

Copyright © Mohamed Saber, El-Sayed M. El-kenawy. This is an open access article distributed under the Creative Commons Attribution

License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 9 (2) (2020) 367-377

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Design and implementation of accurate frequency

estimator depend on deep learning

Mohamed Saber 1*, El-Sayed M. El-kenawy 2

1 Dep. Of Communications & Computers, Faculty of Engineering, Delta University for Science & Technology

Gamasa city, Mansoura, Egypt

2 Department of Communications and Electronics Delta Higher Institute for Engineering & Technology (DHIET), Mansoura, Egypt

*Corresponding author E-mail: Mohamed.saber@deltauniv.edu.eg

Abstract

An Accurate, efficient, and stable system to estimate the unknown input frequency of a sinusoidal signal is presented. The proposed design

solves the main drawback of the existing phase-based estimator which called a derivative estimator depend on deep learning. These limi-

tations are the inability to estimate low frequencies and the large estimation errors for the frequencies near the Nyquist rate. A Brief

mathematical analysis in discrete-time of the proposed system is presented. Proposed estimator performance when the input is a single

sinusoid, multiple sinusoids in the presence of additive white Gaussian noise (AWGN) are provided. The accuracy of the proposed esti-

mator is the result of dividing the dynamic range of estimation to three regions (low frequencies, middle frequencies, high frequencies) and

specify a different formula to calculate the estimated frequency in each region. The boundaries of each region are determined by using a

Grey wolf optimizer (GWO) which training bidirectional recurrent neural networks (BRNN) to select the best weights for the estimated

frequency. The simulation results ensure the accuracy and validity of the proposed estimator compared to the traditional one. The hardware

implementation of enhanced estimator using field-programmable gate array (FPGA), consumed 265 mW, and worked at 375 MHz.

Keywords: Frequency Estimation; Phase-Based Estimator; Deep Learning; FPGA; Neural Networks; GWO.

1. Introduction

Estimating the unknown frequency of sinusoidal signals in noisy environments is an important task in signal processing, seismic, radar,

sonar, communications, instrumentation, biomedical, and other applications [1-5]. Many algorithms have been proposed to estimate fre-

quency. One common algorithm is a maximum likelihood estimator (MLE), which estimates the frequency by obtaining the maximum of

the periodogram for the input signal using fast Fourier transform (FFT). MLE achieves the Cramer-Rao lower bound at low/moderate

signal-to-noise ratio [6]. The main drawback of the MLE estimator is that implementation requires extensive computations, which need

extra hardware and leads to high power consumption. Many improvements are presented to the MLE algorithm to reduce the cost of

implementation [7-10].

Another algorithm to estimate frequency uses the phase of FFT to estimate the frequency. Weighted linear predictor (WLP), and weighted

phase average (WPA), are two fast frequency estimators based on cross-correlation and phase of the input signal [11]. However, they suffer

from low performance in case of low SNR. Another method that uses the derivative of the input signal to estimate the frequency is proposed

in [12]. The limitation of the derivative algorithm is the inability to estimate the low frequency and the accuracy of estimation decrease for

the frequencies near the Nyquist rate. Frequency offset in communication circuits, and seismic application required the accurate estimations

for low frequency.

Deep learning nowadays has many applications such as medical diagnoses [13], information security [14], distributing graphic rendering

[15], e-market trust measurement [16], [17], and signal and image processing [18], [19]. In optimization, the best optimal solution is a main

goal , according to the problem description how to select the available solutions from a given problem .This paper proposed an accurate

frequency estimator for all dynamic range of input frequencies (0: half the sampling frequency) based on derivative method and grey wolf

optimization technique which used for training bidirectional neural network to select the best weights which represents the boundaries of

low frequencies range, middle frequencies, and high frequencies ranges.

This paper is organized as follows; Section 2 explains the grey wolf optimization technique. Basics of derivative frequency estimator

present in section 3. Section 4 introduces the mathematical model analysis for the proposed method in the discrete-time domain, the analysis

in the case of white additive gaussian noise (AWGN) is also provided with tracking the input frequency. Section 5 provides the simulations

of the proposed estimator. Finally, section 6 presents the FPGA implementation of the propped estimator.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

368 International Journal of Engineering & Technology

2. Grey wolf optimizer (GWO)

Grey wolves are one of the zenith predators, and zenith predators are at the highest point of the natural pecking order. In the real live Grey

wolves commonly bring closer in groups. The average of group numbers may be from 5 to 12. The fascinating thing about grey wolves is

that they have an extremely severe social driving pecking order. The leaders called alphas, are a male and a female. The alpha is responsible

for settling on significant choices to the group such as hunting, resting place, etc. The whole group should obey the alpha’s orders [20].

The alpha wolf is additionally called the leader wolf since the whole group should ought to comply with the alpha's requests. Beta is the

second level in the hierarchy of grey wolves. Beta is the second level in the chain of command of dim wolves. The betas are second rate

wolves that are liable for helping the alpha in settling on the correct choices or other gathering exercises. Omega is the least positioning of

the grey wolf. The omega assumes the job of a substitute. mega wolves consistently need to capitulate to all other predominant wolves.

Also, they are the last wolves that are permitted to eat. As shown in Fig. 1.

Fig. 1: Hierarchy of Gray Wolves.

