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Abstract 
 

Mechanical products are usually made by assembling many parts. Among the different type of links, bolts are widely 

used to join the components of an assembly. In a bolting a clearance exists among the bolt and the holes of the parts to 

join. This clearance has to be modeled in order to define the possible movements agreed to the joined parts. The model 

of the clearance takes part to the global model that builds the stack-up functions by accumulating the tolerances applied 

to the assembly components. Then, the stack-up functions are solved to evaluate the influence of the tolerances assigned 

to the assembly components on the functional requirements of the assembly product. 

The aim of this work is to model the joining between two parts by a planar contact surface and two bolts inside the 

model that builds and solves the stack-up functions of the tolerance analysis. It adopts the variational solid model. The 

proposed model uses the simplified hypothesis that each surface maintains its nominal shape, i.e. the effects of the form 

errors are neglected. The proposed model has been applied to a case study where the holes have dimensional and 

positional tolerances in order to demonstrate its effectiveness. 
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1. Introduction 

Mechanical products are generally constituted by many components. The dimensional and geometric deviations from 

the nominal geometry of each component of the assembly have to be limited in order to assure their assembling, their 

interchangeability and their quality. The choice of the kind and the value of the tolerances to assign to the components 

or to the whole assembly is a very critical task. They influence the functional requirements of the assembly product. 

Moreover, the actual global competition pushes industry to produce high precision assembly by low manufacturing 

costs. However, precision and costs are generally in contrast: to have high precision assembly is needed to have small 

tolerance ranges, while to have low manufacturing costs is needed to have large tolerance ranges. 

Therefore, tolerance analysis becomes an important tool to study how the tolerances assigned to the assembly 

components influence the functional requirements of the assembly product. It builds and resolves a set of stack-up 

functions due to the accumulation of both the dimensional and the geometric tolerances assigned to the assembly 

components and the assembly conditions between the parts. Two models are needed to carry out a tolerance analysis of 

an assembly: the first one schematizes each surface of each component on which a tolerance is applied to (it is called 

local model), while the second one builds the stack-up functions by accumulating the effects of the tolerances applied to 

the components (it is called global model). The global model should consider the joining conditions between the paired 

parts of the assembly. Some are the global models proposed by the literature where the assembly conditions are 

modeled [1]-[2], but they are focused on the joints with contact between the paired components. Many doubts remain in 

dealing with the joints with clearance. Therefore, the commercial Computer Aided Tolerancing (CAT) software, which 

is based on them, has the same problems and limits [3]-[4]. 

A typical industrial application of a joint with clearance is bolting. Despite their spread, a bolting is usually 

dimensioned only on the basis of the load that has to be transferred from a component to the other. The tolerances are 
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usually assigned on the surfaces involved in the join on the basis of the experience, while their influence on the 

effective assemblability of the components or on the functional requirements of the whole assembly is rarely taken into 

account.  

The aim of this work is to model the joining between two parts by a planar contact surface and two bolts inside the 

global model that builds and solves the stack-up functions of the tolerance analysis. This model allows the functional 

design of a mating, i.e. the choice of the tolerances on the basis of their effect on the effective assemblability of the 

components and on the functional requirements of the whole assembly. It adopts as global model the variational solid 

model [5]-[7]. The proposed model uses the simplified hypothesis that each feature maintains its nominal shape, i.e. the 

effects of the form errors are neglected. The proposed model has been applied to a case study where the holes have 

dimensional and position tolerances; the results are showed and discussed. 

In the following the model of the joint between two parts by a planar contact surface and two bolts inside the global 

model is deeply discussed (see §2). Then, the model is solved by means of worst case (see §3) and statistical (see §4) 

approaches. Finally, the model is applied to a case study (see §5). 

2. Bolting method using variational model 

The variational solid modelling is based on the idea to represent the variability due to the tolerances, imposed on the 

singular components, by model parameters (or variables). The bolting method aims to model the joining between two 

plates by a planar contact surface and a pattern of bolts. This work considers a pattern of only two holes, but the 

proposed model may be easily extended to more than two holes. We suppose that the two considered holes are 

independent and the tolerances assigned to them are shown in Figure 1.  

