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Abstract 
 

Thermally induced cracks have far-reaching implications on the durability of concrete structures. When cement mixes with water, the 

reaction is exothermic implying the release of heat. In the case of mass concrete structures, quite a substantial increase in internal temper-

ature may be experienced depending on the ambient temperature and cement content in the mix. The objective of the paper is to develop a 

mathematical model to predict the time dependent temperature profile in early age mass concrete. Mass concrete block was used to verify 

the model. Type-K thermocouples placed at various positions and digital thermometer was used to monitor the temperature distribution 

within the mass concrete block at intervals. The highest temperature values occurred within the core of the mass concrete after one day of 

concrete placement. Analytical model was developed by applying method of separation of variables and orthogonality relation to two 

dimensional unsteady state heat conduction equations. The model equation was evaluated and using MATLAB based computer programe. 

The model successfully predicted the temperature variation within the mass concrete with time. It is therefore suitable for use in the as-

sessment of thermal cracks potential in mass concrete structures. 

 
Keywords: Analytical Model; Thermal Cracks; Mass Concrete; Orthogonality Relations; Separation of Variables 

 

1. Introduction 

The heat generated as a result of hydration of cement paste in mass concretes can easily dissipate at the surface, but may be trapped in the 

interior resulting in thermal or temperature gradient. Consequently, internal restraint arises and the thermal expansion which is as a result 

of temperature increase is unequal in various parts of the concrete mass. This will induce stresses, compressive in one part and tensile in 

the other part of the concrete mass. If the tensile stress at the surface, a consequence to the expansion that takes place at the interior of the 

mass concrete, exceeds the tensile strength of the concrete, surface cracks will develop. The essence of monitoring temperature in mass 

concrete is to control thermal cracks and issues related to durability.  

Cracks may lead to rust in the concrete structure due to the possibility of chloride ions from highly saline waters penetrating to the rein-

forcement steel through the cracks [1]. It is quite a challenging task to model early age hardening concrete owing to its complex composite 

nature which undergoes changes as hydration of cement paste progresses [2]. [3] utilized heat and moisture transport model in early age 

hardening concrete to predict heat generated during the hydration of cement paste. [4] studied the suitability of cement based materials 

namely fly ash, slags and silica fumes in partially replacing cement in production of mass concrete. They inferred that blended cements 

have potentials to serve as a reliable substitute to low heat Portland cement in massive concrete structures. [5] studied the temperature rise 

properties of blast furnace slag cement concrete under adiabatic conditions. They recorded significant reduction in peak temperatures and 

the rate of increase in temperature with over 50% replacement. [6] on the prospects of controlling thermal cracking in mass concrete 

foundation by circulating water, recorded a substantial effect at both the free surface and core of the mass concrete but little or no signifi-

cance on part adjacent to ground surface. [7] conducted finite element simulation of early age temperature distribution in thick raft. The 

objective of the paper is to develop a mathematical model to predict the time dependent temperature profile in early age mass concrete. 

2. Methodology 

A block of size 1.1m x 1.1m x1.1m, mix ratio of 1:2:4 and water cement ratio of 0.6 whose ingredients comprises ordinary Portland cement, 

fine sand and crushed granite of 40mm maximum size was used to verify the model. Type-K thermocouples positioned as shown in Fig. 1 

and digital thermometer (Fig. 2) were used to monitor the temperature within the concrete mass at time intervals of 0, 6, 12, 18, 24, 48, 72, 

96, 120 and 144 hours respectively.  

http://creativecommons.org/licenses/by/3.0/
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Fig. 1: Mass Concrete Block Showing the Layout of the Thermocouples. (All Dimensions in Mm). 

 

 
Fig. 2: Digital Thermometer and Type-K Thermocouple. 

 

Fig. 1 shows plywood formwork of 25mm thickness internally surrounded by polystyrene sheet as insulation and the top surface of the cast 

concrete covered with 50mm thick layer of sand. The cast mass concrete formwork and thermocouple wires are shown in Fig. 3. 

 

 
Fig. 3: Cast Mass Concrete Showing the Thermocouples. 

2.1. Model development 

Generally, problems encountered in the course of engineering practice are transformed into mathematical descriptions (models) of real life 

situations and systems. Such mathematical descriptions are often differential equations with assumed boundary and initial conditions. 

Differential equations are arrived at by subjecting the engineering systems to the laws and principles guiding the study of natural science. 

The governing equation shown in Eq (1) is that of two dimensional unsteady state heat conduction equation based on Fourier law of heat 

transfer.  