The position of each wolf is updated using the following equations:

D⃗⃗ = |C⃗ . Xp⃗⃗ ⃗⃗ (t) − X⃗⃗ (t)| (1)

X⃗⃗ (t + 1) = Xp⃗⃗ ⃗⃗ (t) − A⃗⃗ . D⃗⃗

Where t refers to the current iteration, A⃗⃗ and C⃗ are coefficient vectors, Xp⃗⃗ ⃗⃗ is the preposition, and X⃗⃗ is the position of the gray wolf. The

vectors are calculated using the following equation:

A⃗⃗ = 2s . r1⃗⃗ ⃗ − s (2)

C⃗ = 2. r2⃗⃗ ⃗

Where, s is linearly decreased from 2 to 0 over the number of iterations, and r1 and r2 are random vectors in [0, 1]. Grey wolf optimization

Flowchart shown in Fig. 2.

Fig. 2: Gray Wolf Optimization Flowchart.

2.1. Deep learning

One of the maximum promising answers for big data issues is deep learning due to its big functionality of extracting the meaningful facts

from massive information sets. Nowadays, Deep learning to know have been carried out to many fields such as machine learning, computer

vision and ect. Where they have produced notable effects in comparison to traditional device studying techniques. Artificial Neural Net-

works (ANNs) are emulating the way of data processing and verbal exchange distributed nodes in organic worried systems. ANNs espe-

cially consists of a set of linked units known as synthetic neurons, Neurons usually have a state, and it's far typically represented by actual

numbers between 0 and 1. The electricity of the signal that neurons ship downstream may be accelerated or decreased, and it's far especially

depending on the weights of the neurons and synapses, which varies as getting to know proceeds. Neurons are typically prepared in layers;

Initialize the grey wolf population Xi (i = 1, 2, ...,

n)

Calculate α, β, and δ

Calculate a as per Eq (1)

for each search agent

Update A, and C

Calculate Xα, Xβ, and Xδ

Calculate fitness

Update A, a, C

Evaluate all particles using the objective function

Update the positions of the three best agents α;β;δ

t=t+1

return α

International Journal of Engineering & Technology 369

the form of input processing operations finished in every layer can range between different layers. Signals are traveling from the first layer

(input) to the closing layer (output), sometimes, its travers the layers a couple of times.[21] The ANNs performance is hugely tormented

by the learning process and parameters optimization. Multilayer perceptron (MLP) is one of the most typically implemented ANNs. ANN

specifically suffer from three primary issues: its convergence is very slow, it's far quite dependent on initial values, and it could be trapped

without problems in local optima. Local optima can be defined as the satisfactory solution within a collection of neighbouring solutions,

which can be defined as the most beneficial answer amongst all possible solutions inside the whole to overcome all of those the (BRNN)

has been used.

2.2. Bidirectional recurrent neural networks (BRNN)

GWO is utilized to improve the presentation of the BRNN classifier and dispose of the excess and immaterial highlights. BRNN is chosen

dependent on its presentation in the past works, which has demonstrated to outflank another AI classifier. Moreover, to give solid outcomes

and maintain a strategic distance from overfitting issues (BRNN) can be considered as an extension of the unidirectional recurrent neural

networks by adding a second hidden layer, where the connections between the hidden to hidden layers are in the opp site direction. Con-

sequently, this model can exploit data from both directions, the past (u) and the future (y). The output ut can be calculated by

Q(ut|{vi}i≠t) = σ(Wu
y
ht
y
+Wu

zht
z + zu) (3)

Where

ht
y
= tanh(Wh

y
ht−1
y

+Wx
y
xt + zh

y
)

ht
z = tanh(Wh

zht+1
z +Wv

zvt + zh
z)

Wu were the weights that connects the hidden layer to output layer, Wh were the weights that connects the hidden layer to hidden layer

and Wv were the weights that connects the input layer to the hidden layer. Zu were the biases of the output layer, and Zh were the biases

of the hidden layer. For the final nonlinearity σ we can use sigmoid, tanh, and Relu as an activation function due to this structure, the RNN

will calculate the output ut based on the transmitted information through the hidden layers regardless of whether it depends directly or

indirectly on the values {vi}i=1
t = {v1, …… . . , vt}.

2.3. BRNN parameter optimization

Weights in a BRNN have two main roles; the first one is, deciding how many the output is affected by the input, and the second one is,

controlling the learning rate of the hidden layers. Exactly as the slope in linear regression, where the output is calculated by multiplying

the weights to the inputs, then added up. Weights are numerical values that control how many neurons are affecting each other. For any

neuron, if the inputs are V1, V2, and V3, and weights applied to them are w1, w2, and w3. The output is:

u = f(v) = ∑ vjwj
n
j=1 (4)

Where n is the number of inputs. Generally, the weighted sum can be calculated by performing this array multiplication. Bias is an addi-

tional variable that can be used to adjusting the output along with the weighted sum of the inputs to the neuron. The final output of a neuron

is:

𝑢 = 𝑓(𝑣) = ∑ 𝑣𝑗𝑤𝑗
𝑛
𝑗=1 + 𝑧 (5)

Where z is the bias.

3. Proposed estimator

In the beginning, we will explain how to extract the frequency of the input sinusoidal signal to be in the amplitude of the signal using a

derivative estimator in the discrete-time domain. Let

𝑥(𝑛𝑇𝑠) = 𝑎 𝑐𝑜𝑠 (2𝜋𝑓𝑛𝑇𝑠 + 𝜃) (6)

Where𝑎: 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒, 𝑓: 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦, 𝑓𝑠: 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝐻𝑧), 𝑇𝑠: 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 (𝑠), 𝜃: 𝑝ℎ𝑎𝑠𝑒.

