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Abstract 
 

An Accurate, efficient, and stable system to estimate the unknown input frequency of a sinusoidal signal is presented. The proposed design 

solves the main drawback of the existing phase-based estimator which called a derivative estimator depend on deep learning. These limi-

tations are the inability to estimate low frequencies and the large estimation errors for the frequencies near the Nyquist rate. A Brief 

mathematical analysis in discrete-time of the proposed system is presented. Proposed estimator performance when the input is a single 

sinusoid, multiple sinusoids in the presence of additive white Gaussian noise (AWGN) are provided. The accuracy of the proposed esti-

mator is the result of dividing the dynamic range of estimation to three regions (low frequencies, middle frequencies, high frequencies) and 

specify a different formula to calculate the estimated frequency in each region. The boundaries of each region are determined by using a 

Grey wolf optimizer (GWO) which training bidirectional recurrent neural networks (BRNN) to select the best weights for the estimated 

frequency. The simulation results ensure the accuracy and validity of the proposed estimator compared to the traditional one. The hardware 

implementation of enhanced estimator using field-programmable gate array (FPGA), consumed 265 mW, and worked at 375 MHz. 
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1. Introduction 

Estimating the unknown frequency of sinusoidal signals in noisy environments is an important task in signal processing, seismic, radar, 

sonar, communications, instrumentation, biomedical, and other applications [1-5]. Many algorithms have been proposed to estimate fre-

quency. One common algorithm is a maximum likelihood estimator (MLE), which estimates the frequency by obtaining the maximum of 

the periodogram for the input signal using fast Fourier transform (FFT). MLE achieves the Cramer-Rao lower bound at low/moderate 

signal-to-noise ratio [6]. The main drawback of the MLE estimator is that implementation requires extensive computations, which need 

extra hardware and leads to high power consumption. Many improvements are presented to the MLE algorithm to reduce the cost of 

implementation [7-10]. 

Another algorithm to estimate frequency uses the phase of FFT to estimate the frequency. Weighted linear predictor (WLP), and weighted 

phase average (WPA), are two fast frequency estimators based on cross-correlation and phase of the input signal  [11]. However, they suffer 

from low performance in case of low SNR. Another method that uses the derivative of the input signal to estimate the frequency is proposed 

in [12]. The limitation of the derivative algorithm is the inability to estimate the low frequency and the accuracy of estimation decrease for 

the frequencies near the Nyquist rate. Frequency offset in communication circuits, and seismic application required the accurate estimations 

for low frequency. 

Deep learning nowadays has many applications such as medical diagnoses [13], information security [14], distributing graphic rendering 

[15], e-market trust measurement [16], [17], and signal and image processing [18], [19]. In optimization, the best optimal solution is a main 

goal , according to the problem description how to select the available solutions from a given problem .This paper proposed an accurate 

frequency estimator for all dynamic range of input frequencies (0: half the sampling frequency) based on derivative method and grey wolf 

optimization technique which used for training bidirectional neural network to select the best weights which represents the boundaries of 

low frequencies range, middle frequencies, and high frequencies ranges. 

This paper is organized as follows; Section 2 explains the grey wolf optimization technique. Basics of derivative frequency estimator 

present in section 3. Section 4 introduces the mathematical model analysis for the proposed method in the discrete-time domain, the analysis 

in the case of white additive gaussian noise (AWGN) is also provided with tracking the input frequency. Section 5 provides the simulations 

of the proposed estimator. Finally, section 6 presents the FPGA implementation of the propped estimator.  

http://creativecommons.org/licenses/by/3.0/
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2. Grey wolf optimizer (GWO) 

Grey wolves are one of the zenith predators, and zenith predators are at the highest point of the natural pecking order. In the real live Grey 

wolves commonly bring closer in groups. The average of group numbers may be from 5 to 12. The fascinating thing about grey wolves is 

that they have an extremely severe social driving pecking order. The leaders called alphas, are a male and a female. The alpha is responsible 

for settling on significant choices to the group such as hunting, resting place, etc. The whole group should obey the alpha’s orders [20]. 

The alpha wolf is additionally called the leader wolf since the whole group should ought to comply with the alpha's requests. Beta is the 

second level in the hierarchy of grey wolves. Beta is the second level in the chain of command of dim wolves. The betas are second rate 

wolves that are liable for helping the alpha in settling on the correct choices or other gathering exercises. Omega is the least positioning of 

the grey wolf. The omega assumes the job of a substitute. mega wolves consistently need to capitulate to all other predominant wolves. 

Also, they are the last wolves that are permitted to eat. As shown in Fig. 1. 

 

 
Fig. 1: Hierarchy of Gray Wolves. 

