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Abstract 
 

The control system is a very important part of the efficiency and safety of autonomous vehicles. This paper proposes the use of Particle 

Swarm Optimization (PSO) and Modified PSO (MPSO) algorithms to optimize Proportional Integral Derivative (PID) controller coeffi-

cients for a longitudinal dynamics vehicle system. The objective is to enhance system performance, measured by metrics such as maximum 

Overshoot (OS), Steady-State Error (SSE), Settling Time (t_s) (2%), and Rise Time 〖(t〗_r). The MPSO algorithm, when combined with 

the PID controller, demonstrates a 2.5% improvement over the traditional PSO algorithm. The study contributes by showcasing the effec-

tiveness of MPSO in fine-tuning PID controllers for superior control of longitudinal vehicle dynamics, as evidenced by the optimized 

response specifications. 

 
Keywords: Modified Particle Swarm Optimization Algorithm; Longitudinal Dynamics Vehicle; PSO Algorithm; Cost Function. 

 

1. Introduction 

Recent years have seen a lot of research and development into autonomous vehicle technology because of all the benefits it provides over 

traditional automobiles [1]. It reduces driver errors, which cause car collisions, and it has the power to completely change how people 

move around by improving the convenience, accessibility, efficiency, and safety of car travel [2] [3]. One of the essential parts of the 

architecture of an autonomous vehicle is the control system. An autonomous vehicle's control system consists of lateral control and longi-

tudinal control. This work's objective is to reduce inaccurate speed measurements through a longitudinal vehicle model control design. The 

longitudinal control problem is focused on controlling the actuators (throttle and brake) for the speed profile tracking given by the motion 

planning [4]. 

The vehicle’s longitudinal controllers which are employed by the researches are the PID control [4] [5] [6] [7], adaptive Network fuzzy 

inference system [8], adaptive control [9], model predictive control [10], fuzzy control [11], and sliding mode control [12]. The PID 

controller is one of the most frequently used methods for regulating a dynamic vehicle's longitudinal motion. The task of determining the 

gains of the ideal PID controller has been shown to be exceedingly challenging in many studies. Many researchers found the traditional 

adjustment techniques based on mathematical operations or trial and error to be ineffective [13]. Recently, strategies for optimizing con-

troller gains have been proposed to prevent this issue. Consequently, gains for controllers were enhanced by employing a variety of opti-

mization techniques, including the PSO algorithm [1] [14], the genetic algorithm [5], the ant colony optimization [15], and the salp swarm 

algorithm [4] 

In this paper, a MPSO based tuning technique is used to modify the PID controller’s coefficients for tracking target velocities effectively. 

IAE is used as the performance index for selecting the optimal PID controller’s gains. The obtained outcomes are compared with the results 

of the traditional PSO method to evaluate the performance robustness of the proposed algorithm. This study's remaining sections are 

ordered as follows: The model system's description and the design of the optimal PID controller are provided in Section 2. The simulation's 

outcomes and the discussion are displayed in Section 3. In Section 4, there is a conclusion. 

2. Method 

2.1. Mathematical model of longitudinal vehicle dynamics 

An autonomous vehicle's longitudinal control part regulates its speed in accordance with the speed profile. The speed profile is derived by 

a speed planner or profiler based on changes to the outside environment, such as changes in the road's design, traffic signals, and weather 

[16]. The longitudinal vehicle dynamic Equations (1-4) are produced via applying Newton’s second law according to the vehicle diagram as 

shown in Fig. 1 [2]. 

http://creativecommons.org/licenses/by/3.0/
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Fig. 1: Vehicle’s Longitudinal Dynamics [17]. 

 

m ẍ = −Fxf − Fxr + Faero + Rxf + Rxr + mgsin ϴ                                                                                                                                     (1) 

 

m ẍ = −Fx + Faero + Rx +  mgsin ϴ                                                                                                                                                           (2) 

 

Faero = 0.5 CaρA(v)2
                                                                                                                                                                                    (3) 

 

 Rx =  mgCrv                                                                                                                                                                                                 (4) 

 