 

K (
∂2T

∂x2 +
∂2T

∂y2
) +  q =  ρCp

∂T

∂t
                                                                                                                                                                        (1) 

 

ρ is density of concrete (kg/m3), CP is the specific heat capacity of concrete (J/kg.0C), q is the heat source intensity (KJ/m3.h), K is the 

thermal conductivity (KJ/m.h0C), T is transient temperature of concrete (0C) and t is time (hrs).  

At t =  0, there exists a uniform temperature. 

For t ≥ 0, the initial conditions at t =  0; 
 

T(x, y, t = 0) = T0                                                                                                                                                                                         (2) 

For thermal insulation, we have the following boundary conditions:  

 

x-direction: 0 ≤  x ≤  a,  
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∂T

∂x
|

x=0
= 0 and 

∂T

∂x
|

x=a
= 0                                                                                                                                                                           (3) 

 

y-direction: 0 ≤  y ≤  b,  

 
∂T

∂y
|

y=0
 and 

∂T

∂y
|

y=b
= 0.                                                                                                                                                                                (4) 

 

Let the solution of Eq (1) be 

 

T(x, y, t) = Thom(x, y, t) + Tinhom(x, y, t).                                                                                                                                                    (5) 

 

For homogeneous problem, we have 

 

k (
∂2T

∂x2
+

∂2T

∂y2
) = ρCρ

∂T

∂t
.                                                                                                                                                                                 (6) 

 

To find the solution of the homogeneous problem, we use the method of separation of variables. Therefore, let  

 

Thom(x, y, t) = U(x). V(y). W(t)                                                                                                                                                                   (7) 

 

Differentiating Eq (7) partially and substituting in Eq (6), we have 

 

k[U″(x). V(y). W(t) + U(x). V″(y). W(t)] = ρCρU(x). V(y). W′(t).                                                                                                           (8) 

 

Dividing both side of Eq (8) by U(x). V(y). W(t), we have 

 

k (
U″(x)

U(x)
+

V″(y)

V(y)
) = ρCρ

W′(t)

W(t)
                                                                                                                                                                         (9) 

 

⇒
U″(x)

U(x)
+

V″(y)

V(y)
=

ρCρ

k

W′(t)

W(t)
                                                                                                                                                                          (10) 

 

Eq (10) means that 

 
U″(x)

U(x)
= −c,

V″(y)

V(y)
= −d,

ρCρ

k

W′(t)

W(t)
= −(c + d),                                                                                                                                            (11) 

 

Where c and d are separation constants. 

Solution in x-domain: 

 
U″(x)

U(x)
= −c ⇒ U″(x) + cU(x) = 0                                                                                                                                                              (12) 

 

Characteristic equation implies m2 + c = 0 ⇒ m = ±i√c. 
 

U(𝑥) = 𝐴 𝑐𝑜𝑠 √𝑐 𝑥 + 𝐵 𝑠𝑖𝑛 √𝑐 𝑥                                                                                                                                                                 (13) 

 

𝑈′(𝑥) = √𝑐[−𝐴 𝑠𝑖𝑛 √𝑐 𝑥 + 𝐵 𝑐𝑜𝑠 √𝑐 𝑥]  
 

𝑈′(0) = 0 ⇒ 𝐵 = 0  

 

𝑈′(𝑎) = 0 ⇒ 𝑐 = (
𝑛𝜋

𝑎
)

2
                                                                                                                                                                              (14) 

 

Solution in y-domain: 

 
𝑉″(𝑦)

𝑉(𝑦)
= −𝑑 ⇒ 𝑉″(𝑦) + 𝑑𝑉(𝑦) = 0                                                                                                                                                            (15) 

 

Characteristic equation implies 𝑚2 + 𝑑 = 0 ⇒ 𝑚 = ±𝑖√𝑑. 
 

𝑉(𝑦) = 𝐶 𝑐𝑜𝑠 √𝑑 𝑦 + 𝐷 𝑠𝑖𝑛 √𝑑 𝑦                                                                                                                                                                (16) 

 

𝑉′(𝑦) = √𝑑[−𝐶 𝑠𝑖𝑛 √𝑑 𝑦 + 𝐷 𝑐𝑜𝑠 √𝑑 𝑦]  
 

𝑉′(0) = 0 ⇒ 𝐶 = 0  

𝑉′(𝑏) = 0 ⇒ 𝑑 = [
(2𝑚+1)𝜋

2𝑏
]

2

                                                                                                                                                                      (17) 

 

Solution in t-domain: 

 



362 International Journal of Engineering & Technology 

 
𝜌𝐶𝜌

𝑘

𝑊′(𝑡)

