below 20 nm, the van der Waals force 

is significant and affects the deflection of the nanobeam [4].  

The nanobeams mostly are utilized in arrays [5]. For instance, 

hundreds of thousands of nanobeams in arrays are utilized to con-

struct a digital memory. Therefore, analysis of nano switches and 

obtaining analytical or semi analytical relations for deflection or 

pull-in instability of these actuators would significantly reduce the 

computational cost of future designs. 

Generally there are two main approaches for analysis of nano 

switches. In a simple approach, the nanobeam is assumed as a 

mass and spring suspended over the substrate. The mass is subject 

to the uniform applied forces [6], [7]. In this approach, calculating 

the internal stresses and mechanical failure the nanobeam is not 

possible. In the second approach, the nano beam is considered as a 

distributed parameter model. The distributed parameter model 

leads to a nonlinear differential equation which could provide 

details of the beam deflection and stress distribution along the 

beam.  

Lin and Zaho [7] utilized the lamped model to analyze the pull-in 

instability of micro actuators. They obtained analytical relations 

for pull-in instability of the actuators. Soroush et al. [3] utilized a 

distributed parameter model to examine the pull-in instability and 

deflection of nano actuators. They [3] utilized the Adomian de-

composition method to obtain a solution for deflection and pull-in 

instability of nano actuators. The results show that the Adomian 

series are capable to obtain a solution for pull-in instability of the 

nano actuators; however, the accuracy of the results is not good. 

Hence, Noghrehabadi et al. [9] tried to increase the accuracy of 

the Adomian power series solution by using the Pade approxima-

tions. The Pade approximants increased the accuracy of the solu-

tion. However, Pade approximants transformed the simple power 

series solution to a rational form, and in some cases the denomina-

tor could take zero digits which in this case the results are not 

applicable. Ramezani et al. [9, 10] utilized the Green method to 

obtain a closed-form solution of the pull-in instability in nano-

cantilevers. They [9, 10] assumed a second order shape function 

for the shape of nanobeam. Recently, artificial intelligence tech-

niques have been utilized to solve various types of differential 

equations [11-14]. Meade and Fernandez [11] and Lagaris, Likas 

[12] proposed the neural networks as a trial function with adjusta-

ble parameters for solving boundary value differential equations. 

Malek and Beidokhti [13] proposed a new approach for solving 
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differential equations using a power series as a trial function with 

adjustable parameters and the Nelder-Mead optimization algo-

rithm to adjust the parameters.  

Cuckoo Search via L´evy Flights algorithm proposed by Yang and 

Deb [15] as a population base optimization algorithm. This algo-

rithm mimics the obligate brood parasitism of some cuckoo spe-

cies which lay their eggs in the nests of other Cuckoo species. The 

effectiveness of this algorithm has been demonstrated in many 

recent studies [16-18].  

In the present study a combination of power series and Cuckoo 

search via Levy flights optimization algorithm is proposed as a 

new approach to obtain a relation for deflection of nano cantilever 

beams in the presence of van der Waals attractions. The pull-in 

instability, free standing length of the beam and the Stress result-

ants are also evaluated. 

2. Mathematical model 

A schematic view of a nano-cantilever beam suspended over a 

conductive substrate is depicted in Fig. 1.  

 

 
Fig. 1: Schematic View of the Physical Model of the Cantilever Nano 

Switch. 

 

The cross section of the beam is rectangular with thickness of h 

and width w. Length of the beam is denoted by L. The initial gap 

space between the cantilever beam and substrate plane is denoted 

by g. Considering the van der Waals attractions, electro static 

forces and fringling effects, the governing equation for the distrib-

uted model of the beam is written as [3]: 

 

        

4d u

4 3 2 1 u xdx 1 u x 1 u x

  
  

 

                               (1-a) 

 

Subject to the following boundary conditions at the basis and the 

natural end: 

 

       u 0 u 0 0, at x 0 and u 1 u 1 0, at x 1               (1-b) 

 

Where x is the non-dimensional position along the beam measured 

from the clamped end, and prime denotes the differentiation with 

respect to x. α is the non-dimensional van der Waals parameter, β 

is the non-dimensional electro static parameter and γ is the non-

dimensional fringing filed parameter. The non-dimensional pa-

rameters are defined as follow [3]: 
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Where y is the beam deflection, 21212

0 10854.8  mNc  is the 

permittivity of the vacuum, V is the applied external voltage 

Jsh 3410055.1   is Planck’s constant divided by 2 , and 

smc 810998.2   is the light speed. Eeff is the effective Young’s 

modulus, and I is the moment of inertia of the beam cross section 

(wh3/12) [3]. 