Where m, ẍ, Fxf, Fxr, Faero, Rxf, Rxr, g, ϴ, Ca, ρ, A, v, Cr are the vehicle’s mass (g), vehicle’s acceleration (ms-2), front tire force (N), back 

tire force (N), aerodynamic force (N), front rolling resistance force (N), rear rolling resistance force (N), acceleration of gravity (ms-2), 

incline angle between the earth and vehicle (rad), drag coefficient, air density (kg/m3), cross-sectional area (m2), vehicle velocity (m/s), 

and the coefficient of the rolling resistance, respectively. The powertrain model demonstrates how velocity torque are transferred from the 

engine to the vehicle’s wheels. The expression of powertrain model is specified by Equations (5-7) [2]: 

 

ẇe Je = Te − Tl                                                                                                                                                                                             (5) 

 

ww = we reff                                                                                                                                                                                                 (6) 

 

Te= Temax(Throttle angle)+ Temin(1-Throttle angle)                                                                                                                                     (7) 

 

Where we ̇ , Je , Te, Tl, ww , reff, we, Temax, and Temin are the change in engine angular velocity (rad/s), inertia torque of an engine (Kg/m2), 

engine torque (N-m), friction torque (N-m), wheel angular velocity (rad/s), the wheel's radius (m), engine angular velocity (rad/s), maxi-

mum engine torque (N-m), and minimum engine torque, in the order (N-m). The vehicle’s tire is illustrated by the linear tire model. The 

Equations (8) and (9) are clarified by that model [2]. 

 

Fx =  Cs S                                                                                                                                                                                                       (8) 

 

Where Cs and S refer to the tire's longitudinal slip and stiffness. The PID-controller is one of the common kinds of feedback controllers 

applied to vehicle longitudinal control. 

2.2. PID controller 

The PID controller is one of the most common kinds of feedback controllers applied to vehicle longitudinal control. The PID controller 

involves three components: derivative, integral, and proportional. The throttle and brake values are components of the longitudinal auton-

omous vehicle control's velocity profile. A longitudinal controller is employed to minimize the difference between the actual and desired 

throttle and brake values so that the autonomous vehicle can follow the velocity profiles. Equations (10) and (11) can be used to depict the 

PID controller [2]: 

 

err(t) = r(t) − v(t)                                                                                                                                                                                    (10) 

 

 th(t) = kperr(t) + kd
derr(t)

dt
+ ki ∫ err(t). dt                                                                                                                                           (11) 

 

Where err, r, th, kp, kd, and ki the speed error, reference velocity, throttle control input, proportional gain, derivative gain, and integral 

gain, respectively. The brake and throttle positions are regulated by the control input. As well, the throttle values in that work are restricted 

to values between 0 and 1. A control system oscillates before reaching a steady state. Thus, the control response to a reference input unit 

step will have standard characteristics such as rise time, settling time, overshoot, and steady state error. The rise time is the time that the 

response needs to rise to 100% of its final value; the settling time is the time that the response needs to reach and stay within a range of an 

absolute specified percentage of 2% or 5% of the final response value; the overshoot means the upper response value computed from the 

steady state as in the Equation (12), and the steady state error is the difference between the target response and the input steady state 

response [18]. 

 

OS % =
peak curve value−final curve value

final curve value
∗ 100                                                                                                                                            (12) 

2.3. Optimization algorithms 
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Two optimization algorithms are suggested for tuning the PID controller’s parameters. The first method is the PSO method (PID-PSO), 

where researchers Kennedy and Eberhart explored the PSO strategy in 1995, which is based on a swarm of fishes or birds behaving. With 

this swarm technique, a collection of particles is put together at random. Each particle expresses a particular solution, and each particle 

group's members are provided by a speed and position. The swarm of particles is employed to create a huge number of fitness function 

solutions at each iteration. For each PSO method generation, the performance index is evaluated to identify the personal and global best 

(pbest and gbest), respectively. The particle with best fitness value is provided by pbest. In contrast, the gbest stands the most effective 

solution across all generations. At each iteration, the pbest and gbest are reorganized, and they are utilized to determine the new particular’s 

speed and position in accordance with Equations (13 to 15) [2] [19]. 

 

 ω = ωmax − t (ωmax−ωmin)/ Tmax                                                                                                                                                          (13) 

 

vi
t+1 = ω vi

t + c1r1(pi
t−xi

t) + (gi
t−xi

t)c2r2                                                                                                                                                (14) 

 

xi
t+1 = xi

t + vi
t+1, i = 1, 2, … n                                                                                                                                                                    (15) 

 

Here v, t, n, c1, c2, ω, r1, r2, pi, gi, Tmax, ωmin, ωmax, and xi, are the velocity of the particle, iterations number, particles’ numbers, cog-

nitive learning factor, social learning factor, inertia weight, random value between (0 and 1), random value between (0 and 1), The particle 

with best fitness value, the most effective particle among group members, maximum iteration, the inertia weight's minimum value, the 

inertia weight's maximum value, and position of the particle. The generation of pbest and gbest is repeated until reaching the maximum 

limit of the iteration. The PSO method's primary drawback is the likelihood that every particle will reach a local minima in the searching 

space. As a result, they are unable to escape the trap on their own. The PSO method's restrictions are listed in Table I [2]. 