 

The position of each wolf is updated using the following equations: 

 

D⃗⃗ = |C⃗  . Xp⃗⃗ ⃗⃗  (t) − X⃗⃗  (t)|                                                                                                                                                                                 (1) 

 

X⃗⃗  (t + 1) =  Xp⃗⃗ ⃗⃗  (t) − A⃗⃗  . D⃗⃗    

 

Where t refers to the current iteration, A⃗⃗  and C⃗  are coefficient vectors, Xp⃗⃗ ⃗⃗  is the preposition, and X⃗⃗  is the position of the gray wolf. The 

vectors are calculated using the following equation: 

 

A⃗⃗ = 2s  . r1⃗⃗  ⃗ − s                                                                                                                                                                                                (2) 

 

C⃗ = 2. r2⃗⃗  ⃗  
 

Where, s is linearly decreased from 2 to 0 over the number of iterations, and r1 and r2 are random vectors in [0, 1]. Grey wolf optimization 

Flowchart shown in Fig. 2. 

 

 
Fig. 2: Gray Wolf Optimization Flowchart. 

2.1. Deep learning 

One of the maximum promising answers for big data issues is deep learning due to its big functionality of extracting the meaningful facts 

from massive information sets. Nowadays, Deep learning to know have been carried out to many fields such as machine learning, computer 

vision and ect. Where they have produced notable effects in comparison to traditional device studying techniques. Artificial Neural Net-

works (ANNs) are emulating the way of data processing and verbal exchange distributed nodes in organic worried systems. ANNs espe-

cially consists of a set of linked units known as synthetic neurons, Neurons usually have a state, and it's far typically represented by actual 

numbers between 0 and 1. The electricity of the signal that neurons ship downstream may be accelerated or decreased, and it's far especially 

depending on the weights of the neurons and synapses, which varies as getting to know proceeds. Neurons are typically prepared in layers; 

Initialize the grey wolf population Xi (i = 1, 2, ..., 

n) 

Calculate α, β, and δ 

Calculate a as per Eq (1) 

for each search agent 

Update A, and C 

Calculate Xα, Xβ, and Xδ 

Calculate fitness 

Update A, a, C 

Evaluate all particles using the objective function 

Update the positions of the three best agents α;β;δ 

t=t+1 

return α 
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the form of input processing operations finished in every layer can range between different layers. Signals are traveling from the first layer 

(input) to the closing layer (output), sometimes, its travers the layers a couple of times.[21] The ANNs performance is hugely tormented 

by the learning process and parameters optimization. Multilayer perceptron (MLP) is one of the most typically implemented ANNs. ANN 

specifically suffer from three primary issues: its convergence is very slow, it's far quite dependent on initial values, and it could be trapped 

without problems in local optima. Local optima can be defined as the satisfactory solution within a collection of neighbouring solutions, 

which can be defined as the most beneficial answer amongst all possible solutions inside the whole to overcome all of those the (BRNN) 

has been used. 

2.2. Bidirectional recurrent neural networks (BRNN) 

GWO is utilized to improve the presentation of the BRNN classifier and dispose of the excess and immaterial highlights. BRNN is chosen 

dependent on its presentation in the past works, which has demonstrated to outflank another AI classifier. Moreover, to give solid outcomes 

and maintain a strategic distance from overfitting issues (BRNN) can be considered as an extension of the unidirectional recurrent neural 

networks by adding a second hidden layer, where the connections between the hidden to hidden layers are in the opp site direction. Con-

sequently, this model can exploit data from both directions, the past (u) and the future (y). The output ut can be calculated by  

 

Q(ut|{vi}i≠t) = σ(Wu
y
ht
y
+Wu

zht
z + zu)                                                                                                                                                       (3) 

 

Where 

 

ht
y
= tanh(Wh

y
ht−1
y

+Wx
y
xt + zh

y
)  

 

ht
z = tanh(Wh

zht+1
z +Wv

zvt + zh
z)  

 

Wu were the weights that connects the hidden layer to output layer, Wh were the weights that connects the hidden layer to hidden layer 

and Wv were the weights that connects the input layer to the hidden layer. Zu were the biases of the output layer, and Zh were the biases 

of the hidden layer. For the final nonlinearity σ we can use sigmoid, tanh, and Relu as an activation function due to this structure, the RNN 

will calculate the output ut based on the transmitted information through the hidden layers regardless of whether it depends directly or 

indirectly on the values {vi}i=1
t = {v1, …… . . , vt}.  

2.3. BRNN parameter optimization 

Weights in a BRNN have two main roles; the first one is, deciding how many the output is affected by the input, and the second one is, 

controlling the learning rate of the hidden layers. Exactly as the slope in linear regression, where the output is calculated by multiplying 

the weights to the inputs, then added up. Weights are numerical values that control how many neurons are affecting each other. For any 

neuron, if the inputs are V1, V2, and V3, and weights applied to them are w1, w2, and w3. The output is: 

 

u = f(v) = ∑ vjwj
n
j=1                                                                                                                                                                                      (4) 

 

Where n is the number of inputs. Generally, the weighted sum can be calculated by performing this array multiplication. Bias is an addi-

tional variable that can be used to adjusting the output along with the weighted sum of the inputs to the neuron. The final output of a neuron 

is: 

 

𝑢 = 𝑓(𝑣) = ∑ 𝑣𝑗𝑤𝑗
𝑛
𝑗=1 + 𝑧                                                                                                                                                                            (5) 

 

Where z is the bias. 

