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Abstract 
 

Finite element analysis is introduced in this work making use of penalty functions for obtaining optimum geometry of Linear Induction 

Motor (LIM) such as air gap dimension, rotor plate thickness, rotor iron back iron, where optimum values are computed depending on 

first order penalty function. This technique illustrates the advantage of using numerical analysis where most of linear induction motor 

optimization previews researches are performed using analytical solution which deal with optimizing of power factor, efficiency, losses, 

thrust and the geometry does not take into consideration. The best computed values are defined depending on tolerance values where an 

iterative numerical solution is performed to achieve the excellent values of motor model geometry dimensions. 
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1. Introduction 

Linear motors are preferred compared to normal rotary motors for 

high speed propulsion, due to the fact that rotary motor propulsion 

depends on friction, and is limited by the maximum achievable 

friction.  However, in linear motor, the thrust is obtained from the 

traveling magnetic field, and thus, there is no theoretical limit for 

maximum thrust achievable. Also, linear motor, used for low 

speed application where gearing mechanisms, are preferably 

avoided [1]. 

LIM applications are varied starting from simple sliding doors to 

full control of vehicles whose weight can be many tons as there is 

no mechanical limitation. In addition, higher acceleration and 

higher speed of the moving part allow to use LIM in different 

industrial applications. 

In recent years, the single sided LIM has been the most suitable 

choice for electric vehicles for both wheel and touch less type [2]. 

The reasons for this choice are due to its simplicity in manufactur-

ing, capable to apply direct forces, moving and braking, independ-

ency of adhesiveness, movability over steep and turn of road, low 

cost of road maintenance,  and high reliability . 

LIM is very rapid in acceleration and deceleration. In metal indus-

try, LIM is used as an extrusion puller using its characteristic to 

exert a low – speed with high- thrust pulls on a gripper head. In 

catapult launch system, the LIM is used for roller coasters, where 

cars can be accelerated to high speed in very short time, also this 

type of machines can produce thrust from just a few Newton's to 

many kilo Newton’s with input from few milliamp at low voltage 

up to handered amperes at the supply voltage. Also sizes vary 

from square centimeters to many square meters.   

Most of the previous papers that take LIM optimization are take 

into account performances optimization only such as thrust, power 

factor, efficiency,  while the dimensions of model which have 

economical effects  on LIM model  building is not   considered.  

Isfahani, [3] used 2-D FEM  using incomplete cholesky conjugate 

gradient solver , also 3-D FEM is employed to investigate the 

effect of overhang and edge effect. The design optimization is 

performed depending on analytical solution which is based on 

magnetic equivalent circuit used to compute power factor and 

efficiency. The criterion of optimum design depends on power 

factor and efficiency multiplying. 

 

2. Geometry optimization design 
 

Design optimization is a technique that seeks to optimize geome-

try of LIM designed model that meets most of motor requirements  

but with minimum expense of certain factors like weight, surface 

area, volume of model parts. Practically any feature of model de-

sign can be optimized,   stator height, length, rotor plate thickness 

…etc. This optimum design is the best design in some predefined 

sense such as maximum peak force for magnetic motor design. In 

many other situations, minimization of a single function may not 

be the only goal, and attention must be directed to the satisfaction 

of predefined constrains placed on the design.  

Working towards an optimum design needs to define three types 

of variables that characterize the design process [4]:  

 1- Design variables (DVs) are independent quantities that are 

varied in order to achieve the optimum design. Higher and lower 

limits are specified to provide constraints on the design variables. 

These restrictions identify the range of deviation of DVs. In the 

present model, the DVs are slots width, depth, teeth width, yoke 

depth, air gap length, rotor plate thickness, back iron depth, and 

any further effective factors. All the above variables are restricted 

to positive values. 

2- State variables (SVs) are quantities that limit the design. They 

are known as dependent variables and function of design variables. 

Any model parameters can be used as SVs such as rotor force, 

current density  or any other effective factors with maximum and 

minimum value or it may be single sided that means with only one 

limit. 