𝑊(𝑡)
= −(𝑐 + 𝑑) ⇒ 𝑊′(𝑡) = −

𝑘

𝜌𝐶𝜌
(𝑐 + 𝑑)𝑊(𝑡)  

⇒ 𝑊(𝑡) = 𝐸𝑒
−[ 𝑘

𝜌𝐶𝜌
(𝑐+𝑑)]

                                                                                                                                                                            (18) 

 

Putting Eq (13), (14), (16), (17) and (18) together, we have the homogeneous temperature as 

 

𝑇ℎ𝑜𝑚(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝐺𝑚𝑛𝑒
−[ 𝑘

𝜌𝐶𝜌
(𝑐+𝑑)]𝑡

𝑐𝑜𝑠 (
𝑛𝜋

𝑎
𝑥)∞

𝑚=0
∞
𝑛=0 𝑠𝑖𝑛

(2𝑚+1)𝜋

2𝑏
𝑦                                                                                                    (19) 

 

For inhomogeneous problem, we use the solution found in homogeneous problem. 

We now let  

 

𝑇𝑖𝑛ℎ𝑜𝑚(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝐺𝑚𝑛(𝑡)𝑒
−[ 𝑘

𝜌𝐶𝜌
(𝑐+𝑑)]𝑡

𝑐𝑜𝑠 (
𝑛𝜋

𝑎
𝑥)∞

𝑚=0
∞
𝑛=0 𝑠𝑖𝑛

(2𝑚+1)𝜋

2𝑏
𝑦 ,                                                                                          (20) 

 

which means that 𝐺𝑚𝑛(𝑡) is now time dependent. Substituting Eq (20) in Eq (1), we have 

 

𝜕2

𝜕𝑥2
{∑ ∑ 𝐺𝑚𝑛(𝑡)𝑒

−[ 𝑘
𝜌𝐶𝜌

(𝑐+𝑑)]𝑡
𝑐𝑜𝑠 (

𝑛𝜋

𝑎
𝑥)∞

𝑚=0
∞
𝑛=0 𝑠𝑖𝑛

(2𝑚+1)𝜋

2𝑏
𝑦} +

𝜕2

𝜕𝑦2
{∑ ∑ 𝐺𝑚𝑛(𝑡)𝑒

−[ 𝑘
𝜌𝐶𝜌

(𝑐+𝑑)]𝑡
𝑐𝑜𝑠 (

𝑛𝜋

𝑎
𝑥)∞

𝑚=0
∞
𝑛=0 𝑠𝑖𝑛

(2𝑚+1)𝜋

2𝑏
𝑦} +

20000𝑒(−0.9398− 𝑡
24

) =
𝜌𝐶𝜌

𝑘

𝜕

𝜕𝑡
{∑ ∑ 𝐺𝑚𝑛(𝑡)𝑒

−[ 𝑘
𝜌𝐶𝜌

(𝑐+𝑑)]𝑡
𝑐𝑜𝑠 (

𝑛𝜋

𝑎
𝑥)∞

𝑚=0
∞
𝑛=0 𝑠𝑖𝑛

(2𝑚+1)𝜋

2𝑏
𝑦}                                                                       (21) 

 

Suzuki’s model, in [8] was adopted in which. 

 

𝑞 = 20,000 𝑒−0.9398−
𝑡

24
                                                                                                                                                                                (22) 

 

𝑞 is the heat generated per unit volume of concrete in t hours. 

But  

 

𝜕2

𝜕𝑥2 {∑ ∑ 𝐺𝑚𝑛(𝑡)𝑒
−[ 𝑘

𝜌𝐶𝜌
(𝑐+𝑑)]𝑡

𝑐𝑜𝑠 (
𝑛𝜋

𝑎
𝑥)∞

𝑚=0
∞
𝑛=0 𝑠𝑖𝑛

(2𝑚+1)𝜋

2𝑏
𝑦} = ∑ −𝐺𝑚𝑛(𝑡)𝑒

−[ 𝑘
𝜌𝐶𝜌

(𝑎+𝑏)]𝑡
(

𝑛𝜋

𝑎
)2𝑐𝑜𝑠 (

𝑛𝜋

𝑎
𝑥)∞

𝑚,𝑛=0 𝑠𝑖𝑛
(2𝑚+1)𝜋

2𝑏
𝑦 .  