3. Proposed estimator 

In the beginning, we will explain how to extract the frequency of the input sinusoidal signal to be in the amplitude of the signal using a 

derivative estimator in the discrete-time domain. Let  

 

𝑥(𝑛𝑇𝑠) = 𝑎 𝑐𝑜𝑠 (2𝜋𝑓𝑛𝑇𝑠 + 𝜃)                                                                                                                                                                       (6) 

 

Where𝑎: 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒, 𝑓: 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦, 𝑓𝑠: 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝐻𝑧), 𝑇𝑠: 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 (𝑠), 𝜃: 𝑝ℎ𝑎𝑠𝑒. 

Let us define a delayed sample of 𝑥(𝑛) which will be  

 

𝑥((𝑛 − 1)𝑇𝑠) = 𝑎 𝑐𝑜𝑠 (2𝜋𝑓(𝑛 − 1)𝑇𝑠 + 𝜃)                                                                                                                                                 (7) 

 

The difference between the two signals using trigonometric identities will be 

 

𝑥1(𝑛𝑇𝑆) = 𝑥(𝑛𝑇𝑠) − 𝑥((𝑛 − 1)𝑇𝑆) =  𝑎 𝑐𝑜𝑠(2𝜋𝑓𝑛𝑇𝑆 + 𝜃) − 𝑎 𝑐𝑜𝑠(2𝜋𝑓(𝑛 − 1)𝑇𝑠 + 𝜃)  

 

= 𝑎 𝑐𝑜𝑠(2𝜋𝑓𝑇𝑆 + 𝜃) − 𝑎 𝑐𝑜𝑠(2𝜋𝑓𝑇𝑠 + 𝜃) 𝑐𝑜𝑠(2𝜋𝑓𝑇𝑆) − 𝑎 𝑠𝑖𝑛(2𝜋𝑓𝑛𝑇𝑆 + 𝜃) 𝑠𝑖𝑛 (2𝜋𝑓𝑇𝑆)   
 

= 𝑎 𝑐𝑜𝑠(2𝜋𝑓𝑛𝑇𝑆 + 𝜃) [1 − 𝑐𝑜𝑠(2𝜋𝑓𝑇𝑠)] − 𝑎 𝑠𝑖𝑛(2𝜋𝑓𝑛𝑇𝑆 + 𝜃) 𝑠𝑖𝑛 (2𝜋𝑓𝑇𝑆)  
 

= 2𝑎 𝑐𝑜𝑠(2𝜋𝑓𝑛𝑇𝑠 + 𝜃) 𝑠𝑖𝑛
2(𝜋𝑓𝑇𝑠) − 2𝑎 𝑠𝑖𝑛(2𝜋𝑓𝑛𝑇𝑆 + 𝜃) 𝑠𝑖𝑛(𝜋𝑓𝑇𝑆) 𝑐𝑜𝑠 (𝜋𝑓𝑇𝑠)  
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= 2𝑎 𝑠𝑖𝑛(𝜋𝑓𝑇𝑆) [𝑐𝑜𝑠(2𝜋𝑓𝑛𝑇𝑆 + 𝜃) 𝑠𝑖𝑛(𝜋𝑓𝑇𝑠) − 𝑠𝑖𝑛(𝜋𝑓𝑇𝑠) 𝑐𝑜𝑠(𝜋𝑓𝑇𝑆)]   
 

= 2𝑎 𝑠𝑖𝑛(π𝑓𝑇𝑆) 𝑠𝑖𝑛 (𝜋𝑓𝑇𝑆 − 2𝜋𝑓𝑛𝑇𝑆 − 𝜃)                                                                                                                                                 (8) 

 

Let the amplitude of the difference signal in Eqn. (8) be 𝑏 = 2𝑎 𝑠𝑖𝑛 (𝜋𝑓𝑇𝑆 ), so we can get  

 
𝑏

2𝑎
= 𝑠𝑖𝑛 (𝜋𝑓𝑇𝑆)                                                                                                                                                                                             (9) 

 

Now we can estimate the input frequency to be 

 

𝑓 =
𝑓𝑠

𝜋
𝑠𝑖𝑛−1 (

𝑏

2𝑎
)                                                                                                                                                                                          (10) 

 

Eqn. (10) describes the conventional derivative estimator output for all the dynamic range (0:
𝑓𝑠

2
). Unfortunately, there are two limitations 

in the method: 

1) Can’t estimate low frequencies (near zero) correctly, this limits the operation of this estimator in many applications such as frequency 

offset in communication and seismic systems. 