Let us define a delayed sample of 𝑥(𝑛) which will be

𝑥((𝑛 − 1)𝑇𝑠) = 𝑎 𝑐𝑜𝑠 (2𝜋𝑓(𝑛 − 1)𝑇𝑠 + 𝜃) (7)

The difference between the two signals using trigonometric identities will be

𝑥1(𝑛𝑇𝑆) = 𝑥(𝑛𝑇𝑠) − 𝑥((𝑛 − 1)𝑇𝑆) = 𝑎 𝑐𝑜𝑠(2𝜋𝑓𝑛𝑇𝑆 + 𝜃) − 𝑎 𝑐𝑜𝑠(2𝜋𝑓(𝑛 − 1)𝑇𝑠 + 𝜃)

= 𝑎 𝑐𝑜𝑠(2𝜋𝑓𝑇𝑆 + 𝜃) − 𝑎 𝑐𝑜𝑠(2𝜋𝑓𝑇𝑠 + 𝜃) 𝑐𝑜𝑠(2𝜋𝑓𝑇𝑆) − 𝑎 𝑠𝑖𝑛(2𝜋𝑓𝑛𝑇𝑆 + 𝜃) 𝑠𝑖𝑛 (2𝜋𝑓𝑇𝑆)

= 𝑎 𝑐𝑜𝑠(2𝜋𝑓𝑛𝑇𝑆 + 𝜃) [1 − 𝑐𝑜𝑠(2𝜋𝑓𝑇𝑠)] − 𝑎 𝑠𝑖𝑛(2𝜋𝑓𝑛𝑇𝑆 + 𝜃) 𝑠𝑖𝑛 (2𝜋𝑓𝑇𝑆)

= 2𝑎 𝑐𝑜𝑠(2𝜋𝑓𝑛𝑇𝑠 + 𝜃) 𝑠𝑖𝑛
2(𝜋𝑓𝑇𝑠) − 2𝑎 𝑠𝑖𝑛(2𝜋𝑓𝑛𝑇𝑆 + 𝜃) 𝑠𝑖𝑛(𝜋𝑓𝑇𝑆) 𝑐𝑜𝑠 (𝜋𝑓𝑇𝑠)

370 International Journal of Engineering & Technology

= 2𝑎 𝑠𝑖𝑛(𝜋𝑓𝑇𝑆) [𝑐𝑜𝑠(2𝜋𝑓𝑛𝑇𝑆 + 𝜃) 𝑠𝑖𝑛(𝜋𝑓𝑇𝑠) − 𝑠𝑖𝑛(𝜋𝑓𝑇𝑠) 𝑐𝑜𝑠(𝜋𝑓𝑇𝑆)]

= 2𝑎 𝑠𝑖𝑛(π𝑓𝑇𝑆) 𝑠𝑖𝑛 (𝜋𝑓𝑇𝑆 − 2𝜋𝑓𝑛𝑇𝑆 − 𝜃) (8)

Let the amplitude of the difference signal in Eqn. (8) be 𝑏 = 2𝑎 𝑠𝑖𝑛 (𝜋𝑓𝑇𝑆), so we can get

𝑏

2𝑎
= 𝑠𝑖𝑛 (𝜋𝑓𝑇𝑆) (9)

Now we can estimate the input frequency to be

𝑓 =
𝑓𝑠

𝜋
𝑠𝑖𝑛−1 (

𝑏

2𝑎
) (10)

Eqn. (10) describes the conventional derivative estimator output for all the dynamic range (0:
𝑓𝑠

2
). Unfortunately, there are two limitations

in the method:

1) Can’t estimate low frequencies (near zero) correctly, this limits the operation of this estimator in many applications such as frequency

offset in communication and seismic systems.

2) Estimation error increased when the input frequency is near to half sampling frequency (
𝑓𝑠

2
).

The proposed estimator presents a modification to the derivative estimator to solve the drawbacks and improve the performance and accu-

racy of estimation, which making the proposed one suitable for many applications. A block diagram of the proposed frequency estimator

is shown in Fig. 3; it receives the input signal and passes it to one-unit delay.

Fig. 3: Block Diagram of Proposed Frequency Estimator.

The mathematical analysis of the proposed estimator can be obtained as follows:

Considering the previous mathematical equations from Eqn. (6) until Eqn. (10), let us define Eqn. (10) to be the estimation of low frequen-

cies (𝑓𝐿)

𝑓1̂ =
𝑓𝑠

𝜋
𝑠𝑖𝑛−1(

𝑏

2𝑎
) (11)

Let us define 𝑥2(𝑛𝑇𝑆) to be

𝑥2(𝑛𝑇𝑆) = 𝑥(𝑛𝑇𝑠) + 𝑥((𝑛 − 1)𝑇𝑆) = 𝑎 𝑐𝑜𝑠(2𝜋𝑓𝑛𝑇𝑆 + 𝜃) + 𝑎 𝑐𝑜𝑠(𝜔(𝑛 − 1)𝑇𝑆 + 𝜃)

= 𝑎 𝑐𝑜𝑠(2𝜋𝑓𝑇𝑆 + 𝜃) + 𝑎 𝑐𝑜𝑠(2𝜋𝑓𝑇𝑆 + 𝜃) 𝑐𝑜𝑠(2𝜋𝑓𝑇𝑆) + 𝑎 𝑠𝑖𝑛(2𝜋𝑓𝑛𝑇𝑆 + 𝜃) 𝑠𝑖𝑛 (2𝜋𝑓𝑇𝑠)