 

Using Eq (14), we have 

 

𝜕2

𝜕𝑥2 {∑ ∑ 𝐺𝑚𝑛(𝑡)𝑒
−[ 𝑘

𝜌𝐶𝜌
(𝑐+𝑑)]𝑡

𝑐𝑜𝑠 (
𝑛𝜋

𝑎
𝑥)∞

𝑚=0
∞
𝑛=0 𝑠𝑖𝑛

(2𝑚+1)𝜋

2𝑏
𝑦} = ∑ −𝐺𝑚𝑛(𝑡)𝑒

−[ 𝑘
𝜌𝐶𝜌

(𝑐+𝑑)]𝑡
𝑐 𝑐𝑜𝑠 (

𝑛𝜋

𝑎
𝑥)∞

𝑚,𝑛=0 𝑠𝑖𝑛
(2𝑚+1)𝜋

2𝑏
𝑦 ,              (23) 

 

𝜕2

𝜕𝑦2 {∑ ∑ 𝐺𝑚𝑛(𝑡)𝑒
−[ 𝑘

𝜌𝐶𝜌
(𝑐+𝑑)]𝑡

𝑐𝑜𝑠 (
𝑛𝜋

𝑎
𝑥)∞

𝑚=0
∞
𝑛=0 𝑠𝑖𝑛

(2𝑚+1)𝜋

2𝑏
𝑦} = ∑ −𝐺𝑚𝑛(𝑡)𝑒

−[ 𝑘
𝜌𝐶𝜌

(𝑐+𝑑)]𝑡
[

(2𝑚+1)𝜋

2𝑏
]2𝑐𝑜𝑠 (

𝑛𝜋

𝑎
𝑥)∞

𝑚,𝑛=0 𝑠𝑖𝑛
(2𝑚+1)𝜋

2𝑏
𝑦 .  

 

Using Eq (17), we have 

 

𝜕2

𝜕𝑦2 {∑ ∑ 𝐺𝑚𝑛(𝑡)𝑒
−[ 𝑘

𝜌𝐶𝜌
(𝑐+𝑑)]𝑡

𝑐𝑜𝑠 (
𝑛𝜋

𝑎
𝑥)∞

𝑚=0
∞
𝑛=0 𝑠𝑖𝑛

(2𝑚+1)𝜋

2𝑏
𝑦}  

 

= ∑ −𝐺𝑚𝑛(𝑡)𝑒
−[ 𝑘

𝜌𝐶𝜌
(𝑐+𝑑)]𝑡

𝑑 𝑐𝑜𝑠 (
𝑛𝜋

𝑎
𝑥)∞

𝑚,𝑛=0 𝑠𝑖𝑛
(2𝑚+1)𝜋

2𝑏
𝑦 ,                                                                                                                    (24) 

 

And 

 
𝜌𝐶𝜌

𝑘

𝜕

𝜕𝑡
{∑ ∑ 𝐺𝑚𝑛(𝑡)𝑒

−[ 𝑘
𝜌𝐶𝜌

(𝑐+𝑑)]𝑡
𝑐𝑜𝑠 (

𝑛𝜋

𝐿
𝑥)∞

𝑚=0
∞
𝑛=0 𝑠𝑖𝑛

(2𝑚+1)𝜋

2𝑏
𝑦}  =

𝜌𝐶𝜌

𝑘
∑ {𝐺𝑚𝑛

′ (𝑡)𝑒
−[ 𝑘

𝜌𝐶𝜌
(𝑐+𝑑)]𝑡

𝑐𝑜𝑠 (
𝑛𝜋

𝑎
𝑥)∞

𝑚,𝑛=0 𝑠𝑖𝑛
(2𝑚+1)𝜋

2𝑏
𝑦 −

[ 𝑘

𝜌𝐶𝜌
(𝑐 + 𝑑)] 𝐺𝑚𝑛(𝑡)𝑒

−[ 𝑘
𝜌𝐶𝜌

(𝑐+𝑑)]𝑡
𝑐𝑜𝑠 (

𝑛𝜋

𝑎
𝑥) 𝑠𝑖𝑛

(2𝑚+1)𝜋

2𝑏
𝑦}  

 

= ∑ {
𝜌𝐶𝜌

𝑘
𝐺𝑚𝑛

′ (𝑡)∞
𝑚,𝑛=0 − (𝑐 + 𝑑)𝐺𝑚𝑛(𝑡)}𝑒

−[ 𝑘
𝜌𝐶𝜌

(𝑐+𝑑)]𝑡
𝑐𝑜𝑠 (

𝑛𝜋

𝑎
𝑥) 𝑠𝑖𝑛

(2𝑚+1)𝜋

2𝑏
𝑦.                                                                                    (25) 

 

Putting the results of Eq (23), (24) and (25) together in Eq (21), we have 

 