The tolerances are assigned according to the envelope rule (or Rule # 1) of the ASME standard [8]. Being the holes and 

the bolts assigned dimensional and positional tolerances, the relative location of the two plates deviates from the 

nominal. Considering the 2D case and that the two plates have small thickness, the relative location deviation of the 

second plate as regards to the first plate, due to the tolerances and the clearance among the bolts and the two coupled 

holes, may be characterized by three contributors ∆x, ∆y and ∆ respectively along the X-axis, along the Y-axis and 

around the Z-axis (see Figure 2). These relative location deviations are also named as small kinematic adjustments [9] 

and they are the parameters of the proposed assembly model. These are the parameters needed to build the 

homogeneous transformation matrix that permits to pass from the local Datum Reference Frame (DRF) of the first 

component, to the local DRF of the second component [9] in order to build the stack-up functions of the assembly. 

Assuming the simplified hypothesis that each surface keeps its nominal shape, i.e. the effects of the form tolerances are 

neglected. The present work defines the mathematical assembly model to relate ∆x, ∆y and ∆ to the assigned 

tolerances. The three contributors are considered independent even if the dependence is limited by the tolerance circular 

zone (with diameter P ) and, therefore, the maximum values of ∆x and ∆y cannot be contemporarily achieved.  

Once defined the bolting model, a worst or a statistical approach may be used to model the stack-up functions of an 

assembly to solve by the methods of the literature [10]-[12]. 

 
Fig. 1: Part with Two Holes. 

 

 
Fig. 2: Location Deviations 
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3. Worst case approach 

The maximum deviation along the X-axis (∆x WC) between the axes of two coupled holes belonging to the two plates 

is obtained by considering the minimum material condition (i.e. the larger value of the hole’s diameter and the smaller 

value of the bolt’s diameter) and by considering the larger or the smaller values of the position deviation along the X-

axis. Therefore, the larger value of deviation of the second plate as regards to the first plate along the X-axis is given by 

(see Figure 3): 

x H B P H B                                                                                                                                              (1) 

Where H  is the nominal diameter of a hole; B  is the nominal diameter of a bolt; P  is the position tolerance range 

of the holes; H  is the half of the dimensional tolerance range of a hole and B  is the half of the dimensional 

tolerance range of a bolt. Therefore, the whole admitted deviation of the second plate as regards to the first plate along 

the x-axis is given by: 

 x H B P H BWC                                                                                                                                   (2) 

In the same way the maximum deviation along the Y-axis of the second plate as regards to the first plate is given by: 

WCWC xy                                                                                                                                                                      (3) 

To evaluate the maximum deviation around the Z-axis (ΔαWC) between the two couples’s plates, it has been 

considered that the deviations along the Y-axis have opposite values for the two holes as shown in Figure 4. Therefore, 

it may be calculated by: 

IxIy WCWCWC  22                                                                                                                                (4) 

Where I  is the inter-axis between the holes and the considered angles have small values. It is to observe that to 

assembly a bolt in each couple of holes belonging to the two coupled plates it is needed that (see Figure 5): 

     HHpBBHHp II   2                                                                                            (5) 

And therefore the assembly condition of the worst case scenario is: 

BHpBH                                                                                                                                                (6) 
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Fig. 3: Maximum Deviation between the Top Surface of the Second Plate and the Bottom Surface of the First Plate along the X-Axis. 

 

 
Fig. 4: Maximum Deviation between the Top Surface of the Second Plate and the Bottom Surface of the First Plate around Z-Axis. 
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Fig. 5: Assembly Constraint in Worst Case Approach. 