= 𝑎 𝑐𝑜𝑠(2𝜋𝑓𝑛𝑇𝑠 + 𝜃) [1 + 𝑐𝑜𝑠(2𝜋𝑓𝑇𝑆)] + 𝑎 𝑠𝑖𝑛(2𝜋𝑓𝑛𝑇𝑆 + 𝜃) 𝑠𝑖𝑛 (2𝜋𝑓𝑇𝑆)

= 2𝑎 𝑐𝑜𝑠(2𝜋𝑓𝑛𝑇𝑆 + 𝜃) 𝑐𝑜𝑠
2(𝜋𝑓𝑇𝑆) + 2𝑎 𝑠𝑖𝑛(2𝜋𝑓𝑛𝑇𝑠 + θ) 𝑠𝑖𝑛(𝜋𝑓𝑇𝑆) 𝑐𝑜𝑠 (𝜋𝑓𝑇𝑆)

= 2𝑎 𝑐𝑜𝑠(𝜋𝑓𝑇𝑆) [𝑐𝑜𝑠(2𝜋𝑛𝑇𝑆 + 𝜃) 𝑐𝑜𝑠(𝜋𝑓𝑇𝑆) + 𝑠𝑖𝑛(2𝜋𝑓𝑛𝑇𝑆 + 𝜃) 𝑠𝑖𝑛(𝜋𝑓𝑇𝑠)]

= 2𝑎 𝑐𝑜𝑠(𝜋𝑓𝑇𝑠) 𝑐𝑜𝑠 (2𝜋𝑓𝑛𝑇𝑆 + 𝜃 − 𝜋𝑓𝑇𝑆) (12)

Let 𝑐 = 2𝑎 𝑐𝑜𝑠 (𝜋𝑓𝑇𝑆)

We can now define the estimation of high frequencies (𝑓𝐻) to be

𝑓2 =
𝑓𝑠

𝜋
𝑐𝑜𝑠−1(

𝑐

2𝑎
) (13)

Mathematically, we can describe the amplitude of the stationary signal for N samples by the variance (𝜎2)

𝑣𝑎𝑟(𝑥) = 𝜎𝑥
2 =

1

𝑁
∑ 𝑥2(𝑛)𝑁−1
𝑛=0 ≅

𝑎2

2
 (14)

𝑣𝑎𝑟(𝑥1) = 𝜎𝑥1
2 =

1

𝑁
∑ 𝑥1

2(𝑛) ≅
𝑏2

2
𝑁−1
𝑛=0 (15)

𝑣𝑎𝑟(𝑥2) = 𝜎𝑥2
2 =

1

𝑁
∑ 𝑥2

2(𝑛) ≅
𝑐2

2
 𝑁−1

𝑛=0 (16)

International Journal of Engineering & Technology 371

We can rewrite Eqn. (14), Eqn. (15), and Eqn. (16)

𝑎 = √2𝜎𝑥
2 (17)

𝑏 = √2𝜎𝑥1
2 (18)

𝑐 = √2𝜎𝑥2
2 (19)

Now we can rewrite Eqn. (11) and Eqn. (13) to be

𝑓1 =
𝑓𝑠

𝜋
𝑠𝑖𝑛−1 (

𝑏

2𝑎
) =

𝑓𝑠

 𝜋
𝑠𝑖𝑛−1 (

√𝜎𝑥1
2

2 √𝜎𝑥
2
) (20)

𝑓2 =
𝑓𝑠

𝜋
𝑐𝑜𝑠−1 (

𝑐

2𝑎
) =

𝑓𝑠

𝜋
𝑐𝑜𝑠−1 (

√𝜎𝑥2
2

2 √𝜎𝑥
2
) (21)

As explained before we have three regions in the dynamic range of the frequency estimator (0:
𝑓𝑠

2
); low-frequency region, medium frequency

region, and high-frequency region. We now have Eqn. (20) and Eqn. (21) describes only two solutions to estimate the frequency, by trial

and error for each equation with a range of frequencies near zero we find that the low range frequencies can be estimated with the following

formula

𝑓𝑙𝑜𝑤 =
�̂�2

𝑏𝑖𝑎𝑠
 =

𝑓𝑠

𝜋
𝑐𝑜𝑠−1 (

𝑐

2𝑎
) =

𝑓𝑠

𝜋
𝑐𝑜𝑠−1 (

√𝜎𝑥2
2

2 √𝜎𝑥
2
) (22)

Where, 𝑏𝑖𝑎𝑠 = 𝑐𝑜𝑠−1(0) ×
𝜋

2
= (

𝜋

2
)
2
= 2.45

The middle region can be estimated correctly using the formula

𝑓𝑚𝑖𝑑𝑑𝑙𝑒 = 𝑓1 =
𝑓𝑠

 𝜋
𝑠𝑖𝑛−1 (

√𝜎𝑥1
2

2 √𝜎𝑥
2
) (23)

The high-frequency region can be calculated correctly using the formula

𝑓ℎ𝑖𝑔ℎ = 𝑓2 =
𝑓𝑠

𝜋
𝑐𝑜𝑠−1 (

√𝜎𝑥2
2

2 √𝜎𝑥
2
) (24)

Eqn. (22), Eqn. (23), and Eqn. (24) can be summarized as follows:

𝑓 =

{

 𝑓𝑠

2.45𝜋
𝑐𝑜𝑠−1 (

√𝜎𝑥2
2

2 √𝜎𝑥
2
) , 𝑓𝑜𝑟 𝑤0 < 𝑓 < 𝑤1

𝑓𝑠

 𝜋
𝑠𝑖𝑛−1 (

√𝜎𝑥1
2

2 √𝜎𝑥
2
) , 𝑓𝑜𝑟 𝑤1 ≤ 𝑓 < 𝑤2

𝑓𝑠

𝜋
𝑐𝑜𝑠−1 (

√𝜎𝑥2
2

2 √𝜎𝑥
2
) , 𝑓𝑜𝑟 𝑤2 ≤ 𝑓 < 𝑤3

 (25)