 
Table 1: The PSO Methods Restrictions 

Name of the parameter  Value 

Inertia weight’s minimum value 0.4 
Inertia weight’s maximum value 0.9 

Inertia weight’s maximum value 0.9 

Cognitive learning factor 2 
Social learning factor 2 

Upper value of the velocity 6 

Size of the particle swarm 20 
Maximum limit of the iteration 100 

Lower gains limits [0.00001,0.00001,0.00001] 

 

The second method is the PID Related to the MPSO Method (PID-MPSO). A modified particle swarm optimization is suggested in this 

research in order to prevent the early convergence phenomenon of PSO and enhance its performance on difficult tasks. One of the PSO 

parameters, inertia weight (ω), can provide particles with the capacity to dynamically adjust to various situations and achieve a balance 

between exploration and exploitation [20]. It thus has a significant impact on PSO. The linear inertia weight approach is typically used, 

while the non-linear inertia weight method has better simulation and fitting capabilities. A well-known chaotic mapping called logistic can 

produce random values between 0 and 1. Equation (17) serves as its definition. In this study, the inertia weight is subjected to logistic 

chaos, leading to the construction of a non-linear inertia weight that is specified by Equation (18) [20]. 

 

r(1 + t) = −4r(t)(r(t) − 1), r(0) = random                                                                                                                                           (17) 

 

Where r(0) ≠ {0,0.25,0.5,0.75,1} 

 

ω = r(t)ωmin − t (ωmax−ωmin)/Tmax                                                                                                                                                      (18) 

 

Where r(t) is a random number produced by the logistic chaotic, ωmin= 0.4, ωmax= 0.9. 

Additionally, by modifying ω which has wave properties, the motion of particles will become more random, making it possible to prevent 

them from easily falling into a local optimum. The PSO method's restrictions are listed in Table 2 [20]. 

 
Table 2: The MPSO Methods Restrictions 

Name of the parameter Value 

Inertia weight’s minimum value 0.4  
Inertia weight’s maximum value 0.9 

Cognitive learning factor 2 

Social learning factor 2 
Upper value of the velocity 6 

Size of the particle swarm 20 

Maximum limit of the iteration 100 
Lower gains limits [0.00001,0.00001,0.00001] 

Upper gains limits [10,10,10] 

 

Figs. 2 and 3 show how the proposed block diagram and flowchart for the PID-MPSO controller were built, respectively. The majority of 

optimization problems are resolved differently depending on how the objective function is represented. The IAE serves as the specific 

objective function in the proposed techniques, and it is employed to reduce the speed error of the PID controller as indicated in Equation 

(19) [2]. 

 

IAE = ∫ |e(t)|
∞

0
. dt                                                                                                                                                                                      (19) 
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Fig. 2: Block Diagram for the PID-MPSO Controller. 

 

 
Fig. 3: Flowchart of the PID-MPSO. 

 

In order to know the best between two optimal controllers, the performance enhancement percentage is selected in Equation (20): 

 

Enhancement % = (1 −
best IAE value

worst IAE value
) ∗ 100                                                                                                                                         (20) 

3. Results and discussion 

In this part, the simulation outcomes of the suggested controllers are run by the Python simulation program. A desired speed is fixed to 30 

m/s and it is applied to the longitudinal control system of the dynamic vehicle. Then, to solve the speed tracing issue, PID controller’s 

coefficients were adjusted using the PSO and MPSO algorithms. According to the Table III, the MPSO and PSO algorithms’ convergence 

curve is depicted visually in Fig. 3. Due to its local minimum problem, the PSO method converged in this figure more slowly than MPSO. 

In other words, MPSO was more accurate than the PSO algorithm at identifying optimal gains. That demonstrates the strength of the 

suggested algorithm.  