∑
𝜌𝐶𝜌

𝑘
𝐺𝑚𝑛

′ (𝑡) 𝑐𝑜𝑠 (
𝑛𝜋

𝑎
𝑥) 𝑠𝑖𝑛

(2𝑚+1)𝜋

2𝑏
𝑦∞

𝑚,𝑛=0  = 20000𝑒
(−0.9398−[ 1

24− 𝑘
𝜌𝐶𝜌

(𝑐+𝑑)]𝑡 )
                                                                                     (26) 

 

The orthogonality relations can help to find an equation to determine 𝐺𝑚𝑛
′ (𝑡) with simple and direct integration. Now using the orthogo-

nality relations, we have 

 

∑
𝜌𝐶𝜌

𝑘
𝐺𝑚𝑛

′ (𝑡) ∫ 𝑐𝑜𝑠 (
𝑛𝜋

𝑎
𝑥) 𝑐𝑜𝑠 (

𝑘𝜋

𝑏
𝑥) 𝑑𝑥 × ∫ 𝑠𝑖𝑛

(2𝑚+1)𝜋

2𝑏
𝑦 𝑠𝑖𝑛

(2𝑝+1)𝜋

2𝑏
𝑦 𝑑𝑦

𝑙

0

𝑙

0
∞
𝑚,𝑛=0 =

20000𝑒
(−0.9398−[ 1

24− 𝑘
𝜌𝐶𝜌

(𝑐+𝑑)]𝑡 )
∫ 𝑐𝑜𝑠 (

𝑘𝜋

𝑎
𝑥) 𝑠𝑖𝑛

(2𝑝+1)𝜋

2𝑏
𝑦

𝑙

0
.                                                                                                                      (27) 

 

But  
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∫ 𝑐𝑜𝑠 (
𝑛𝜋

𝑎
𝑥) 𝑐𝑜𝑠 (

𝑘𝜋

𝑎
𝑥) 𝑑𝑥 =

𝑙

0

𝐿

2
𝛿𝑘𝑛                                                                                                                                                            (28) 

 

And 

 

∫ 𝑠𝑖𝑛
(2𝑚+1)𝜋

2𝑏
𝑦 𝑠𝑖𝑛

(2𝑝+1)𝜋

2𝑏
𝑦 𝑑𝑦 =

𝑙

0

𝐿

2
𝛿𝑚𝑝,                                                                                                                                                  (29) 

 

Where 𝛿 is the Kroneker symbol and is defined as 

 

𝛿𝑖𝑗 = {
1 𝑖 = 𝑗
0 𝑖 ≠ 𝑗.

  

 

Substituting Eq (28) and (29) in Eq (27), we have  

 

∑
𝜌𝐶𝜌

𝑘
𝐺𝑚𝑛

′ (𝑡)
𝐿

2
𝛿𝑘𝑛

∞
𝑚,𝑛=0

𝐿

2
𝛿𝑚𝑝 = 20000𝑒

(−0.9398−[ 1
24

− 𝑘
𝜌𝐶𝜌

(𝑐+𝑑)]𝑡 )
𝐿𝛿𝑘 0  

2𝐿

𝜋(2𝑝+1)
                                                                                      (30) 

 

For 𝐿 = 1, 𝑚 = 𝑝 and 𝑘 = 𝑛, then 

 

𝐺𝑝𝑘
′ (𝑡)  = −4 ×

𝑘

𝜌𝐶𝜌
× 20000𝑒

(−0.9398−[ 1
24

− 𝑘
𝜌𝐶𝜌

(𝑐+𝑑)]𝑡 )
𝛿𝑘 0  

2

𝜋(2𝑝+1)
⇒  

 

𝐺𝑝𝑘
′ (𝑡)  = −

𝑘

𝜌𝐶𝜌
𝑒

(−0.9398−[ 1
24

− 𝑘
𝜌𝐶𝜌

(𝑐+𝑑)]𝑡 )
𝛿𝑘 0  

160000

𝜋(2𝑝+1)
.                                                                                                                              (31) 

 

For 𝑘 ≠ 0, 
 

𝐺𝑝𝑘
′ (𝑡) = 0 ⇒ 𝐺𝑝𝑘(𝑡) = 𝐶𝑝𝑘 =Constant.                                                                                                                                                   (32) 

 

For 𝑘 = 0, 
 

𝐺𝑝𝑘
′ (𝑡)  = −

𝑘

𝜌𝐶𝜌
𝑒

(−0.9398−[ 1
24− 𝑘

𝜌𝐶𝜌
(𝑐+𝑑)]𝑡 ) 160000

𝜋(2𝑝+1)
⇒  

 