The problem now is how to determine the boundaries of each region, and this is done using a grey wolf optimizer. To calculate the best

weights (𝑤0, 𝑤1, 𝑤2, 𝑤3) for frequency estimation, grey wolf optimizer has used for training bidirectional neural networks to achieve the

minimum mean absolute error (MAE) between the input unknown frequency and 𝑓𝐿, 𝑓𝐻. To find the weight 𝑤0, 𝑤1 we use the following

equation

𝑀𝐴𝐸 =
1

𝑚
∑ |𝑓 −

�̂�2

2.45
|𝑚

𝑡=1 (26)

The MAE achieves 0.000005 with 𝑤0 = 0 𝑎𝑛𝑑 𝑤1 = 0.099956𝑓𝑠 ≈ 0.01 𝑓𝑠 . To find 𝑤2 we use

𝑀𝐴𝐸 =
1

𝑚
∑ |𝑓 − 𝑓1|
𝑚
𝑡=1 (27)

The MAE achieves 0.000003 with 𝑤1 = 0.01 𝑎𝑛𝑑 𝑤2 = 0.399987𝑓𝑠 ≈ 0.4 𝑓𝑠 . To find 𝑤3 we use

372 International Journal of Engineering & Technology

𝑀𝐴𝐸 =

1

𝑚
∑ |𝑓 − 𝑓2|
𝑚
𝑡=1 (28)

It achieves MAE= 0.000007 with 𝑤2 = 0.4 𝑓𝑠 𝑎𝑛𝑑 𝑤3 = 0.5𝑓𝑠
So we can write the estimated frequency as follows:

𝑓 =

{

 𝑓𝑠
𝜋
𝑠𝑖𝑛−1 (

√𝜎𝑥1
2

2 √𝜎𝑥
2
)+

𝑏𝑖𝑎𝑠

10
, 𝑓𝑜𝑟 0 < 𝑓 < 0.0001𝑓𝑠

𝑓𝑠

 𝜋
𝑠𝑖𝑛−1 (

√𝜎𝑥1
2

2 √𝜎𝑥
2
) , 𝑓𝑜𝑟 0.0001𝑓𝑠 ≤ 𝑓 < 0.4𝑓𝑠

𝑓𝑠

𝜋
𝑐𝑜𝑠−1 (

√𝜎𝑥2
2

2 √𝜎𝑥
2
) , 𝑓𝑜𝑟 0.4𝑓𝑠 ≤ 𝑓 < 0.5𝑓𝑠

 (29)

Eqn. (29) clears the main difference between the proposed estimator and the traditional derivative estimator. The traditional one defines

one equation for the all estimation range (0:
𝑓𝑠

2
) as shown in Eqn. (10), which lacks accuracy and gives large estimation errors in the low-

frequency region and the high-frequency region. While the proposed estimator defines three frequency regions determined by the sampling

frequency (𝑓𝑠) to estimate the input frequency. The first region is the region of low frequency (0 < 𝑓 < 0.01𝑓𝑠), and the third region is a

high-frequency region (0.4𝑓𝑠 < 𝑓 < 0.5𝑓𝑠) while the rest of the range is the middle frequency region(0.01𝑓𝑠 < 𝑓 < 0.4𝑓𝑠). Each frequency

region has its accurate estimation equation so that the full estimation range is covered with accurate estimations in all the dynamic range.

a) Effect of Additive Gaussian Noise (AWGN)

This section presents the analysis for the estimator when AWGN added to the input signal; it will be

𝑄(𝑛) = 𝑥(𝑛) + 𝑦(𝑛) = 𝑎 𝑐𝑜𝑠(𝜔𝑡 + 𝜃) + 𝑦(𝑛) (30)

Where 𝑦(𝑛) is AWGN.

The signal-to noise ratio (SNR) is the ratio between the signal energy and noise energy in dB scale. 𝑄(𝑛), 𝑥(𝑛), 𝑎𝑛𝑑 𝑦(𝑛) are zero-mean

signals; the variance can be used to represent the energy.

𝑆𝑁𝑅 = 10𝑙𝑜𝑔 (
𝜎𝑥
2

𝜎𝑦
2) (31)

At very low SNR we get:

𝜎𝑥
2 ≅ 𝜎𝑦

2

And

𝜎𝑥
2
1
≅ 𝜎𝑥

2
2
≅ 2𝜎𝑦

2

Applying (20), (21) we get

𝑓1 =
𝑓𝑠

𝜋
𝑠𝑖𝑛−1 (

√𝜎𝑥1
2

2√𝜎𝑥
2
) =

𝑓𝑠

𝜋
𝑠𝑖𝑛−1 (

√2𝜎𝑦
2

2√𝜎𝑦
2
) =

𝑓𝑠

𝜋
𝑠𝑖𝑛−1 (

1

√2
) =

𝑓𝑠

4
 (32)

𝑓2 =
𝑓𝑠

𝜋
𝑐𝑜𝑠−1 (

√𝜎𝑥1
2

2√𝜎𝑥
2
) =

𝑓𝑠

𝜋
𝑐𝑜𝑠−1 (

√2𝜎𝑦
2

2√𝜎𝑦
2
) =

𝑓𝑠

𝜋
𝑐𝑜𝑠−1 (

1

√2
) =

𝑓𝑠

4
 (33)

Eqn. (32) & Eqn. (33) is shown that at low SNR the proposed estimator gives a fixed output frequency equal to
𝑓𝑠

4
.