2) Estimation error increased when the input frequency is near to half sampling frequency (
𝑓𝑠

2
). 

The proposed estimator presents a modification to the derivative estimator to solve the drawbacks and improve the performance and accu-

racy of estimation, which making the proposed one suitable for many applications. A block diagram of the proposed frequency estimator 

is shown in Fig. 3; it receives the input signal and passes it to one-unit delay. 

 

 
Fig. 3: Block Diagram of Proposed Frequency Estimator. 

 

The mathematical analysis of the proposed estimator can be obtained as follows: 

Considering the previous mathematical equations from Eqn. (6) until Eqn. (10), let us define Eqn. (10) to be the estimation of low frequen-

cies (𝑓𝐿) 

 

𝑓1̂ =
𝑓𝑠

𝜋
𝑠𝑖𝑛−1(

𝑏

2𝑎
)                                                                                                                                                                                          (11) 

 

Let us define 𝑥2(𝑛𝑇𝑆) to be 

 

𝑥2(𝑛𝑇𝑆) = 𝑥(𝑛𝑇𝑠) + 𝑥((𝑛 − 1)𝑇𝑆) =  𝑎 𝑐𝑜𝑠(2𝜋𝑓𝑛𝑇𝑆 + 𝜃) + 𝑎 𝑐𝑜𝑠(𝜔(𝑛 − 1)𝑇𝑆 + 𝜃)  

 

= 𝑎 𝑐𝑜𝑠(2𝜋𝑓𝑇𝑆 + 𝜃) + 𝑎 𝑐𝑜𝑠(2𝜋𝑓𝑇𝑆 + 𝜃) 𝑐𝑜𝑠(2𝜋𝑓𝑇𝑆) + 𝑎 𝑠𝑖𝑛(2𝜋𝑓𝑛𝑇𝑆 + 𝜃) 𝑠𝑖𝑛 (2𝜋𝑓𝑇𝑠)   
 

= 𝑎 𝑐𝑜𝑠(2𝜋𝑓𝑛𝑇𝑠 + 𝜃) [1 + 𝑐𝑜𝑠(2𝜋𝑓𝑇𝑆)] + 𝑎 𝑠𝑖𝑛(2𝜋𝑓𝑛𝑇𝑆 + 𝜃) 𝑠𝑖𝑛 (2𝜋𝑓𝑇𝑆)  
 

= 2𝑎 𝑐𝑜𝑠(2𝜋𝑓𝑛𝑇𝑆 + 𝜃) 𝑐𝑜𝑠
2(𝜋𝑓𝑇𝑆) + 2𝑎 𝑠𝑖𝑛(2𝜋𝑓𝑛𝑇𝑠 + θ) 𝑠𝑖𝑛(𝜋𝑓𝑇𝑆) 𝑐𝑜𝑠 (𝜋𝑓𝑇𝑆)  

 

= 2𝑎 𝑐𝑜𝑠(𝜋𝑓𝑇𝑆) [𝑐𝑜𝑠(2𝜋𝑛𝑇𝑆 + 𝜃) 𝑐𝑜𝑠(𝜋𝑓𝑇𝑆) + 𝑠𝑖𝑛(2𝜋𝑓𝑛𝑇𝑆 + 𝜃) 𝑠𝑖𝑛(𝜋𝑓𝑇𝑠)]   
 

= 2𝑎 𝑐𝑜𝑠(𝜋𝑓𝑇𝑠) 𝑐𝑜𝑠 (2𝜋𝑓𝑛𝑇𝑆 + 𝜃 − 𝜋𝑓𝑇𝑆)                                                                                                                                               (12) 

 

Let 𝑐 = 2𝑎 𝑐𝑜𝑠 (𝜋𝑓𝑇𝑆 ) 
 

We can now define the estimation of high frequencies (𝑓𝐻) to be  

 

𝑓2 =
𝑓𝑠

𝜋
𝑐𝑜𝑠−1(

𝑐

2𝑎
)                                                                                                                                                                                         (13) 

 

Mathematically, we can describe the amplitude of the stationary signal for N samples by the variance (𝜎2)  
 

𝑣𝑎𝑟(𝑥) = 𝜎𝑥
2 =

1

𝑁
∑ 𝑥2(𝑛)𝑁−1 
𝑛=0 ≅

𝑎2

2
                                                                                                                                                            (14) 

 

𝑣𝑎𝑟(𝑥1) = 𝜎𝑥1
2 =

1

𝑁
∑ 𝑥1

2(𝑛) ≅
𝑏2

2
𝑁−1 
𝑛=0                                                                                                                                                          (15) 

 

𝑣𝑎𝑟(𝑥2) = 𝜎𝑥2
2 =

1

𝑁
∑ 𝑥2

2(𝑛) ≅
𝑐2

2
 𝑁−1 

𝑛=0                                                                                                                                                         (16) 
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We can rewrite Eqn. (14), Eqn. (15), and Eqn. (16) 