𝐺𝑝𝑘(𝑡) =
𝑘

𝜌𝐶𝜌
𝑒

(−0.9398−[ 1
24− 𝑘

𝜌𝐶𝜌
(𝑐+𝑑)]𝑡 ) 20000

3𝜋(2𝑝+1)
+ 𝐶2                                                                                                                                (33) 

 

We now choose 𝐶2 = 0 without loss of generality. Putting all together we get  

 

𝑇𝑖𝑛ℎ𝑜𝑚(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝐶𝑚𝑛𝑒
−[ 𝑘

𝜌𝐶𝜌
(𝑐+𝑑)]𝑡

𝑐𝑜𝑠 (
𝑛𝜋

𝑎
𝑥)∞

𝑚=0
∞
𝑛=0 𝑠𝑖𝑛

(2𝑚+1)𝜋

2𝑏
𝑦 + ∑

𝑘

𝜌𝐶𝜌

∞
𝑚=0 𝑒

(−0.9398−[ 1
24− 𝑘

𝜌𝐶𝜌
(𝑐+𝑑)]𝑡 ) 20000

3𝜋(2𝑚+1)
𝑠𝑖𝑛

(2𝑚+1)𝜋

2𝑎
𝑦                               (34) 

 

The solution is 𝑇(𝑥, 𝑦, 𝑡) = 𝑇ℎ𝑜𝑚(𝑥, 𝑦, 𝑡) + 𝑇𝑖𝑛ℎ𝑜𝑚(𝑥, 𝑦, 𝑡).  
 

Therefore, 

 

𝑇(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝐺𝑚𝑛𝑒
−[ 𝑘

𝜌𝐶𝜌
(𝑐+𝑑)]𝑡

𝑐𝑜𝑠 (
𝑛𝜋

𝑎
𝑥)∞

𝑚=0
∞
𝑛=0 𝑠𝑖𝑛

(2𝑚+1)𝜋

2𝑏
𝑦 + ∑ ∑ 𝐶𝑚𝑛𝑒

−[ 𝑘
𝜌𝐶𝜌

(𝑐+𝑑)]𝑡
𝑐𝑜𝑠 (

𝑛𝜋

𝑎
𝑥)∞

𝑚=0
∞
𝑛=0 𝑠𝑖𝑛

(2𝑚+1)𝜋

2𝑏
𝑦 +

∑
𝑘

𝜌𝐶𝜌

∞
𝑚=0 𝑒

(−0.9398−[ 1
24− 𝑘

𝜌𝐶𝜌
(𝑐+𝑑)]𝑡 ) 20000

3𝜋(2𝑚+1)
𝑠𝑖𝑛

(2𝑚+1)𝜋

2𝑏
𝑦  ⇒   

 

𝑇(𝑥, 𝑦, 𝑡) = ∑ ∑ (𝐺𝑚𝑛 + 𝐶𝑚𝑛)𝑒
−[ 𝑘

𝜌𝐶𝜌
(𝑐+𝑑)]𝑡

𝑐𝑜𝑠 (
𝑛𝜋

𝑎
𝑥)∞

𝑚=0
∞
𝑛=0 𝑠𝑖𝑛

(2𝑚+1)𝜋

2𝑏
𝑦 +

∑
𝑘

𝜌𝐶𝜌

∞
𝑚=0 𝑒

(−0.9398−[ 1
24− 𝑘

𝜌𝐶𝜌
(𝑐+𝑑)]𝑡 ) 20000

3𝜋(2𝑚+1)
𝑠𝑖𝑛

(2𝑚+1)𝜋

2𝑏
𝑦                                                                                                                        (35) 

 

Now, what is required is to obtain the value of 𝐺𝑚𝑛 + 𝐶𝑚𝑛 = 𝐷𝑚𝑛. 
 

The initial conditions at 𝑡 =  0 ⇒ 𝑇(𝑥, 𝑦, 𝑡 = 0) ≡ 𝑇0 

 

𝑇(𝑥, 𝑦, 𝑡 = 0) = ∑ ∑ 𝐷𝑚𝑛 𝑐𝑜𝑠 (
𝑛𝜋

𝑎
𝑥)∞

𝑚=0
∞
𝑛=0 𝑠𝑖𝑛

(2𝑚+1)𝜋

2𝑏
𝑦 + ∑

𝑘

𝜌𝐶𝜌

∞
𝑚=0 𝑒(−0.9398)  

20000

3𝜋(2𝑚+1)
𝑠𝑖𝑛

(2𝑚+1)𝜋

2𝑏
𝑦  =  𝑇0 .   