3.1. Tracking the input frequency

The ability to track the change in input frequency is a required feature for many applications such as demodulation in communication. The

proposed estimator can track the frequency change.

𝑥(𝑛) = ∑ 𝑥𝑚(𝑛)
𝑘
𝑚=1 (34)

𝑋𝑚(𝑛) = 𝑎𝑚𝑐𝑜𝑠 (
2𝜋𝑓𝑚

𝑓𝑠
𝑛 + 𝜃𝑚) (35)

Where 𝑎𝑚 : the amplitude of 𝑥𝑚 signal at frequency 𝑓𝑚

The sinusoidal component of the frequency 𝑓𝑚 are:

𝑥1(𝑛) = 𝑥(𝑛) − 𝑥(𝑛 − 1) = ∑ 𝑥1𝑚(𝑛)
𝑘
𝑚=1 (36)

International Journal of Engineering & Technology 373

𝑥2(𝑛) = 𝑥(𝑛) + 𝑥(𝑛 − 1) = ∑ 𝑥2𝑚(𝑛)

𝑘
𝑚=1 (37)

Now the frequency of 𝑓𝑚 can be estimated using the following equations

𝑓1 =
𝑓𝑠

 𝜋
𝑠𝑖𝑛−1 (

𝑏𝑚

2𝑎𝑚
) (38)

𝑓2 =
𝑓𝑠

𝜋
𝑐𝑜𝑠−1 (

𝑐𝑚

2𝑎𝑚
) (39)

Where 𝑏𝑚 amplitude of 𝑥1𝑚 sinusoidal signal. 𝑐𝑚 amplitude of 𝑥2𝑚 signal

4. Simulation results

Different simulations have been done to inspect the performance of the proposed simulator. We let the sampling frequency 𝑓𝑠 = 10 𝑘𝐻𝑧.

4.1. Accuracy of the proposed estimator

The estimation accuracy is the main feature of the proposed estimator. Fig. 4 shows the estimator's response to the change in the input

frequency with step 100 Hz. The estimator has an accurate estimation without any errors in the full estimation range [0:5000 Hz].

Fig. 4: Proposed Estimator Response for Full Estimation Range.

4.2. Estimation error

We also investigate the performance of the estimator for the low frequencies as this range is important for applications such as seismic

applications. A comparison had been done between the response of the derivative estimator and the proposed estimator by calculating the

estimation error (𝑓𝑖𝑛 − 𝑓𝑙𝑜𝑤). Fig. 5 shows a relation between the estimation error (𝑓𝑖𝑛 − 𝑓𝑙𝑜𝑤) and the input frequency (𝑓𝑖𝑛) for both the

conventional method and the proposed one.

Fig. 5: Comparison between Derivative and Proposed Estimators for Low Frequencies.

Fig. 5 is shown that no estimation errors are founded for the proposed estimator for the input frequency range. While there are estimation

errors for the traditional derivative estimator, for input frequencies 0 < 𝑓𝑖𝑛 < 50 Hz the derivative estimator has 0 Hz output. The output

begins to appear for frequencies greater than 50 Hz. In the range 50 < 𝑓𝑖𝑛 < 70 Hz there is an error in estimation from the frequencies

greater than 75 Hz the estimator begins to generate correct output.

Another important range of frequency which is near the Nyquist rate, another comparison is done between the derivative and proposed

estimator to investigate the difference between both of them. Fig.6 shows the estimation error, which is the difference between (𝑓𝑖𝑛 − 𝑓).

For the proposed estimator the error is zero, which indicates an accurate estimation for the high frequencies. While the output of the

derivative estimator has an estimation, error increased when the input frequency approaches the half sampling frequency (
𝑓𝑠

2
).

374 International Journal of Engineering & Technology

Fig. 6: Comparison between Derivative and Proposed Estimators for High Frequencies.

4.3. Frequency estimation with the effect of AWGN

Fig. 7. is shown the estimation of 1𝑘𝐻𝑧 with the change in AWGN from −20: 30 𝑑𝐵. As proved in Eqn. (32) & Eqn. (33) the estimated

frequency with low AWGN attract to
𝑓𝑠

4
 which is 2.5 𝑘𝐻𝑧. And an acceptable estimation appear at 8 dB, while the accurate result appear at

16 dB which is a good.

Fig. 7: Effect of AWGN on the Proposed Estimator.

4.4. Tracking input frequency

The estimator needs to track the change in input frequency quickly with no long delay. Fig. 8 shows the tracking for the change of the input

frequency with time. The input frequency begins with 1 kHz at 1 ms and increased by 0.5 kHz for each 1 ms. When it reaches 5 kHz, it

fixed for 3ms and decreases by 0.5 Khz for each 1 ms. The proposed estimator tracks the input frequency accurately without discontinues

at any changing period.

Fig. 8: Tracking Input Frequency.

5. FPGA implementation

The proposed estimator is modeled using the Xilinx system generator tool [22]. VHDL code is used to describe the proposed estimator.

All signals of the estimator are fixed-point signals with 16 bits. Fig. 9 shows the proposed estimator model in a Xilinx system generator.

