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Abstract 

 
Magnetohydrodynamic (MHD) thin film flow of an electrically conducting Jeffrey fluid over a vertically moving belt is investigated 

when a slippage between the surface and the fluid occurs. Exact expression for velocity profile is obtained and is displayed 

graphically to illustrate the effects of interesting flow parameters. Expressions for some important physical quantities such as volume 

flux, average velocity and the belt speed for the lifting of the Jeffrey fluid are also derived.  
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1. Introduction 

The study of thin film flows of non-Newtonian fluids have 

been recognized to be of immense importance for their wide 

applications in engineering industries, for example in metal 

extrusion process, wire and blade coating, dying of papers 

and textiles etc. The interested reader is referred to see [1-9], 

and the references therein. It is also recognized that many 

fluids commonly used in industry differ greatly from the 

Newtonian behavior in their rheology. Therefore, during the 

last few decades, interest in mathematical modeling and 

analysis of flows involving non-Newtonian fluids in various 

geometries has been increased. However, there is no model 

which can lonely predict the behavior of all the non-

Newtonian fluids. Amongst the various non-Newtonian fluid 

models, the Jeffrey model is the simplest one for which one 

can expect the exact analytical solutions. Exact solutions for 

the flows of non-Newtonian fluids in different geometries 

under varying boundary conditions can provide useful means 

of checking how adequately those models mimic real fluid 

behavior and may also highlight some peculiar or unexpected 

particularity of the models. This type of analysis is, in a way, 

to revert back to classical Newtonian fluid mechanics, in 

which one tries to solve the known governing equations and 

learn from the solution. In rheology, due to the unknown 

behavior of real fluids, it has been more customary to assume 

particular kinematics and derive from thereon the relevant 

material functions. 

A survey of the literature indicates that a significant research 

has been conducted for the thin film flows of non-Newtonian 

fluids in different geometries [2-8]. However, very little 

attention has been given to the study of MHD effects on thin 

film flows of non-Newtonian fluids [4-8]. The study of flow  

 

of electrically conducting fluids has occurred in many 

engineering problems, such as MHD generators, MHD 

pumps, plasma studies, nuclear reactors, the boundary layer 

control  in the field of aerodynamics etc. On the other hand, 

in some situations , such as fluid flow past  rough and coated 

surfaces, permeable walls, slotted plates, polymer solutions, 

the traditional no slip condition does not hold valid and 

should be replaced by a partial slip boundary condition [9]. 

Considering these importances, the aim of the present study 

is to investigate the combined effects of magnetic field and 

slip boundary conditions on the thin film flow of a Jeffrey 

fluid on a vertically moving belt. Although the Jeffrey model 

is relatively simpler linear model using time derivatives 

instead of convective derivatives for example the Oldroyd-B 

model does, it represents a different rheological behavior 

from that of the Newtonian fluid. The relevant physical 

problem is first modeled and then solved exactly for the 

velocity. The computed expression is discussed by plotting 

graphs. 

2. Basic equations 

We consider a thin film flow of an incompressible 
magnetohydrodynamic (MHD) Jeffrey fluid on a vertically moving 

belt under the influence of a uniform transverse magnetic field. It is 

assumed that the induced magnetic field is small as compared with 
the applied magnetic field so that the magnetic Reynolds number is 

small [4, 6]. When a fluid moves into a magnetic field, two major 

physical effects arise. 

  (i)  An electric field E  is induced in the flow. We assume 

that there is no excess charge density and therefore E 0 = . 

Neglecting the induced magnetic field implies that 

E 0 =  and thus the induced electric field is negligible. 
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  (ii)  The second effect is dynamical in nature, i.e. a Lorentz 

force ( )J B , where J  is the current density; this force acts 

on the fluid and modifies its motion. This results in the 

transfer of energy from the electromagnetic field to the fluid. 

In the present study, the relativistic effects are neglected and 

the current density J  is given by the Ohm’s law as 

( )J V B=  , where   is the electrical conductivity of the 

fluid. 

The governing equations for the MHD flow of an 

incompressible fluid are 

V 0div = ,                                              (1) 

V
T f J B

D
div

Dt
 = + +  ,                                              (2) 

where V the velocity vector of the fluid , f is the body force 

per unit mass,  is the constant fluid density, 
D

Dt
 denotes 

the material time derivative. The Lorentz force per unit 

volume is given by  

2

0J B VB = −                         (3) 

The Cauchy stress tensor T for an incompressible Jeffrey 

fluid is given by [10, 11] 

T I Sp= − + ,   1

1 2

1

A
S A

1

D

Dt






 
= + 

+  
,                      (4) 

where Ip− is the indeterminate part of the stress, S  is the 

extra stress tensor, 1A is the Revilin-Erickson tensor,  , 1  

and 2  are the material constants for the Jeffrey fluid. It is 

remarkable to mention that for 1 2 0 = = , this model 

reduces to the classical viscous Newtonian fluid. 

3. Problem formulation and solution 

We consider a container having an electrically conducting 

Jeffrey fluid in it. A wide belt passes through this container 

and moves vertically upward with a constant speed 0V . We 

choose x − axis normal to the belt and y − axis along the 

belt which is moving in upward direction. A transverse 

uniform magnetic field is also applied along x − axis at the 

surface of the belt. As the belt moves, it picks up a thin film 

of thickness   and the gravity tries to make the fluid drain 

down the belt. The flow is steady and laminar with uniform 

film thickness and the pressure is assumed to be atmospheric 

pressure. We also assume that the fluid adheres to the surface 

of the belt partially and thus, the motion of the fluid exhibits 

a slip condition. 