 

𝑎 = √2𝜎𝑥
2                                                                                                                                                                                                    (17) 

 

𝑏 = √2𝜎𝑥1
2                                                                                                                                                                                                    (18) 

 

𝑐 = √2𝜎𝑥2
2                                                                                                                                                                                                      (19) 

 

Now we can rewrite Eqn. (11) and Eqn. (13) to be  

 

𝑓1 =
𝑓𝑠

𝜋
𝑠𝑖𝑛−1 (

𝑏

2𝑎
) =

𝑓𝑠

 𝜋
𝑠𝑖𝑛−1 (

√𝜎𝑥1
2

2 √𝜎𝑥
2
)                                                                                                                                                       (20) 

 

𝑓2 =
𝑓𝑠

𝜋
𝑐𝑜𝑠−1 (

𝑐

2𝑎
) =

𝑓𝑠

𝜋
𝑐𝑜𝑠−1 (

√𝜎𝑥2
2

2 √𝜎𝑥
2
)                                                                                                                                                        (21) 

 

As explained before we have three regions in the dynamic range of the frequency estimator (0:
𝑓𝑠

2
); low-frequency region, medium frequency 

region, and high-frequency region. We now have Eqn. (20) and Eqn. (21) describes only two solutions to estimate the frequency, by trial 

and error for each equation with a range of frequencies near zero we find that the low range frequencies can be estimated with the following 

formula 

 

𝑓𝑙𝑜𝑤 =
�̂�2

𝑏𝑖𝑎𝑠
 =

𝑓𝑠

𝜋
𝑐𝑜𝑠−1 (

𝑐

2𝑎
) =

𝑓𝑠

𝜋
𝑐𝑜𝑠−1 (

√𝜎𝑥2
2

2 √𝜎𝑥
2
)                                                                                                                                        (22) 

 

Where, 𝑏𝑖𝑎𝑠 = 𝑐𝑜𝑠−1(0) ×
𝜋

2
= (

𝜋

2
)
2
= 2.45 

The middle region can be estimated correctly using the formula 

 

𝑓𝑚𝑖𝑑𝑑𝑙𝑒 = 𝑓1 =
𝑓𝑠

 𝜋
𝑠𝑖𝑛−1 (

√𝜎𝑥1
2

2 √𝜎𝑥
2
)                                                                                                                                                                (23) 

 

The high-frequency region can be calculated correctly using the formula 

 

𝑓ℎ𝑖𝑔ℎ = 𝑓2 =
𝑓𝑠

𝜋
𝑐𝑜𝑠−1 (

√𝜎𝑥2
2

2 √𝜎𝑥
2
)                                                                                                                                                                     (24) 

 

Eqn. (22), Eqn. (23), and Eqn. (24) can be summarized as follows: 

 

𝑓 =

{
 
 
 
 
 

 
 
 
 
 𝑓𝑠

2.45𝜋
𝑐𝑜𝑠−1  (

√𝜎𝑥2
2

2 √𝜎𝑥
2
) , 𝑓𝑜𝑟 𝑤0 < 𝑓 < 𝑤1

𝑓𝑠

 𝜋
𝑠𝑖𝑛−1  (

√𝜎𝑥1
2

2 √𝜎𝑥
2
)  , 𝑓𝑜𝑟 𝑤1 ≤ 𝑓 < 𝑤2

𝑓𝑠

𝜋
𝑐𝑜𝑠−1  (

√𝜎𝑥2
2

2 √𝜎𝑥
2
) , 𝑓𝑜𝑟 𝑤2 ≤ 𝑓 < 𝑤3

                                                                                                                                          (25) 

 

The problem now is how to determine the boundaries of each region, and this is done using a grey wolf optimizer. To calculate the best 

weights (𝑤0, 𝑤1, 𝑤2, 𝑤3) for frequency estimation, grey wolf optimizer has used for training bidirectional neural networks to achieve the 

minimum mean absolute error (MAE) between the input unknown frequency and 𝑓𝐿, 𝑓𝐻. To find the weight 𝑤0, 𝑤1 we use the following 

equation  

𝑀𝐴𝐸 =
1

𝑚
∑ |𝑓 −

�̂�2

2.45
|𝑚

𝑡=1                                                                                                                                                                               (26) 

 

The MAE achieves 0.000005 with 𝑤0 = 0 𝑎𝑛𝑑 𝑤1 = 0.099956𝑓𝑠 ≈ 0.01 𝑓𝑠 . To find 𝑤2 we use  

 

𝑀𝐴𝐸 =
1

𝑚
∑ |𝑓 − 𝑓1|
𝑚
𝑡=1                                                                                                                                                                                (27) 

 