The model receives the input signal 𝑥𝑖 with AWGN and passes through one delay unit. The output delayed signal from the delay unit passes

through adder and subtractor. Peak detector circuit receives the output of subtractor and the input signal to find the peak of each sinusoidal

signal and calculate the ratio between the peak of each signal. Another peak detector circuit receives the output of the adder and the input

signal to find the peak of each sinusoidal signal and calculate the ratio between the peak of each signal. The two generated signals from

the first and second peak detector circuits are directed to arcsine, and arcos circuits respectively. The format block is the circuit which

performs the Eqn. (29), receives the output of the arcsine and arcos, compare the value of arcsine input with 𝑓𝑠 , determine the boundaries

of Eqn. (29), and finally, calculate the output estimated frequency. The main blocks in the proposed estimator model are:-

International Journal of Engineering & Technology 375

Fig. 9: Hardware Model of Proposed Frequency Estimator.

5.1. Peak detector

The peak detector block determines the maximum value of the amplitude of the sinusoidal wave; it consists of one delay unit and a com-

parator. The input is first rectified so that no negative values still existed. The input to the delay |𝑢(𝑛)| unit and the output of the delay

|𝑢(𝑛 − 1)| are compared using a comparator when |𝑢(𝑛)| < |𝑢(𝑛 − 1)| is founded; it means the maximum point is reached and it holds

until the next maximum is determined. Fig. 10 shows the input to the peak detector circuit, which is sinusoidal with varying amplitude

waveform, and the final output of the block. The final output is changing according to the changing of the amplitude of the input signal.

Fig. 10: Input and Output of Peak Detector Block.

5.2. Arcsin block

The arcsine and arcos blocks are designed using cordic algorithm, which is a common algorithm to calculate the different trigonometric

functions. the idea of cordic algorithm is "rotating" the phase of a complex number, by multiplying it by a succession of constant values.

however, then multiplies can all be powers of 2, so in binary arithmetic, they can be done using just shifts and adds; no actual multiplier is

needed. compared to other approaches, cordic is a clear winner when a hardware multiplier is unavailable, e.g. in a microcontroller, or

when you want to save the gates required to implement one, e.g. in an fpga. the input and output of the arcsine block are shown in Fig. 11.

Fig. 11: Input and Output of Arcsine Block.

5.3. Format block

This block receives the arcsine and arcos signals and generates the final estimated frequency. The task of this block is to apply Eqn. (9) by

choosing the boundaries of the equation. The first step is comparing the input arcsine value with the sampling frequency (𝑓𝑠), if the input

376 International Journal of Engineering & Technology

is less than (0.1𝑓𝑠) then the output frequency will be the arcos input divided by 2.45, while if the input arcsine is greater than (0.4𝑓𝑠), then

the output frequency is arcos input. When both previous conditions did not realize the output will be the arcsine input. Fig. 12 shows the

estimated frequency for an input frequency of 1𝑘𝐻𝑧, and it is clear that the estimator takes 0.5ms (half a full period of the input signal) to

generate the accurate estimated frequency. This delay because of different calculations through the estimator. The estimator implemented

using Spartan-6 X6SLX45 board. FPGA consumed resources are shown in Table 1.

Fig. 12: Proposed Estimator Response of 1khz.

Table 1: FPGA Consumed Recourses

Component Used Available

Slice flip flops 500 33280

4 Input LUTs 980 33280

Occupied Slices 1020 16640

Bounded IOBs 32 84

Maximum Frequency 375 MHz

Power Consumption 265 mW

6. Conclusion

An accurate and stable proposed frequency estimator, which solved the limitations of the derivative algorithm has been presented. It solves

the problem of traditional derivative estimators, which is the inability to estimate low frequencies (near zero), and high frequencies (near

half the sampling frequency). The proposed estimator divides the dynamic range into three ranges; low-frequency range, middle frequency

range, and high-frequency range. Each range has its correct formula. The boundaries of each region have been calculated by using the grey

wolf optimization technique, which showing the effectiveness and superiority of deep learning over the traditional methods. Simulation

results investigate the performance of the proposed estimator in case of a single frequency and multiple frequencies with AWGN. All

simulation results indicate the ability of the proposed estimator to estimate a correct frequency accurately in all the dynamic range. Com-

parisons between proposed and traditional ones have been made and simulation results showed the enhancement in performance provided

by the proposed one. The proposed frequency estimator has been implemented with low complexity using FPGA, consumed less power

about 265 mW, and worked at 375 MHz.

References

[1] Ch. Namitha, V. Uma Mahesh, M. Anusha, S. K. Rao, V. Chandra,”Frequency Estimation Using Minimum Algorithm on Seismic Data”, Microe-
lectronic, Electromagnetics and Telecommunications, Vol. 471 , pp. 153-163, 2018. https://doi.org/10.1007/978-981-10-7329-8_16.

[2] Y. Sun, T. Fei and N. Pohl, "A High-Resolution Framework for Range-Doppler Frequency Estimation in Automotive Radar Systems," in IEEE

Sensors Journal, vol. 19, no. 23, pp. 11346-11358, 1 Dec.1, 2019. https://doi.org/10.1109/JSEN.2019.2933776.
[3] Kim, J., Kim, J., Nguyen, L. et al.,” Tonal signal detection in passive sonar systems using atomic norm minimization”, EURASIP Journal in Advanced

Signal Processing, vol. 43, 2019. https://doi.org/10.1186/s13634-019-0641-5.

[4] T. Mohsen, Z. J. Mehdi, J. Mojtaba,” A Novel Method for Frequency Estimation Considering Instrument Transient Effect” International Journal of
Electrical and Computer Engineering, vol. 5, pp. 177-188, 2015. https://doi.org/10.11591/ijece.v5i2.pp177-188.