3- Objective functions is the dependent variable that the optimiza-

tion program attempts to minimize it. It should be a function of the 

DVs, that is varying the values of DVs, should result in modifying 

the objective function. In the optimization procedure, only one 

objective function is defined. 
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The vector of design variables is indicated by [4]: 

 

     nXXXXX ...321=                     (1)                                       

 

DVs are subjected to n constraints with upper and lower limits, 

that is,  

 

  iii XXX   ( )ni ,...,3,2,1=            (2)                                                   

 

Where iX  is lower limits, iX  upper limits and n is number of 

design variables. 

The design variable constraints are often referred to as side con-

straints and define what is commonly called feasible design space. 

Now, minimize  

 

( )Xff =                                            (3)                                                                                

 

Subject to 

 

( )
ii gXg       ( )1,...,3,2,1 mi =              (4)                                                 

 

( )Xhh ii        ( )2,....3,2,1 mi =              (5)                                             

 

( ) iii wXww   ( )3...,3,2,1 mi =                        (6)                                                

 

Where  f  is objective function,  iii whg ,,   are state variables 

containing the design with under bar  and over bar  representing 

lower and upper bounds respectively, 321 ,, mmm  are number 

of state variables constraints with various upper and lower limit 

values. 

 

2.1 Feasible Design Sets 
 

Design arrangements that satisfy all constrains are referred to as 

feasible designs while design configurations with one or more 

violations are termed infeasible. For defining feasible design space, 

a tolerance is added to each state variable limit.  

If 
*X   is a given design set defined as: 
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The design is defined  feasible only if: 

 

  ( ) iiii gXgg += **
           ( )1,...,3,2,1 mi =         (8)                                  

 

( )i

iiii Xhhh =− *                      ( )2,....3,2,1 mi =       (9) 

 

( ) iiiiii wXwww  +=− **
         ( )3...,3,2,1 mi =  (10) 

 

Where iii and ,,  are tolerances and: 

 

iii XXX  *
   ( )ni ...,3,2,1=               (11)                         

 

Since no tolerances are added to design variable constraints. 

 

2.2 Best Design Set 
 

The best design set is determined depending on the objective func-

tion under one of the following conditions: 

1- If one or more feasible sets exist, the best design set is the fea-

sible one with the lowest objective function value. 

2- If all design sets are infeasible, the best design set is the one 

nearest to being feasible. 

 

2.3 First Order Optimization Method 
 

The methodof optimization that is used in the present work for 

LIM model geometry optimization is first order optimization 

method. Its choice of is depends on the unconstrained objective 

function,  used for LIM optimization. This method of optimization 

computes and makes use of derivative information. The constrains 

of design parameters transformed into an unconstrained one using 

penalty functions. Derivatives are formed for the objective func-

tion and the state variable penalty functions, leading to a search 

direction in design space. A variety of steepest descent and conju-

gate direction  searches are performed during each iteration until 

convergence is reached. In each iteration several analysis loops are 

performed in order to optimize the design variables of the ana-

lyzed model. 

    The unconstrained version of the problem outlined previously is 

formulated as shown [4]: 
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where U  is dimensionless unconstrained function, ,,, hgx PPP  

and wP  are penalties applied to the constrained design and state 

variables. of  is reference objective function value,  selected from 

the current group of design sets. 

Constraint fulfillment is controlled by a response surface parame-

ter u . The penalty functions xP  are external functions and ap-

plied to the design variables while the extended interior penalty 

functions ,, hg PP  and wP  represent the state variable con-

straints. The penalty function for equation 2.70 can be written as: 
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Where   is  integer and this function be very large when the 

constraint is violated and very small when it is not. The functions 

are used in order to maintain penalties at similar form. 

As search directions are devised, a certain computational ad-

vantage can be gained if the function U  is written in the form: 

 

( ) ( ) ( )uXUXUuXU pf ,, +=           (14)                                                            

 

Where 
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First order optimization method is solved by using iterations solu-

tion. For each iteration, a search direction vector ( )id  is devised 

and at the next iteration obtained from : 
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( ) ( )i

j

ii dsXX +=+1
                                (17)                                                                          

 

The range of line search parameter is  given by: 

 

*max

100
0 ji s

S
s                                        (18)                                                              

 

Where 
*

js  is the largest possible step size for the line search of 

current iteration and maxS  is maximum line search step size ( in 

percent). 