 
Table 3: Fitness Values of the PID-PSO and PSO-MPSO Controllers for Each Iteration Number 

Iteration number IAE for the PID-PSO Iteration number 

1 4.49958318619103 3.7483528623037996 
2 1.879121084842843 1.9539154133752570 

3 1.822493037856832 1.8422200463958256 

4 1.811592133661932 1.8169098770274560 
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5 1.791395639085765 1.8087362815788761 

6 1.791395639085765 1.7992517962794996 

7 1.791395639085765 1.7943420607308913 

8 1.790997232664367 1.7915147490246646 

9 1.790997232664367 1.7904879922062853 
10 1.790234922669186 1.7888988777400283 

11 1.790234922669186 1.7808726762748919 

12 1.790234922669186 1.7802882732826740 
13 1.790234922669186 1.7769478956017595 

14 1.790234922669186 1.7743311725178492 

15 1.790234922669186 1.7707029034343424 
16 1.790234922669186 1.7617385018161453 

17 1.790207263400226 1.7519847874465070 

18 1.790207263400226 1.7470059675523133 
19 1.790207263400226 1.7470059675523133 

20 1.790207263400226 1.7463450982601420 

21 1.790207263400226 1.7456741413737664 
22 1.790207263400226 1.7455876881620458 

23 1.790207263400226 1.7455698156593342 

24 1.790207263400226 1.7455698156593342 
25 1.790207263400226 1.7455564416282332 

26 1.790207263400226 1.7455564416282332 

27 1.790207263400226 1.7455484323776844 
28 1.790207263400226 1.7455468894831003 

29 1.790207263400226 1.7455468894831003 

30 1.790207263400226 1.7455468894831003 
31 1.790207263400226 1.7455467704101923 

32 1.790207263400226 1.7455467704101923 

33 1.790207263400226 1.7455467704101923 
34 1.790207263400226 1.7455467704101923 

35 1.790207263400226 1.7455467245225227 

36 1.790207263400226 1.7455466482578117 
37 1.790207263400226 1.7455466482578117 

38 1.790207263400226 1.7455466086777860 

39 1.790207263400226 1.7455466086777860 

40 1.790207263400226 1.7455466086777860 

41 1.790207263400226 1.7455466086777860 
42 1.790207231720718 1.7455465829511543 

43 1.790207231720718 1.7455465807834347 

44 1.790207231720718 1.7455465801114978 
45 1.790206960950600 1.7455465780009851 

46 1.790206960950600 1.7455465780009851 

47 1.790206960950600 1.7455465777547580 
48 1.790206887261685 1.7455465777547580 

49 1.790206887261685 1.7455465777547580 

50 1.790206887261685 1.7455465777547580 
51 1.790206887261685 1.7455465777547580 

52 1.790206887261685 1.7455465777471095 

53 1.790206887261685 1.7455465777471095 
54 1.790206887261685 1.7455465776763137 

55 1.790206887261685 1.7455465776335326 

56 1.790206887261685 1.7455465775675827 

57 1.790206887261685 1.7455465773239840 

58 1.790206887261685 1.7455465773239840 

59 1.790206887261685 1.7455465772794168 
60 1.790206865286967 1.7455465772794168 

61 1.790206865286967 1.7455465771303962 

62 1.790206865286967 1.7455465771100982 
63 1.790206865286967 1.7455465770550964 

64 1.790206865286967 1.7455465770179070 

65 1.790206865286967 1.7455465770134855 
66 1.790206865286967 1.7455465770134855 

67 1.790206865286967 1.7455465770121732 

68 1.790206865286967 1.7455465770120742 
69 1.790206863913207 1.7455465770094216 

70 1.790206863913207 1.7455465770074907 

71 1.790206863505661 1.7455465770053153 
72 1.790206863505661 1.7455465770048080 

73 1.790206863505661 1.7455465770047494 

74 1.790206863505661 1.7455465770045488 
75 1.790206863505661 1.7455465770042915 

76 1.790206863505661 1.7455465770036702 

77 1.790206863505661 1.7455465770031386 
78 1.790206863505661 1.7455465770005012 

79 1.790206863505661 1.7455465769984007 

80 1.790206863505661 1.7455465769943481 
81 1.790206863505661 1.7455465769905410 

82 1.790206863505661 1.7455465769877354 

83 1.790206863505661 1.7455465769812166 
84 1.790206863505661 1.7455465769812166 
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85 1.790206863505661 1.7455465769812166 