3. Cuckoo search l´evy flight 

Yang and Deb [15] proposed the Cuckoo Search L´evy flight (CS) 

method as a new meta-heuristic algorithm to deal with uncon-

strained optimization problems. The Cuckoo search L´evy flight 

algorithm is inspired by the obligate brood parasitic behavior of 

some cuckoo species in combination with the L´evy flight behav-

ior of some birds and fruit flies in nature. CS method simply fol-

lows three rules as follows [15]: 

1) Each cuckoo lays one egg at a time, and dump its egg in a 

randomly chosen nest; 2) The best nests with high quality of 

eggs will carry over to the next generations; 3) The number 

of available host nests is fixed, and the egg laid by a Cuckoo 

is discovered by the host bird with a probability  0 1ap  . 

As the CS method tries to maximize a fitness function, in the case 

of minimization the fitness function is considered as the minus of 

the original fitness function. Each egg in a nest symbolizes a solu-

tion, and a cuckoo egg symbolizes a new candidate solution. The 

goal is to use the new and potentially better solutions (cuckoo egg) 

to replace a not so good solution in the nests.  

Utilizing the mentioned three basic rules of CS method, the main 

steps of the CS algorithm are listed as the pseudo code in Fig. 2. 

 

 
Fig. 2: Pseudo Code of the Cuckoo Search (CS) [15]. 

 

For generating a new solution (a new cuckoo egg i) for next gen-

eration x(t+1), a L´evy flight is required to be performed as follow 

(3) where κ > 0 is the step size of the search, related to the optimi-

zation parameter scales of the optimization problem. The default 

use  

 

   t 1 t
x x t 1 3

i i

        Of κ = 1  

 

Is a good choice in most cases. The product denotes the entry wise 

multiplication which is similar to those used in Particles Swarm 

Optimization (PSO) method [19, 20]. 

More details about the implementation of the cuckoo search l´evy 

flight method can be found in the work of Yang and Deb [15]. 

4. Problem formulation 

The deflection of the beam subject to the external forces can be 

obtained from the solution of Eq. (1-a) subject to the boundary 

conditions of eq. (1-b). In order to find a solution for Eq. (1), con-

sider a uniform discretization of the governing differential equa-

tion of Eq. (1-a) with m arbitrary points [12], [13]. In each discre-

tized point the governing equation can be written as: 
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                      (4) 

 

Eq. (4) represents Eq. (1-a) is discretized points. Now, let’s as-

sume  y x,aT
r

 as a function (a trial solution) which approximate 

the solution to Eq. (1). a
r

 denotes a vector containing the adjusta-

ble parameters. As the solution of Eq. (1) should satisfy the gov-

erning equation, the Eq. (4) should hold true for each point in the 

domain of the solution. Substituting the assumed trial solution in 

Eq. (4) should also satisfy the equation in each discrete point of 

the domain of the solution. The error of the trial solution in the 

domain of the solution will be computed using the following equa-

tion:  
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            (5) 

 

The value of  aE


 in Eq. 5 should be zero if the trial solution 

satisfies the governing differential equation, Eq. (1). However, as 

 y x,aT
r

 is the approximate solution of Eq. (1), the value of  aE


 

is not zero. The boundary conditions of the governing equation 

should also be satisfied. Therefore, the trial solution is written as 

the sum of two parts, the first part will satisfy the boundary condi-

tions exactly. The second part with the aid of the first part con-

structs a trial solution for Eq. (1) as follow: 

 

 

     

5 4 3Y (x,a) a x a x 10a 4a xT 1 2 1 2

42 220a 6a x x x 1 N x,a1 2

   

   

r

r

                                          (6) 

 

Where the coefficients of a1 and a2 as well as the vector of a
r

 are 

the adjustable parameters. The term of  axN


,  is a power series in 

the form of (   



n

i

i

i xaaxN
0

3,
  ) involving the remaining adjustable 

parameters (i.e. a3…an). It should be noticed that the trail function 

in the form of Eq. (6) exactly satisfies the boundary conditions of 

Eq. (1-b). Now, the adjustable parameters of a1, a2 and a
r

 should 

be evaluated such a way that  aE


 in Eq. (5) be minimum. Here, 

the Cuckoo search l´evy flight is utilized to find the values of a1 

and a2 and the vector a
r

 regarding to minimize  aE


 in Eq. (6). 