 

Using the orthogonality relations, we have 

∑ ∑ 𝐷𝑚𝑛
∞
𝑚=0

∞
𝑛=0 ∫ 𝑐𝑜𝑠 (

𝑛𝜋

𝑎𝐿
𝑥) 𝑐𝑜𝑠 (

𝑘𝜋

𝑎
𝑥) 𝑑𝑥 × ∫ 𝑠𝑖𝑛

(2𝑚+1)𝜋

2𝑏
𝑦 𝑠𝑖𝑛

(2𝑝+1)𝜋

2𝑏
𝑦 𝑑𝑦

𝑙

0

𝑙

0
+

∑
𝑘

𝜌𝐶𝜌

∞
𝑚=0 𝑒(−0.9398)  

20000

3𝜋(2𝑚+1)
∫ 𝑠𝑖𝑛

(2𝑚+1)𝜋

2𝑏
𝑦 𝑠𝑖𝑛

(2𝑝+1)𝜋

2𝑏
𝑦 𝑑𝑦 ×

𝑙

0
∫ 𝑐𝑜𝑠 (

𝑘𝜋

𝑎
𝑥) 𝑠𝑖𝑛

(2𝑝+1)𝜋

2𝑎
𝑦

𝑙

0
 =  𝑇0 ∫ 𝑐𝑜𝑠 (

𝑘𝜋

𝑎
𝑥) 𝑠𝑖𝑛

(2𝑝+1)𝜋

2𝑏
𝑦

𝑙

0
 ⇒  

 

∑ ∑ 𝐷𝑚𝑛
∞
𝑚=0

∞
𝑛=0

𝐿

2
𝛿𝑘𝑛

𝐿

2
𝛿𝑚𝑝 + ∑

𝑘

𝜌𝐶𝜌

∞
𝑚=0 𝑒(−0.9398)  

20000

3𝜋(2𝑚+1)

𝐿

2
𝛿𝑚𝑝𝐿𝛿𝑘 0  

2𝐿

𝜋(2𝑝+1)
 =  𝑇0𝐿𝛿𝑘 0  

2𝐿

𝜋(2𝑝+1)
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For 𝐿 = 1, 𝑚 = 𝑝 and 𝑘 = 𝑛, then we have 

 

𝐷𝑝𝑘  =  𝑇0𝛿𝑘 0  
8

𝜋(2𝑝+1)
−  

𝑘

𝜌𝐶𝜌
𝑒(−0.9398)  

80000

3[𝜋(2𝑝+1)]2 𝛿𝑘 0   

 

For 𝑘 ≠ 0, 
 

𝐷𝑝𝑘 = 0.  

 

For 𝑘 = 0, 
 

𝐷𝑝𝑘  =  𝑇0  
8

𝜋(2𝑝+1)
−  

𝑘

𝜌𝐶𝜌
𝑒(−0.9398)  

80000

3[𝜋(2𝑝+1)]2
 .  

 

Hence, 

 

𝑇(𝑥, 𝑦, 𝑡) = 

 

∑ ∑ [𝑇0  
8

𝜋(2𝑚+1) 
− 

𝑘

𝜌𝐶𝑝
 𝑒(−0.9398)  

80000

3[𝜋(2𝑚+1)]2]∞
𝑚=0

∞
𝑛=0  𝑒

−[
𝑘

𝜌𝐶𝑝
(𝑐+𝑑)]𝑡

 𝐶𝑜𝑠 (
𝑛𝜋

𝑎
𝑥) 𝑆𝑖𝑛

(2𝑚+1)𝜋

2𝑏
𝑦 + 

∑ ∑
𝑘

𝜌𝐶𝑝
𝑒

(−0.9398−[
1

24
− 

𝑘

𝜌𝐶𝑝
(𝑐+𝑑)]𝑡) ∞

𝑚=0
∞
𝑛=0

20000

3𝜋(2𝑚+1)
 𝑆𝑖𝑛

(2𝑚+1)𝜋

2𝑏
𝑦                                                                                                             (36) 

3. Results 

The temperature values for the various thermocouple locations within the mass concrete block used for the model verification were recorded 

for the various time intervals. Fig. 4a and Fig. 4b show the graphs of temperature against time for the various thermocouple locations. The 

zero hour temperature signifies the temperature of the mass concrete block immediately after placement which was found to be uniform 

throughout the various locations at 280C.  