86 1.790206863505661 1.7455465769797642 

87 1.790206863505661 1.7455465769797642 

88 1.790206863505661 1.745546576979652 

89 1.790206863505661 1.7455465769792207 
90 1.790206863505661 1.7455465769788052 

91 1.790206863505661 1.7455465769788052 

92 1.790206863505661 1.7455465769786294 
 93 1.790206863505661 1.7455465769786294 

94 1.790206863505661 1.7455465769786092 

95 1.790206863505661 1.7455465769786092 
96 1.790206863505661 1.7455465769785328 

97 1.790206863505661 1.7455465769785328 

98 1.790206863505661 1.7455465769785328 
99 1.790206863505661 1.7455465769785328 

100 1.790206863505661 1.7455465769785328 

 

 
Fig. 3: Convergence Curve of the PID-PSO and the PID-MPSO 

 
Table 4: Fitness Value and Optimal Gains of the PID Controller 

Optimization Method kp ki kd 

PSO 5.5788 1.79*10^-5 10 

MPSO 5.2909 1.79*10^-3 10 

 

The results provided in Table 2 involve the optimal controller’s coefficients and the minimal performance index value that the PSO and 

MPSO algorithms have to offer. The data listed in this table demonstrated that the MPSO strategy had a better fitness value in comparison 

to the PSO method. The performance enhancement percentage of the PID- MPSO technique than the PID-PSO technique is given by 2.5%. 

Fig. 4 displays the system response under the PID controller's tuned parameters based on PSO and MPSO algorithms for comparison 

purposes. However, it was shown that the combined PID with the MPSO method provided a quicker and more dependable response com-

pared to the PID-PSO technique. 

 

 
Fig. 4: Speed Response of the Optimized PID Controller. 

 
Table 5: Speed Response Specifications for the Optimized PID Controller 

Optimal Controller OS (%) SSE (cm) ts (s) tr (s) 

PID-PSO 0.8546 0.0557 0.05547 9.4979 

PID-MPSO 0.128 0.0009 0.00084 9.5148 

 

The improved PID response parameters are contrasted in Table 5 using OS, SSE, ts (2%), and tr standards. The table's outcomes showed 

that the PID-MPSO has lower values of the OS, SSE, and ts than the PID-PSO while still maintaining a lower rise time value. To test the 

response of the PID-MPSO for minimizing external disturbances effect, two experiments are performed: the first one is setting the 
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coefficient of the wind to 5 m/s and 15 m/s. The second one is setting the incline angle to π/10 rad and π/8 rad. The simulation results of 

these tests are displayed in Figs. 5, 6, 7, and 8, respectively. 

 

 
Fig. 5: Speed Tracking Result Under Drag Coefficient at Value of 5 Rad/S. 

 

 
Fig. 6: Speed Tracking Result Under Drag Coefficient at Value of 15 Rad/S. 

 

 
Fig. 7: Speed Tracking Result Under Incline Angle at Value of 18 Deg. 
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Fig. 8: Speed Tracking Result Under Incline Angle at Value of 22.5 Deg. 

 

Figs. 5 and 6 show the aerodynamic force effect: when the drag coefficient increases, the aerodynamic force increases, which reduces the 

vehicle’s speed. The tracking outcomes displayed by these Figs are worse in comparison with Fig. 4 due to the drag coefficient effect. 

Besides, Figs. 7 and 8 clearly show that the incline angle effect increases the incline angle, reducing the vehicle's speed. At a small value 

of incline angle, such as 18 deg, the PID-PSO attenuates the external disturbance effect, but at a large value of incline angle, such as 22.5 

deg, the PID-PSO is not able to reduce the external disturbance effect. 

4. Conclusion 

In conclusion, this study introduced a modified particle swarm optimization (MPSO) algorithm for tuning the PID controller parameters in 

the longitudinal dynamics control of an autonomous vehicle. Comparative analysis with the traditional PSO method demonstrated that the 

PID controller optimized with MPSO outperforms its PSO-based counterpart in tracking desired signals. The observed improvement, 

quantified by 2.5%, underscores the efficacy of the MPSO technique. Furthermore, the study highlighted the robustness of the proposed 

algorithm and its potential implications for enhancing the performance and safety of autonomous vehicle systems. Future works of that 

research include adding a feedforward controller to the PID controller or designing an adaptive PID controller for solving the problem of 

the delay response to errors and reducing external disturbance effects such as drag coefficient increases and increases the incline angle.  
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