The Cuckoo search l´evy flight optimization algorithm is coded 

using MATLAB 2009 program. The calculations were also exe-

cuted using the MATLAB Software.  

5. Results 

21 sample points (m=21) with uniform space of 0.5 were chosen 

in the domain of the solution (xi є {0, 0.05, 0.01 ... 1}). In the 

Cuckoo search l´evy flight optimization algorithm the number of 

the nests (nests) and the fraction of worse nests (Pa) were fixed at 

15 and 0.25 respectively. 300 iterations were also selected for 

generations number (Number of Iterations).  

As a test of the convergence of the solution, the deflection of a 

typical nano cantilever actuator ( 0.3, 0.2, g w 1.0      ) is 

computed. In this case, the results of present study are compared 

with the numerical results as well as the results of Adomian de-

composition method [3]. The numerical results are obtained using 

the dsolve function of MAPLE 14.0 mathematical software [21], 

[22]. Table 1 shows the variation of the cantilever tip deflection 

(utip) as a function of the dimensionless length of the beam (x) for 

different selected terms of the size of the trial solution. The error 

in Table 1 denotes the difference between the tip deflection (eval-

uated using the Adomian method [3] or the present solution) and 

that of the numerical solution. Table 1 shows that the trial solution 

with six terms of the power series or more provides excellence 

results.  

 
Table 1: The Variation of the Tip Deflection of A Typical Beam with 

Respect to X Obtained Using Different Selected Terms of Power Series for 
Α=0.3, Β=0.3 , and G/W = 1: 

 
Present meth-

od 

Adomian 

[3] 
Method 

0.09081 Numerical 

0.085100 0.0788 utip 4 Terms 

series 0.005698 0.0121 Errors 

0.090810 0.0986 utip 6 Terms 

series 4.03E-05 0.0077 Errors 

0.090811 0.0870 utip 7 Terms 

series 3.07E-05 0.0038 Errors 

0.090808 0.0940 utip 8 Terms 

series 2.06E-06 0.0032 Errors 

0.090841 0.0886 utip 9 Terms 

series 4.86E-07 0.0022 Errors 

0.090770 0.0922 utip 10 

Terms 

series 1.50E-08 0.0014 Errors 

 

It is also clear that as the size of the power series in the trial solu-

tion rises the accuracy of the solution would also increases. Table 

1 also shows that eight terms of the power series in the trial solu-

tion provides results with error of the order of 10-6, but the 

Adomian series solution with eight terms of the series solution 

provides results with error of the order of 10-3. Therefore, it is 

clear that the present method with the same size of the series could 

provide very accurate results. As the eight terms in the trial solu-

tion provide excellence accuracy, the results in the rest of the pa-

per are evaluated using eight terms of the power series for conven-

ience.  

The corresponding trial power series and the power series ob-

tained by Adomian method [3] for the results of Table 1 (i.e. 

α=0.3, β=0.2 and g/w=1) can be summarize as follows respective-

ly: 

 

  2u x 0.178337302 x 0.113517738x

4 50.024877493x 0.000028350 x

6 7 80.002011236 x 0.001214524x 0.000285856 x

 

  

 

                          (7) 

 

  2u x 0.183945211x 0.116761146 x

4 60.026250000 x 0.000730671253x

7 80.000198771951x 0.0000732989145x

  

 



                                   (8) 
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Indeed, Eqs. (7) and (8) represent the non-dimensional shape of 

the cantilever beam after deflection. 

5.1. Pull-in instability study 

The pull-in stability of the cantilever nano switch can be evaluated 

using the solution of Eq. (1) by setting du(1)/dξ→∞ where ξ is the 

parameter of study (i.e. α, β or g/w). When the nano switch reach-

es to the pull-in instability any increase in the magnitude of ξ 

would results in large deflection of the beam (i.e. large variation 

of tip displacement). In the pull-in condition, the values of α, β or 

g/w are denoted by subscript of PI. Any raise of ξ to the values 

larger than the pull-in value, results in instability of the beam; in 

this case the governing equation cannot provide any real solution 

for deflection of the beam. In a case in which there is not any ap-

plied voltage between the electrode and the substrate, the suspend-

ed beam is solely subject to the intermolecular force. If the van der 

Waals attraction be large enough to induce pull-in instability the 

nano actuator will switch without any applied external voltage. In 

this situation the non-dimensional value of van der Waals parame-

ter can be obtained by setting β=0 and du (1)/dα → ∞.  