4. Statistical approach 

The maximum deviations along the X-axis, along the Y-axis and around the Z-axis have been calculated by considering 

the deviations on each plate due to the applied tolerances, the dimensional tolerance of the bolts and the relative 

deviations due to the clearance among bolt and holes. The deviations of the two holes of the first plate have been 

calculated by considering that each hole is assigned dimensional and positional tolerances (see Figure 6): 

 111111 cos Rx   

 111111 sin Ry   

 121212 cos Rx   

 121212 sin Ry                                                                                                                                                              (7) 

Where 11R , 12R , 11  and 12  are the model’s parameters defining the deviations from the nominal due to the position 

tolerance of the first and the second hole of the first plate. 

Therefore, the inter-axis between the holes moves to: 

   
2 2

1 12 11 12 11I I x x y y                                                                                                                            (8) 

And the datum reference frame of the first plate, those are centred in the barycentre of the plate and have the axes 

parallel to the plate’s boundary planes, moves to: 

11 12
1

2

x x
x

  
   

11 12
1

2

y y
y

  
                                                                                                                                                             (9) 
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Fig. 6: Deviations of Plate 1 through the Statistical Approach. 
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To completely define the problem it is needed to assign the probability density functions to the model’s parameters 11R , 

12R , 11  and 12 . These probability density functions depend by the drilling process. Therefore, the radii 11R  and 12R  

have been considered distributed according to a Gaussian probability density function with mean  equal to zero and 

standard deviation  equal to one sixth of the position tolerance range, while the angles 11  and 12  have been 

considered distributed according to a uniform probability density function inside the range 0°-360°:  

 6,011 pNR   

 6,012 pNR                                                                                                                                                               (10) 

  360,011 U  

  360,012 U  

The diameters of the two holes have been considered distributed according to a Gaussian probability density function 

with mean equal to the nominal value of the diameter of the holes and standard deviation equal to one sixth of the 

dimensional tolerance range (2 H ): 

 3,
11 HHH N    

 3,
12 HHH N                                                                                                                                                       (11) 

The deviations of the two holes of the second plate have been calculated in the same way as the holes of the first plate: 

 212121 cos Rx   

 212121 sin Ry   

 222222 cos Rx   

 222222 sin Ry   

   22122
2

21222 yyxxII                                                                                                                      (12) 

2

2221
2

xx
x


  

2

2221
1

yy
y


  

2122

2122
2

xxI

yy




  

With: 

 6,021 pNR   

 6,022 pNR   

  360,021 U                                                                                                                                                                (13) 

  360,022 U  

 3,
21 HHH N    

 3,
22 HHH N    

It is to observe that these contributors are obtained considering the displacements of the real DRF of Part 2 from its 

nominal position, and not to its nominal position; then, when will be make the algebraic sum of the contributors, these 

terms have had took with as negative.  

The diameter of the bolts (  Bolt) have been considered distributed according to a Gaussian probability density 

function with mean equal to the nominal value of the diameter ( B ) and standard deviation equal to one sixth of the 

dimensional tolerance range (2 B ): 

 3,
1 BBB N                                                                                                                                                           (14) 

 3,
2 BBB N   . 

The existence of a clearance among each couple of holes of the two plates and the corresponding bolt causes a deviation 

of the second plate as regards to the first plate along the X and Y axes and around the Z-axis. The maximum and 

minimum values of these deviations have been calculated and accumulated in a stack-up function. The effect of gravity 

has not been considered, it may involve preferential assembly directions. 

The maximum displacement along the positive X-axis of the second plate as regards to the first plate may be calculated 

as the minimum of the two gaps between each bolt coupled with each hole of the first plate and the corresponding hole 

of the second plate, as shown in Figure 7: 

);min(   rl xxx                                                                                                                                                       (15) 
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Where  lx  and  rx  are given by: 

1
111212

22
B

HH
l

II
x 








                                                                                                                                  (16) 

2
222121

22
B

HH
r

II
x 








  . 

The hole have been considered independent, while the sign + near to the calculated deviations is due to the fact that the 

second plate may moves as regards the first one, due to the clearance among the holes, in the same versus of the X-axis. 

Equation (15) is due to the fact that when one bolt matches the cylindrical surface of a hole, even the other bolt has to 

stop its moving. 