The MAE achieves 0.000003 with 𝑤1 = 0.01 𝑎𝑛𝑑 𝑤2 = 0.399987𝑓𝑠 ≈ 0.4 𝑓𝑠 . To find 𝑤3 we use  
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𝑀𝐴𝐸 =

1

𝑚
∑ |𝑓 − 𝑓2|
𝑚
𝑡=1                                                                                                                                                                                 (28) 

 

It achieves MAE= 0.000007 with 𝑤2 = 0.4 𝑓𝑠 𝑎𝑛𝑑 𝑤3 = 0.5𝑓𝑠 
So we can write the estimated frequency as follows: 

 

𝑓 =

{
 
 
 
 
 

 
 
 
 
 𝑓𝑠
𝜋
𝑠𝑖𝑛−1  (

√𝜎𝑥1
2

2 √𝜎𝑥
2
)+

𝑏𝑖𝑎𝑠

10
, 𝑓𝑜𝑟 0 < 𝑓 < 0.0001𝑓𝑠

𝑓𝑠

 𝜋
𝑠𝑖𝑛−1  (

√𝜎𝑥1
2

2 √𝜎𝑥
2
)  , 𝑓𝑜𝑟 0.0001𝑓𝑠 ≤ 𝑓 < 0.4𝑓𝑠

𝑓𝑠

𝜋
𝑐𝑜𝑠−1  (

√𝜎𝑥2
2

2 √𝜎𝑥
2
) , 𝑓𝑜𝑟 0.4𝑓𝑠 ≤ 𝑓 < 0.5𝑓𝑠

                                                                                                                              (29) 

 

Eqn. (29) clears the main difference between the proposed estimator and the traditional derivative estimator. The traditional one defines 

one equation for the all estimation range (0:
𝑓𝑠

2
) as shown in Eqn. (10), which lacks accuracy and gives large estimation errors in the low-

frequency region and the high-frequency region. While the proposed estimator defines three frequency regions determined by the sampling 

frequency (𝑓𝑠) to estimate the input frequency. The first region is the region of low frequency (0 < 𝑓 < 0.01𝑓𝑠), and the third region is a 

high-frequency region (0.4𝑓𝑠 < 𝑓 < 0.5𝑓𝑠) while the rest of the range is the middle frequency region(0.01𝑓𝑠 < 𝑓 < 0.4𝑓𝑠). Each frequency 

region has its accurate estimation equation so that the full estimation range is covered with accurate estimations in all the dynamic range.  

a) Effect of Additive Gaussian Noise (AWGN) 

 

This section presents the analysis for the estimator when AWGN added to the input signal; it will be 

 

𝑄(𝑛) = 𝑥(𝑛) + 𝑦(𝑛) = 𝑎 𝑐𝑜𝑠(𝜔𝑡 + 𝜃 ) + 𝑦(𝑛)                                                                                                                                        (30) 

 

Where 𝑦(𝑛) is AWGN. 

The signal-to noise ratio (SNR) is the ratio between the signal energy and noise energy in dB scale. 𝑄(𝑛), 𝑥(𝑛), 𝑎𝑛𝑑 𝑦(𝑛) are zero-mean 

signals; the variance can be used to represent the energy. 

 

𝑆𝑁𝑅 = 10𝑙𝑜𝑔 (
𝜎𝑥
2

𝜎𝑦
2)                                                                                                                                                                                      (31) 

 

At very low SNR we get: 

 

𝜎𝑥
2 ≅ 𝜎𝑦

2  

 

And 

 

𝜎𝑥
2
1
≅ 𝜎𝑥

2
2
≅ 2𝜎𝑦

2  

 

Applying (20), (21) we get 

 

𝑓1 =
𝑓𝑠

𝜋
𝑠𝑖𝑛−1 (

√𝜎𝑥1
2

2√𝜎𝑥
2
) =

𝑓𝑠

𝜋
𝑠𝑖𝑛−1 (

√2𝜎𝑦
2

2√𝜎𝑦
2
) =

𝑓𝑠

𝜋
𝑠𝑖𝑛−1 (

1

√2
) =

𝑓𝑠

4
                                                                                                                 (32) 

 

𝑓2 =
𝑓𝑠

𝜋
𝑐𝑜𝑠−1 (

√𝜎𝑥1
2

2√𝜎𝑥
2
) =

𝑓𝑠

𝜋
𝑐𝑜𝑠−1 (

√2𝜎𝑦
2

2√𝜎𝑦
2
) =

𝑓𝑠

𝜋
𝑐𝑜𝑠−1 (

1

√2
) =

𝑓𝑠

4
                                                                                                                 (33) 

 

Eqn. (32) & Eqn. (33) is shown that at low SNR the proposed estimator gives a fixed output frequency equal to 
𝑓𝑠

4
. 

3.1. Tracking the input frequency 

The ability to track the change in input frequency is a required feature for many applications such as demodulation in communication. The 

proposed estimator can track the frequency change.  