5.1.1. Free standing parameters 

As mentioned in the previous section, when the separation space 

(g) between the substrate and the suspended cantilever beam is 

small enough, the movable beam might collapse onto the substrate 

because of the van der Waals attraction forces without applying 

any external voltage. Fig. 3 depicts the variation of non-

dimensional tip of the cantilever beam (utip) as a function of the 

van der Waals parameter (α) when the applied external voltage 

difference is zero (β=0). 

 

 
Fig. 3: Tip Deflection as A Function of Van Der Waals Parameter Α. 

 

As seen, the increase of van der Waals parameter increases the tip 

deflection of the beam until at a critical value of the van der Waals 

parameter, αC=1.21, the pull-in instability occurs. In this case, the 

shape of the beam using PS-CS is obtained as follow: 

 

  2 3u x 0.607231800x 0.298579773x

4 5 60.001136843x 0.001377942x 0.058577877x

7 80.043236974x 0.011599078x

  

  



                        (9) 

 

A comparison between the results of present study (PS-CS meth-

od) and the results of previous studies is performed in Fig. 3. This 

figure shows that the accuracy of present PS-CS method is excel-

lence compared with the numerical method. 

For a nano switch with a specified value of the separation space 

(g) and in the absence of any external voltage, the maximum free 

standing length of the actuator, in which the nano actuator does 

not go through the pull-in instability, is called the detachment 

length (Lmax) [10]. Alternatively, for a specified cantilever nano 

switch with an specified value of the length (L), there is a mini-

mum separation space, (gmin), in which the cantilever beam would 

not stick to the substrate because of the van der Waals attraction 

forces [10]. The detachment length (Lmax) and minimum separa-

tion space (gmin) of the cantilever actuator are the basic parameters 

for design of nano electro mechanical switches. These parameters 

can be evaluated by using the critical value of van der Waals pa-

rameter, i.e. αC. Substituting the critical value of the van der Waals 

parameter (αC=1.21) into the definition of van der Waals parame-

ter (i.e. α in Eq. 2); the relations for evaluation of Lmax and gmin are 

obtained as follow: 

 

1
4 2 4g E heffL 0.605max

w

 
 
 
 

 

1

4 4L w
gmin 20.605 E heff

 
 
  

          (10) 

5.1.2. Electrostatic force 

Figs. (4) and (5) show the tip deflection of a wide (g/w=0) and 

narrow (g/w=1) cantilever beam as a function of electro static 

parameter, respectively, when the van der Waals attractions are 

negligible (α=0). Figs. (4) and (5) show that the tip deflection of a 

narrow beam is larger than the tip deflection of a wide beam. A 

comparison between the results of PS-CS and previous results is 

shown in Figs. (4) and (5). The results show that the lamped pa-

rameter model cannot properly follow the variation of tip deflec-

tion accurately. The lamped parameter model under estimated the 

tip deflection while the Green method overestimated the tip de-

flection of the nano beam. 

 

 
Fig. 4: Tip Deflection as A Function of Electrostatic Force (Β) when Α=0 

and G/W=0. 

 

 
Fig. 5: Tip Deflection as A Function of the Electrostatic Parameter (Β) 

when Α and G/W=1. 
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Figs (6) and (7) show the effect of fringing filed (for different 

values of g/w parameter) on the pull-in values of elector static 

parameter (βPI) and the corresponding tip deflection of the nano 

beam uPI respectively, when α=0.  

Fig. (6) demonstrates that the Lamped parameter method [3] as 

well as the Adomian method [3] underestimated the pull-in value 

of the electro static parameter (βPI) while the Greens method [10] 

overestimated magnitude of βPI. Fig. (7) shows that the Green 

method [10] and the Adomian method [3] overestimated the tip 

deflection of the beam at the pull-in instability, and the lamped 

parameter method [3] under estimated the pull-in tip deflection of 

the beam. Figs. (6) and (7) show that the evaluated pull-in values 

of βPI and uPI are in very good agreement with the numerical re-

sults.  

 

 
Fig. 6: Effect of Fringing Filed on Β Pull-In. 

 

 
Fig. 7: Effect of Fringing Filed on Upi Pull-In. 

5.1.3. Electrostatic and intermolecular force at nanoscale sep-

arations 

Fig. (8) shows the deflection of a cantilever nano-beam subject to 

simultaneous effects of electrostatic and van der Waals forces. 