At the first iteration, the search direction is assumed to be negative 

of the gradient of the unconstrained objective function: 

 
( ) ( )( ) ( ) ( )0000 , pf dduXUd +=−=                  (19) 

in which 1=u  and 

 
( ) ( )( )00 XUd ff −=                                 (20)                                                                        

 
( ) ( )( )00 XUd Pp −=                                 (21)                                                                            

 

For subsequent iterations,   conjugate directions are formed ac-

cording to recursion formula: 
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 When all design variable constrains are satisfied ( ) 0=ix XP , 

that means u can be factored out of pU  and can be written as: 

 
( )( ) ( )( )i
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For suitable correction, u  can be changed from iteration to itera-

tion without destroying the conjugate nature of equation 18. By 

adjusting  u , the constraints will be pushed to their limit value 

and convergence is achieved. 

     The  algorithm is infrequently  restarted by setting 01 =−ir , 

forcing a steepest decent iteration. Restarting is employed when-

ever ill- condition is detected, convergence is nearly achieved. So 

far, it has been assumed that the gradient vector is available. The 

gradient vector is computed using an approximation as follows: 
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Where e  is vector with  1  in its ith   component and 0  for all 

other components. 
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And D is forward difference step size (in percent). 

first order iterations continue until convergence of solution is 

achieved  or termination occurred ( infeasible design set). The 

criteria  of solution convergence is depend on objective function 

tolerance. 

         

3. Geometry Optimization 

 
3.1. Implementation 

 
The optimization program that has been used for geometry opti-

mization of LIM analyzed model is provided in ANSYS software. 

This program uses a parametric design language. Different meth-

ods of optimization are provided in this program to perform model 

geometry optimization. In the present work, the first order method 

is used because its   perfect for unconstrained objective function. 

In order to make use of this program, the following must be exe-

cuted to perform the geometry optimization:  

1- Create analysis file to be used during looping through analysis 

cycle. This file represents a complete analysis sequence including 

building the model parametrically in terms of initial values of DVs 

representing starting of design and obtains the solution. Recover 

results data and assign them to parameters that represent DVs and 

SVs and objective function. 

2- Establish model parameters in the program database as  first 

design set. 

3- Define optimization variables DVs, SVs, and objective function. 

Minimum and maximum constraints are specified for DVs and 

SVs, while no constrains are needed for objective function. Every 

variable has a tolerance value related to it.  

4- Choose optimization method where each one of the analyzing 

methods has certain looping controls associated with it, such as 

number of iterations.  

6- Initiate optimization analysis after all appropriate controls have 

been specified. At the end of each iteration, a check for conver-

gence is made. The problem is said to converge if the current, 

previous, or best design is feasible.  

7- Review design sets after optimization computation is completed. 

The  flow chart for optimization program is  shown in  Appendix 

[A] . 

 

4. Results 

 
The geometry optimization program starts  first defining the de-

sign variables, which represent the model geometry and each de-

sign variable value is defined within lower and upper limits with 

tolerance value which  is defined by          [0.01* (maximum val-

ue-minimum value)]. The design variables used for geometry 

optimization are: 

1- Rotor plate thickness. 

2- Rotor back iron depth. 

3- Stator yoke. 

4- Air gap length.  

Rotor force is chosen as state variable with lower and upper value.      

The tolerance is defined in similar way as that used for design 

variable. At the end of each iteration, the force is computed and 

compared with the set value. If the tolerance is within the appro-

priate limit, the iteration solution is stopped.  

The objective function of the optimization program is total model 

volume with tolerance value [0.01*present value]. Both state vari-

ables and objective function tolerance define the convergence to a 

minimum objective function through varying design variable, 

while the rotor force remains within a specified value higher than 

the lower value. 

The effect of each model geometry parameter is analyzed sepa-

rately through optimization program to explain the major effect of 

this parameter on the magnetic vector potential value and distribu-

tion in the model. Also flux density, current density and any other 

field quantity can be  analyzed. 

Starting from rotor plate thickness, the variation of plate thickness 

with force is depicted  in figure 1, where the limit of variation is 

taken from 1.5 to 4 mm , within a tolerance of 0.0025 . The force 

increases from 807 to 937 N while the thickness reduces to the  

optimized value of 2.98  mm. The increase of zA  is shown in 

figure 2. 
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Fig 1. Variation of force with rotor plate thickness 

 

 
Fig 2: Variation of magnetic vector potential With rotor plate thickness 

 

    As a result of zA  increasing, the flux density is increased in 

the motor domain where figure 3 exhibits this increase. 