𝑥(𝑛) = ∑ 𝑥𝑚(𝑛)
𝑘
𝑚=1                                                                                                                                                                                    (34) 

 

𝑋𝑚(𝑛) = 𝑎𝑚𝑐𝑜𝑠 (
2𝜋𝑓𝑚

𝑓𝑠
𝑛 + 𝜃𝑚)                                                                                                                                                                  (35) 

 

Where 𝑎𝑚 : the amplitude of 𝑥𝑚 signal at frequency 𝑓𝑚 

The sinusoidal component of the frequency 𝑓𝑚 are: 

𝑥1(𝑛) = 𝑥(𝑛) − 𝑥(𝑛 − 1) = ∑ 𝑥1𝑚(𝑛)
𝑘
𝑚=1                                                                                                                                                (36) 
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𝑥2(𝑛) = 𝑥(𝑛) + 𝑥(𝑛 − 1) = ∑ 𝑥2𝑚(𝑛)

𝑘
𝑚=1                                                                                                                                                (37) 

 

Now the frequency of 𝑓𝑚 can be estimated using the following equations  

 

𝑓1 =
𝑓𝑠

 𝜋
𝑠𝑖𝑛−1 (

𝑏𝑚

2𝑎𝑚
)                                                                                                                                                                                      (38) 

 

𝑓2 =
𝑓𝑠

𝜋
𝑐𝑜𝑠−1  (

𝑐𝑚

2𝑎𝑚
)                                                                                                                                                                                     (39) 

 

Where 𝑏𝑚 amplitude of 𝑥1𝑚 sinusoidal signal. 𝑐𝑚 amplitude of 𝑥2𝑚 signal 

4. Simulation results 

Different simulations have been done to inspect the performance of the proposed simulator. We let the sampling frequency 𝑓𝑠 = 10 𝑘𝐻𝑧. 

4.1. Accuracy of the proposed estimator 

The estimation accuracy is the main feature of the proposed estimator. Fig. 4 shows the estimator's response to the change in the input 

frequency with step 100 Hz. The estimator has an accurate estimation without any errors in the full estimation range [0:5000 Hz]. 

 

 
Fig. 4: Proposed Estimator Response for Full Estimation Range. 

4.2. Estimation error 

We also investigate the performance of the estimator for the low frequencies as this range is important for applications such as seismic 

applications. A comparison had been done between the response of the derivative estimator and the proposed estimator by calculating the 

estimation error (𝑓𝑖𝑛 − 𝑓𝑙𝑜𝑤). Fig. 5 shows a relation between the estimation error (𝑓𝑖𝑛 − 𝑓𝑙𝑜𝑤) and the input frequency (𝑓𝑖𝑛) for both the 

conventional method and the proposed one.  

 

 
Fig. 5: Comparison between Derivative and Proposed Estimators for Low Frequencies. 

 

Fig. 5 is shown that no estimation errors are founded for the proposed estimator for the input frequency range. While there are estimation 

errors for the traditional derivative estimator, for input frequencies 0 < 𝑓𝑖𝑛 < 50 Hz the derivative estimator has 0 Hz output. The output 

begins to appear for frequencies greater than 50 Hz. In the range 50 < 𝑓𝑖𝑛 < 70 Hz there is an error in estimation from the frequencies 

greater than 75 Hz the estimator begins to generate correct output.  

Another important range of frequency which is near the Nyquist rate, another comparison is done between the derivative and proposed 

estimator to investigate the difference between both of them. Fig.6 shows the estimation error, which is the difference between (𝑓𝑖𝑛 − 𝑓). 

For the proposed estimator the error is zero, which indicates an accurate estimation for the high frequencies. While the output of the 

derivative estimator has an estimation, error increased when the input frequency approaches the half sampling frequency (
𝑓𝑠

2
). 
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Fig. 6: Comparison between Derivative and Proposed Estimators for High Frequencies. 

4.3. Frequency estimation with the effect of AWGN 

Fig. 7. is shown the estimation of 1𝑘𝐻𝑧 with the change in AWGN from −20: 30 𝑑𝐵. As proved in Eqn. (32) & Eqn. (33) the estimated 

frequency with low AWGN attract to 
𝑓𝑠

4
 which is 2.5 𝑘𝐻𝑧. And an acceptable estimation appear at 8 dB, while the accurate result appear at 

16 dB which is a good. 

 

 
Fig. 7: Effect of AWGN on the Proposed Estimator. 

4.4. Tracking input frequency 

The estimator needs to track the change in input frequency quickly with no long delay. Fig. 8 shows the tracking for the change of the input 

frequency with time. The input frequency begins with 1 kHz at 1 ms and increased by 0.5 kHz for each 1 ms. When it reaches 5 kHz, it 

fixed for 3ms and decreases by 0.5 Khz for each 1 ms. The proposed estimator tracks the input frequency accurately without discontinues 

at any changing period. 