[5] J.-R. Liao and S. Lo, “Analytical solutions for frequency estimators by interpolation of DFT coefficients,” Signal Processing, vol. 100, pp. 93–100,

July 2014. https://doi.org/10.1016/j.sigpro.2014.01.012.
[6] B. G. Quinn, “Estimating frequency by interpolation using Fourier coefficients,” IEEE Trans. Signal Processing, vol. 42, no. 5, pp. 1264–1268, May

1994. https://doi.org/10.1109/78.295186.

[7] N. Thong-un, W. Wongsaroj, W. Treenuson, J. Chanwutitum, H. Kikura, “Doppler frequency estimation using makimum likelihood function for low
ultrasonic velocity profile”, Acoustical Letter, vol. 38 (5), pp. 268:271, 2017. https://doi.org/10.1250/ast.38.268.

[8] S. Zhao, X. Guang, L. Zhang, “Efficient Iterative Frequency Estinator of Sinusoidal Signal in Noise”, Circuits, Systems, and signal Processing, vol.

36(8), pp. 3265:3288, 2017. https://doi.org/10.1007/s00034-016-0453-x.
[9] W. Liu et al. “A Novel Carrier Loop Algorithm Based on Maximum Likelihood Estimation (MLE) and Kalman Filter (KF) for Weak TC-OFDM

Signals.” Sensors (Basel, Switzerland) vol. 18 (7), 2018. https://doi.org/10.3390/s18072256.

[10] K. Charles, R. Carrasco, R. Parra, “Complexity Reduction of MLSE and MAP Equalizers Using Modified Prolate Basis Expansion”, Electronics,
vol. 8 (11), 2019. https://doi.org/10.3390/electronics8111333.

[11] Myriam Desainte-Catherine and Sylvain Marchand, “High Precision Fourier Analysis of Sounds Using Signal Derivatives,” Journal of the Audio

Engineering Society, vol. 48, no. 7/8, pp. 654–667, July/August 2000.

https://doi.org/10.1007/978-981-10-7329-8_16
https://doi.org/10.1109/JSEN.2019.2933776
https://doi.org/10.1186/s13634-019-0641-5
https://doi.org/10.11591/ijece.v5i2.pp177-188
https://doi.org/10.1016/j.sigpro.2014.01.012
https://doi.org/10.1109/78.295186
https://doi.org/10.1250/ast.38.268
https://doi.org/10.1007/s00034-016-0453-x
https://doi.org/10.3390/s18072256
https://doi.org/10.3390/electronics8111333

International Journal of Engineering & Technology 377

[12] Sylvain Marchand, “Improving Spectral Analysis Precision with an Enhanced Phase Vocoder using Signal Derivatives,” in Proc. DAFx, Barcelona,

November 1998, pp. 114–118.

[13] El-kenawy, E. S. M. T. (2019). A Machine Learning Model for Hemoglobin Estimation and Anemia Classification. International Journal of Computer

Science and Information Security (IJCSIS), 17(2).

[14] H. Hassan, A. I. El-Desouky, A. Ibrahim, E. M. El-kenawy and R. Arnous, (2020) "Enhanced QoS-based Model for Trust Assessment in Cloud
Computing Environment," in IEEE Access. https://doi.org/10.1109/ACCESS.2020.2978452.

[15] El-kenawy, E. S. M., El-Desoky, A. I., & Al-rahamawy, M. F. (2012). Distributing Graphic Rendering using Grid Computing with Load Balancing.

International Journal of Computer Applications, 975, 888.
[16] El-Kenawy, E. S. M. T., El-Desoky, A. I., & Sarhan, A. M. (2014). A bidder strategy system for online auctions trust measurement. International

Journal of Strategic Information Technology and Applications (IJSITA), 5(3), 37-47. https://doi.org/10.4018/ijsita.2014070103.
[17] El-Knawy, E. S. M. T., & El-Desoky, A. I. (2016). TRUST MEASUREMENT FOR ONLINE AUCTIONS: PROPOSAL OF NEW MODEL. IN-

TERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 12(2), 385-394.

[18] W. Xiaohong, R. Tian, “Classification of CT brain images based on deep learning networks”, Computer Methods and Programs in Biomedicine, Vol.
138,pp. 49-56, 2017. https://doi.org/10.1016/j.cmpb.2016.10.007.

[19] X. Li, F. Dong, S. Zhang, W. Guo, “A Survey on Deep Learning Techniques in Wireless Signal Recognition”, Wireless Communications and Mobile

Computing, Vol. 2019. https://doi.org/10.1155/2019/5629572.
[20] Hassib, E. M., El-Desouky, A. I., Labib, L. M., & El-kenawy, E. S. M. WOA+ BRNN: An imbalanced big data classification framework using Whale

optimization and deep neural network. Soft Computing, 1-20.

[21] Hassib, E. M., El-Desouky, A. I., El-kenawy, E. S. M., & Elghamrawy, S. (2019). An Imbalanced Big Data Mining Framework for Improving
Optimization Algorithms Performance. IEEE Access. https://doi.org/10.1109/ACCESS.2019.2955983.

[22] Xilinx, Vivado, Design Suite User Guide: Model-Based DSP Design using System Generator, UG897, v2016.1 ed., Xilinx, Apr. 2018.

https://doi.org/10.1109/ACCESS.2020.2978452
https://doi.org/10.4018/ijsita.2014070103
https://doi.org/10.1016/j.cmpb.2016.10.007
https://doi.org/10.1155/2019/5629572
https://doi.org/10.1109/ACCESS.2019.2955983