This figure shows that when the applied external voltage is zero 

(β=0) the shape of the beam is not at rest, and There is an initial 

deflection is because of the van der Waals forces (α=0.5). A com-

parison between the evaluated shape of the beam using the numer-

ical method, eight terms of Adomian series [3] and eight terms of 

PS-CS method is performed in Fig. 8. As seen, the difference be-

tween Adomian results and the numerical solution is significant at 

the onset of pull-in instability. The results of PS-CS method indi-

cate that the pull-in occurs at βPI=0.66 when α=0.5 and g/w=1. 

The corresponding power series is obtained as follow:  

 

  2 3u x 0.742382895x 0.371064051x

4 5 60.006908911x 0.002064628x 0.070527153x

7 80.052763152x 0.014290035x

  

 

 

                         (11) 

 

 
Fig. 8: Deflection of A Typical Nano-Beam Under Both Electrostatic and 

Intermolecular Loading when Β Increases from Zero tTo Instability Point. 

Α=0.5 and G/W=1, Collapse Occurs when Β Reaches Values Greater Than 
Its Critical Value Β=0.66  

 

Fig. (9) Shows the pull-in value of the electro static parameter 

(βPI) as a function of van der Waals parameter (αPI) for the narrow 

(g/w=1) and wide (g/w=0) beams. This figure depicts that as the 

intermolecular force (α) increases the required applied voltage 

(βPI) in which the pull-in instability occurs decreases. The varia-

tion of electro static parameter as a function of the van der Waals 

parameter is almost linear. The pull-in tip deflection of the beam 

as a function of the van der Waals parameter is plotted in Fig. 

(10). This figure shows that as the van der Waals forces increases 

the tip deflection of the beam increases. A comparison between 

the results of PS-CS, numerical results as well as Adomian [3] and 

lamped model [3] is performed in Figs. (9) and (10). As seen the 

results of PS-CS are in very good agreement with the numerical 

results.  

 

 
Fig. 9: Relationship between Α and Β Pull-In for Narrow and Wide Beams. 
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Fig. 10: Effect of Intermolecular Force on the Upi Pull-In. 

5.1.4. Stress resultants 

The stress distribution in the nanobeam is one of the basic re-

quirements in the nano switches designs. The maximum value of 

the shear stress at the onset of the pull-in instability is very im-

portant because of its crucial effect on the failure of the switch. 

Utilizing the Euler beam theory, the shear stresses can be directly 

evaluated using the stress resultants [23]. In order to determine the 

critical values of stress resultants, FPI,max and MPI,max are intro-

duced as the dimensionless maximum value of the shear force and 

bending moment at the onset of instability, respectively as follow 

 

3F L0FPI,max
E Igeff

 ,  
2M L0MPI,max

E Igeff
                                       (12) 

 

Where F0 and M0 are the shear force and the bending moment at 

the cross-section of the beam fixed end (x=0). By these defini-

tions, MPI,max and FPI,max equal to u″ (x=0) and –u″′ (x=0), respec-

tively [23].  

FPI,max and MPI,max as a function of the van der Waals force for 

wide and narrow types of cantilever nanobeams are depicted in 

Figs. (11) and (12), respectively. As seen, the increase of the van 

der Waals parameter (αPI) increases the maximum value of the 

shear forces. Therefore, the nano switches with smaller separation 

spaces (large values of αPI) are subject to larger shear stresses. In 

addition, a comparison between the previous reported results and 

the results of present study is performed in Figs. (11) and (12). 

These figures show good agreement between the results of PS-CS 

and numerical results. 

 

 
Fig. 11: Effect of Intermolecular Force on the Shear Force of Nano Canti-

levers for Narrow and Wide Beams. 

 
Fig. 12: Effect of Intermolecular Force on the Bending Moment of Nano 

Cantilevers for Narrow and Wide Beams. 

6. Conclusions 

A combination of power series as a trial solution and cuckoo 

search optimization algorithm is successfully utilized to obtain a 

relation for the shape of cantilever nano switches in the presence 

of van der Waals attractions and electro static forces. The pull-in 

instability of the nano switch is also studied. The results of present 

approach are compared with the numerical results as well as the 

reported results of Adomian, Green and Lamped methods in the 

literature. The comparison between numerical solution and the 

present approach demonstrates that the PS-CS approach over-

comes the shortcoming of the accuracy of the previous approach-

es, and it is capable to deal with the problem robustly. Utilizing 

the obtained results, a relation for the detachment length and min-

imum separation space for nano cantilever switches is obtained. 

Finally, the stresses at the onset of pull-in instability are evaluated. 
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