The boundary conditions for the problem are: 

0xyT =  at x = ,  ( free surface condition),                    (5) 

0 *

1
( ) wv x V 


= +  at 0x = , (slip condition),                 (6) 

where xyT  is shear stress component of the Jeffrey fluid, w  

is the stress exerted by the fluid on the belt surface, 
* is the 

material slip parameter and 0V  is the constant belt speed [9].  

For this problem, we seek velocity field and the extra stress 

tensor of the form 

 V 0, ( ),0 ,         T T( ).v x x= =                 (7) 

By substituting (7) in (1) and (2)-(4), the continuity equation 

is identically satisfied and the momentum equation (2) 

reduces to  

10 ( )xx

p d
T f

x dx



= − + +


,                 (8) 

2

2 00 ( )xy

p d
T f B v

y dx
 


= − + + −


 ,                (9) 

where 
1f  and 

2f  are the components of the body force in 

the x  and y  directions, respectively. Since the 

y − coordinate and gravitational force are in the upward 

direction and pressure is assumed to be standard atmospheric 

pressure, then the Eq.(9) become 

2

0

1

( ) 0
1

dv
B v x g

dx


 


− − =

+
              (10) 

The boundary conditions (5) and (6) are transformed into 

0
dv

dx
=             at     x = ,               (11) 

( )0 *

1

( )
1

dv
v x V

dx



 
= −

+
    at     0x =                (12) 

We non-dimensionalize the above problem by defining the 

following dimensionless parameters: 

2 2 2
* * 2 0

0 0

, , ,
Bv x g

v x H m
V V

   

  
= = = = ,            (13) 

Thus, the dimensionless form of Eqs.(10)-(12), omitting “ * ” 

notation become 

( ) ( )
2

2

1 12
1 1

d v
H v m

dx
 − + = + ,                                   (14) 

( )1

1
( ) 1

1

dv
v x

dx 
= −

+
 ,      at          0x = ,               (15) 

0
dv

dx
=                              at      1x = .                            (16) 

Here H  is the Hartman number,   is the dimensionless 

slip parameter and m is the dimensionless group 

corresponding to the gravity.   

The solution of the above boundary value problem is given 

by 

( ) ( )1 1 2 1 2
( ) cosh 1 sinh 1

m
v x C H x C H x

H
 = + + + −

,                   (17) 

where the constants are given by 
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( )

2
1

1 2

1 1

1

1 tanh 1

H m
C

H H H

 

  

+ +
=  

+ − + 
,  

( )2 1 1tanh 1C C H= − +                         (18) 

It is worth mentioning that for 
*

1 00,  0,  B = → → we recover the solution for 

Newtonian fluid [1]. By back substitution of the values of the 

dimensionless parameters, we get the solution (17) in 

dimensional form as 

( )

( ) ( ) ( )

*
20 1
0

*

1 1

1 1 1

2

0

1

( )
1 tanh 1

cosh 1 tanh 1 sinh 1

g
V

B
v x

M M

M x M M x

g

B

  


    

   





 
+ + 

 
=

+ − +

 + − + +
 

−

                         (19) 

4. Flow rate and average film velocity 

The flow rate per unit width is given by the formula 

0

( )Q v x dx



=  ,                    (20) 

By making use of (19) in the above expression, we obtain 

( )

( )( )

*
20 1 1
0

2
*

0
1 1

1 tanh 1

1 tanh 1

g
V M

B g
Q

BM M M

    
  

    

 
+ + + 

 
= −

+ − +

,                                            (21) 

The average film velocity V  is then given by 

Q
V


= , 

which, in view of (21),  yields 

( )

( )( )

*
20 1 1
0

2
*

0
1 1

1 tanh 1

1 tanh 1

g
V M

B g
V

BM M M

    
 

     

 
+ + + 

 
= −

+ − +

                                                   (22) 

From (22), it can be observed that there will be a net upward 

flow of liquid if 0V   which implies that 

( )
( )

*
2

1 1
0

0 2 *

0 1

1 tanh 1
1

tanh 1

MBg
V

B M

   

   

  + +
   −
   +
   

(23) 

The last result can provide a reasonable estimate for the belt 

speed to lift the Jeffrey fluid on a vertically moving belt. As a 

special case when
*

1 00,  0,  B = → → , the inequality 

(23) takes the form 

2

0

1

3

g
V






 
  

 
, 

which shows that a large belt speed is required to lift a fluid 

of small viscosity [1]. 

5. Discussions and conclusion 

Few graphs are drawn using Eq.(17) to show the effects of 

material parameters 
1,  ,  H  and m on the velocity profile. 

Fig.1 is plotted to see the variations of 
1  on the velocity 

keeping ,  H and m fixed. It is noted that 
1  has a 

decreasing effect on the velocity showing the shear 

thickening behavior of the fluid. The Fig.2 depicts that 

velocity decreases with an increase of  . The variations of 

H  and m on the velocity profile are plotted in Figs. 3 and 4. 

It is observed that the velocity increases near the belt but after 

0.05x = it decreases when H is increased. This confirms 

the idea that in conducting fluids, magnetic field brings 

rigidity in the fluid. It is noted from the Fig.4 that the 

behavior of m on the velocity is similar to that of H .  

From these graphs, we can draw a conclusion that that the 

motion of Jeffrey fluid on a vertically moving belt is strongly 

dependent on the slip parameter  . It is also concluded that 

the applied magnetic field and the gravity is found to have a 

similar effect on the velocity profile. 

 
Fig. 1: Effects of 

1  on velocity profile when 10, 0.5, 2H m = = =  
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Fig. 2: Effects of   on velocity profile when   
1 1.0, 0.5, 2H m = = =  

 
Fig. 3: Effects of H  on velocity profile when 

110, 1.0, 2m = = =  

 

 

 

 
Fig. 4: Effects of m  on velocity profile when   

1 1.0, 0.5, 10H = = =  
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