 

 
Fig. 8: Tracking Input Frequency. 

5. FPGA implementation 

The proposed estimator is modeled using the Xilinx system generator tool [22]. VHDL code is used to describe the proposed estimator. 

All signals of the estimator are fixed-point signals with 16 bits. Fig. 9 shows the proposed estimator model in a Xilinx system generator. 

The model receives the input signal 𝑥𝑖 with AWGN and passes through one delay unit. The output delayed signal from the delay unit passes 

through adder and subtractor. Peak detector circuit receives the output of subtractor and the input signal to find the peak of each sinusoidal 

signal and calculate the ratio between the peak of each signal. Another peak detector circuit receives the output of the adder and the input 

signal to find the peak of each sinusoidal signal and calculate the ratio between the peak of each signal. The two generated signals from 

the first and second peak detector circuits are directed to arcsine, and arcos circuits respectively. The format block is the circuit which 

performs the Eqn. (29), receives the output of the arcsine and arcos, compare the value of arcsine input with 𝑓𝑠 , determine the boundaries 

of Eqn. (29), and finally, calculate the output estimated frequency. The main blocks in the proposed estimator model are:- 
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Fig. 9: Hardware Model of Proposed Frequency Estimator. 

5.1. Peak detector 

The peak detector block determines the maximum value of the amplitude of the sinusoidal wave; it consists of one delay unit and a com-

parator. The input is first rectified so that no negative values still existed. The input to the delay |𝑢(𝑛)| unit and the output of the delay 

|𝑢(𝑛 − 1)| are compared using a comparator when |𝑢(𝑛)| < |𝑢(𝑛 − 1)| is founded; it means the maximum point is reached and it holds 

until the next maximum is determined. Fig. 10 shows the input to the peak detector circuit, which is sinusoidal with varying amplitude 

waveform, and the final output of the block. The final output is changing according to the changing of the amplitude of the input signal.  

 

 
Fig. 10: Input and Output of Peak Detector Block. 

5.2. Arcsin block 

The arcsine and arcos blocks are designed using cordic algorithm, which is a common algorithm to calculate the different trigonometric 

functions. the idea of cordic algorithm is "rotating" the phase of a complex number, by multiplying it by a succession of constant values. 

however, then multiplies can all be powers of 2, so in binary arithmetic, they can be done using just shifts and adds; no actual multiplier is 

needed. compared to other approaches, cordic is a clear winner when a hardware multiplier is unavailable, e.g. in a microcontroller, or 

when you want to save the gates required to implement one, e.g. in an fpga. the input and output of the arcsine block are shown in Fig. 11. 

 

 
Fig. 11: Input and Output of Arcsine Block. 

5.3. Format block 

This block receives the arcsine and arcos signals and generates the final estimated frequency. The task of this block is to apply Eqn. (9) by 

choosing the boundaries of the equation. The first step is comparing the input arcsine value with the sampling frequency (𝑓𝑠), if the input 
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is less than (0.1𝑓𝑠) then the output frequency will be the arcos input divided by 2.45, while if the input arcsine is greater than (0.4𝑓𝑠), then 

the output frequency is arcos input. When both previous conditions did not realize the output will be the arcsine input. Fig. 12 shows the 

estimated frequency for an input frequency of 1𝑘𝐻𝑧, and it is clear that the estimator takes 0.5ms (half a full period of the input signal) to 

generate the accurate estimated frequency. This delay because of different calculations through the estimator. The estimator implemented 

using Spartan-6 X6SLX45 board. FPGA consumed resources are shown in Table 1. 

 

 
Fig. 12: Proposed Estimator Response of 1khz. 

 
Table 1: FPGA Consumed Recourses 

Component Used Available 

Slice flip flops 500 33280 

4 Input LUTs 980 33280 

Occupied Slices 1020 16640 

Bounded IOBs 32 84 

Maximum Frequency 375 MHz  

Power Consumption 265 mW  

6. Conclusion 

An accurate and stable proposed frequency estimator, which solved the limitations of the derivative algorithm has been presented. It solves 

the problem of traditional derivative estimators, which is the inability to estimate low frequencies (near zero), and high frequencies (near 

half the sampling frequency). The proposed estimator divides the dynamic range into three ranges; low-frequency range, middle frequency 

range, and high-frequency range. Each range has its correct formula. The boundaries of each region have been calculated by using the grey 

wolf optimization technique, which showing the effectiveness and superiority of deep learning over the traditional methods. Simulation 

results investigate the performance of the proposed estimator in case of a single frequency and multiple frequencies with AWGN. All 

simulation results indicate the ability of the proposed estimator to estimate a correct frequency accurately in all the dynamic range. Com-

parisons between proposed and traditional ones have been made and simulation results showed the enhancement in performance provided 

by the proposed one. The proposed frequency estimator has been implemented with low complexity using FPGA, consumed less power 

about 265 mW, and worked at 375 MHz. 
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