The maximum deviation along the negative x-axis of the second plate as regards to the first plate may be calculated by 

means of the minimum of the two gaps between each bolt coupled with each hole of the first plate and the 

corresponding hole of the second plate, as shown in Figure 8: 

);min(   rl xxx                                                                                                                                                    (17) 

Where  lx  and  rx  are given by: 

1
212111

22
B

HH
l

II
x 








                                                                                                                                  (18) 

2
121222

22
B

HH
r

II
x 








  . 

The sign – in equation (17) is due to the fact the displacement of the second plate as regard to the first place is opposite 

to the positive versus of the X-axis. 
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Fig. 7: Displacement of the Second Plate as Regards to the First Plate along the Positive X-Axis. 
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Fig. 8: Displacement of the Second Plate as Regards to the First Plate along the Negative X-Axis. 

 

Once calculated the minimum and the maximum values of the possible deviations of the second plate as regards to the 

first plate along the X-axis, the actual deviation has been considered distributed according to a uniform probability 
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density function U( x , x ), as shown in Figure 9. Therefore, the deviation of the second plate as regards to the first 

plate along the x-axis due to the clearance among the holes and the bolts has been calculated as: 

  uxxxx  
3                                                                                                                                              (19) 

Where )1,0(Uu  . The maximum deviation along the positive Y-axis of the second plate as regards to the first plate 

may be calculated through the two gaps between each bolt coupled with each hole of the first plate and the 

corresponding hole of the second plate, as shown in Figure 10: 

2
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B
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Fig. 9: Probability Density Functions of the Displacement of the Second Plate as Regards to the First Plate along the X-Axis. 
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Fig. 10: Displacement of the Holes of the Second Plate as Regards to the Bolts Coupled with the Holes of the First Plate. 

 

The deviation of the two holes of the second plate as regards to the corresponding bolts coupled with the holes of the 

first plate has been considered distributed according with a uniform probability density function: 

111 BBB uyy 


                                                                                                                                                           (21) 

222 BBB uyy 


 

Where )1,1(
2,1

Uu BB  for the symmetry as regards the x-axis of the considered datum reference frame. Therefore, 

the deviation of the second plate as regards to the first plate along the Y-axis due to the clearance among the holes and 

the bolts has been calculated as: 

  2/
213 BB yyy                                                                                                                                                     (22) 

As shown in Figure 11. The deviation around the Z-axis ( 3 ) of the second plate as regards to the first plate may be 

calculated by means of the following equation that takes into consideration the small values of the rotational deviation 

due to the small values of the applied tolerances: 

   21123 /2 IIyy BB                                                                                                                                        (23) 

The whole deviations of the second plate as regards to the first plate along the X-axis, the Y-axis and around the Z-axis 

have been evaluated by means of the following equations: 

321 xxxxSC   

321 yyyySC                                                                                                                                                    (24) 

321   SC  

Those are the stack-up functions due to the accumulation of the contributions due to the tolerances applied to the holes, 

to the tolerances applied to the bolts and to the clearance. Also in this case it is to note that to assure the coupling 

between the two plates the clearance has not to be negative, and then the assembly condition of the statistical scenario is: 
  xx                                                                                                                                                                        (25) 
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Where x and x  are given by equations (15) and (17). While the assembly condition of the worst case scenario (6) 

can be used only to predict if the bolts can be effectively assembled or not, in the statistical scenario the assembly 

condition (25) can be used to predict the percentages of not conformity. 

 

(I1 + I2)/2 

∆yB1 ∆yB2 ∆y3 

∆3 

 
Fig. 11: To Calculate 3y  And 3 . 

5. Material condition modifiers 

The proposed model allows modelling the material condition modifiers too. When a material condition modifier is 

assigned to a position tolerance of a hole, the assigned location tolerance is represented as shown in Figure 12 for the 

case of maximum material condition (MMC). 