 
Fig 3: Variation of flux density with rotor plate thickness 

 

     The rotor back iron cooperate considerable effect for completing 

the stator magnetic circuit. For long rotor LIM, the depth of back 

iron is effective for this type of application due to the quantity of 

iron that is used for model construction. The computation of back 

iron depth in the analytical computation depends on the assumed 

flux density in rotor back iron and flux density shape function, 

which depends on the magnetic saturation coefficient of teeth and 

flux density in the air gap, where all of these factor are assumed 

values and do not give the appropriate depth value. By using finite 

element modeling, the back iron depth value can be optimized to 

the optimum value, which can be used for LIM application. The 

variation of back iron is taken from 14.1 to 6 mm  within tolerance 

value of  0.008 . The optimized value is 6 mm and the reduction in 

depth is  42.5%  of the original value. Figure 4 depicts the varia-

tion of back iron depth with the total motor volume. Also this 

variation has no effect on rotor force where this force value re-

mains approximately constant. 

 

 
Fig 4: Effect of back iron reduction on motor volume 

 

     The flux density distribution in the model after back iron re-

duction is shown in figure 5, where the concentration in back iron 

is clearly shown and the maximum value of flux density does not 

change. Also the effect of using solid back iron in state of lamina-

tion is also studied. In this case, the optimized back iron value is 

5.31 mm. As mentioned earlier, the rotor force is reduced when 

using solid back iron. This reduction is due to the eddy current 

induced in the back iron which causes also  further consumption 

of power due to power losses in back iron.   

Fig 5.  Flux density distribution for optimized back iron 
 

Stator yoke depth is taken into optimization computation where 

the limit of its value is from 5 to 14 mm within  a tolerance value 

0.09 . The  optimized  value  is 5.82 mm with constant  rotor  

force. The variation of stator yoke depth and model volume is 

shown in figure 6, also, distribution and value of magnetic vector 

potential in the motor domain are depicted in figure 7, where its 

concentration in stator yoke after optimization computation is 

performed with maximum value of 0.009818 in the positive direc-

tion and -0.010569 in the negative direction. These values are 

slightly less than its value before optimization computation. The 

reduction of stator yoke has no significant effect on rotor force, 

where the reduction in force value is about 0.2% of force value 

before optimization. 

 

 
Fig 6.  Motor volume reduction with stator yoke depth 
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Fig 7: Variation of magnetic vector potential with stator yoke 

 

Air gap length of LIM is in general case more than 2 mm due to 

the topology of this type of motor [3,5]. In the proposed model, 

the air gap is taken to be 2 mm and the limit of air gap for optimi-

zation purpose is taken from 0.5 to 3 mm with a tolerance of 0.025. 

The optimum air gap is 1.84 mm with reduction in rotor force  

about 5% from the designed force. The variation of air gap with 

rotor force  is shown in figure 8, where the force increases slightly 

with increasing air gap. 

 

 
Fig 8:  Air gap variation with rotor force 

 

 Table B  shows the results of the proposed model optimization 

using first order optimization method, Appendix [B]. 

 

5. Conclusions 

 
By making use of finite element analysis, the geometry dimension 

of main parts of LIM model are optimized using first order opti-

mization method. The geometries restricted for only rotor plate 

thickness, back iron depth, stator yoke height, and air gap dimen-

sion. The optimized values is defined by making use of feasible 

set is found to be less than the design value with   increasing  mo-

tor force. Both of back iron and stator yoke depth are optimized 

with no effect on motor force. The air gap dimension is optimized 

to a certain value with small reduction in motor force. The reduc-

tion of rotor plate thickness is so effective on rotor construction 

where this reduction is an important point in high-speed LIM ap-

plication, because it has great effects in the costs of long rotor rail 

applications. This type of optimization is performed by using nu-

merical analysis where finite element analysis is on of the best 

methods that give the optimum model dimensions, in addition to 

the magnetic field distribution after geometry optimization.    
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