The temperature distribution indicates that the mass concrete exhibited higher temperature values within the core (TC3, TC4, TC5 and 

TC8) and the least values at locations close to the surface (TC1, TC7 and TC10) for all time intervals. After 120 hours of concrete place-

ment, a constant temperature of 320C was subsequently recorded for all thermocouple locations. The surface of the mass concrete in contact 

with the ground exhibited lower temperatures than other surfaces for most of the time intervals. Generally the temperature readings showed 

a rise from a uniform placement temperature of 280C to the peak temperature of 510C at the core within 24 hours of concrete placement 

and fall afterwards to 320C at both 120 and 144 hours respectively. This is in agreement with the findings of previous authors in literature 

[7], [8], [10].  

 

 
Fig. 4: A) Temperature Time Relationship for Thermocouple Locations (TC1 To TC7). 

 

 
Fig. 4: B) Temperature Time Relationship for Thermocouple Locations (TC4, TC8, TC9 and TC10). 

3.1. Calibration 

Thermal conductivity (K) as a property of concrete depends on its material composition, its values range between 7.1 to 10.6 KJ/mh0C 

according to ACI committee 207, 2005b in [8]. Thermal conductivity value of 9 KJ/mh0C was used in the research. According to ACI 



International Journal of Engineering & Technology 365 

 
committee 207, 2005b in [8], the thermal conductivity of concrete ranges between 0.90 to 1.0 KJ/kg0C. A specific value of 0.9 KJ/kg0C 

was adopted for the research. The density of fresh, normal weight concrete is generally 2400kg/m3. The initial temperature (𝑻𝟎 ) was 

assumed to be placement temperature with a value of 280C.  

3.2. Verification 

The analytical model developed (Eq (36)) is based on the two dimensional unsteady state heat conduction within the mass concrete with 

constant temperature boundary and initial condition was verified using the experimental mass concrete block. A MATLAB based computer 

program was used to evaluate the model. The programe was designed with the capability of iteration which will continue until a temperature 

value of 0.00010C after which the iteration will cease and the temperature aggregated and determined for each time interval. 

Fig. 5 shows the plot of temperature time relationship for observed temperature values from the mass concrete block experiment and that 

predicted using the developed analytical model at early ages of cement hydration. The model exhibited higher temperature values than the 

experimental observed temperatures except for the placement temperature at the initial time which had a lower value of 27.70C than the 

experimental temperature which was 280C. However both graphs show the highest temperature values at 24 hours concrete placement of 

60.710C and 510C for the model and the experiment respectively. Fig. 6 shows the coefficient of determination R2 for the model verification 

with value of 0.912 which gives a correlation coefficient CORR value of 0.95 representing a high correlation of the model. 

 

 
Fig. 5: Temperature Time Relationship for Observed and Model Temperatures. 

 

 
Fig. 6: Coefficient of Determination for Model Verification. 

3.3. Validation 

The model was validated using the temperature data from [10]. The experimental procedure involved the casting of 1.5m x1.5m x 1.5m 

mass concrete cube, using a plywood formwork and polystyrene sheet and sand as insulation. The temperature data obtained from the 

thermocouple positioned at the mid-section (i.e. x = y = 0.75m) of the concrete cube was used to validate the model. The temperature was 

recorded at 0, 12, 18, 24, 48, 72, 96 and 120 hours. The predicted temperature data from the analytical model developed was obtained from 

the evaluation of the model solution in Equation 36 using a MATLAB based program. 

 

 
Fig. 7: Temperature Time Relationship for Model Validation. 
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Fig. 8: Coefficient of Determination for Observed and Predicted Temperatures. 

 

A comparison of the two plots in Fig. 7 shows that the model adequately predicted the temperature variation within the mass concrete cube 

with time. The peak temperatures occur at 24 hrs for the observed data and 48 hrs for the model predicted data. Also the model data was 

generally lower than that of experimental data for all time intervals. These discrepancies are attributable to inaccurate values adopted in 

the model calibration and other environmental conditions that affect the experimental procedures. Fig. 8 shows a coefficient of determina-

tion R2 value of 0.977, giving correlation coefficient CORR value of 0.98. This is a reliable indication that the model predicted data 

adequately correlated with the experimental observed data. 

4. Conclusion 

Ease of use, accuracy and applicability are among the attributes that determine the success of a model. The analytical model developed 

was successfully applied in the prediction of time dependent temperature profile in early age mass concrete. The highest temperature values 

occurred within the core of the mass concrete at 24 hours of concrete placement. When the ambient temperature and the size of the mass 

concrete are known, the model has the capability of predicting the temperature distribution at intervals within the mass concrete. It is 

therefore suitable for use in the assessment and prediction of thermal cracks in mass concrete structures.  
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