When a material condition modifier is applied to a location tolerance of a hole, the range of the location tolerance may 

increase of the difference between the actual value of the whole diameter and the value of the diameter at MMC, i.e. the 

tolerance bonus: 

 HHijHijb                                                                                                                                                     (26) 

Where ijb  is the bonus of the j-hole of the i-plate 
ij

H is the actual diameter of the j-hole of the i-plate and 

 HH    gives the value of the whole diameter at MMC. The position tolerance range increase of the bonus ijb  and 

the parameters of the proposed model become: 

 6,0 1111 bNR p    

 6,0 1212 bNR p                                                                                                                                                       (27) 

 6,0 2121 bNR p    

 6,0 2222 bNR p    

That substitute equations (10) and (13), while the other equations of the proposed model keep valid. 

 
Fig. 12: To Calculate 3y  And 3 . 

6. Application example 

Drawing in Figure 13 shows an assembly constituted by five components: a top plate, a right and a left axle support, an 

axle and a wheel. It has been developed by Jensen, Helsel and Voisinet [13] and has been widely used to test the 

performances of different design methods. Its structure looks like a simplified belt drive. Therefore, dimensional, 

position, orientation and form tolerances are assigned to each component by taking into consideration the assembly 

functional requirements. 
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The aim is to apply the proposed model to evaluate the relative deviation from the nominal between one support and the 

top plate to which are assigned the tolerances shown in Figure 14. Once calculated the relative deviations (∆x, ∆y, ∆) 

of the two support as regards the top plate, both in worst and statistical cases, these can be used to model the stack-up 

functions of the whole assembly. 

The bolts used to assembly the support with the top plate have a nominal diameter (B) of 10 mm and a dimensional 

tolerance range ( B ) of  0.58 mm. Considering the assigned tolerances on the hole, i.e. a position tolerance ( P ) 

of 0.20 mm and a dimensional tolerance ( H ) of 0.10 mm, equation (6) gives the minimum value of the hole 

diameter that assures the coupling with the bolt:  

mmH 88.10                                                                                                                                                                 (28) 

Then the nominal value of the whole’s diameter is assumed as 10.90 mm higher that the calculated minimum admitted 

value to ensure the clearance. The worst case and the statistical approaches have been implemented by means of 

Matlab macro. The results are shown in Table 1. The statistical approach has been implemented by means of Monte 

Carlo simulations with 105 runs; the ranges of ∆x, ∆y and ∆α deviations have been calculated as three times the 

standard deviation of the obtained probability density function. 

As expected, the deviations calculated with the statistical approach are more contained than those calculated with worst 

case approach. Also the results obtained by the statistical approach show how the deviation along the X-axis is larger 

than the deviation along the Y-axis. This is due to the effect of the interaction between the two bolts that is more 

influent along the direction of the transversal direction (Y-axis), than the other one (X-axis). 

 

 
Fig. 13: Scheme of a Drive Belt. 

 

 
Fig. 14: Components and Tolerances of A Drive Belt. 
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Table 1: Application Example’s Results. 

Error Worst Case Statistic (105 run) 

∆x [mm] ± 1.78 ± 1.40 

∆y [mm] ± 1.78 ± 1.13 

∆α [Rad] ± 0.061 ± 0.039 

7. Conclusion 

The present work shows a model of the clearance among a pattern of holes of two coupled plates and the corresponding 

bolts. It permits to evaluate the relative position deviations between the two joined plates due to the tolerances applied 

on the components, and then to build the transformation matrix needed to model and to solve the tolerance analysis of 

the assembly. It can be used both in worst case and statistical scenario. In the worst case scenario the developed 

assembly condition permits to predict if the two parts can be effectively assembled together, while in statistical scenario 

the developed assembly condition permits to predict the percentage of not conformity (i.e. the plates that do not 

assembly). The model may be used for the function design of parts joined by bolts, since it allows to evaluate, once 

assigned a set of tolerances to the holes and the corresponding bolts, the relative position deviations between the two 

joined parts and, therefore, the possibility to join the parts by bolts. 

Current researchers are focused on a pattern of more than two holes and the composite tolerances assigned to the holes.  
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