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Abstract 
 

Currently, one of the major challenges for automotive industries is to reduce the weight and energy consumption of vehicles by using 

stronger and advanced low-cost materials. Conventional solutions using quenched and tempered steels not always fulfill the desired tech-

nical, economic and environmental requirements. Modern continuous cooling bainitic steels can provide a good combination of mechani-

cal strength and toughness, being considered an excellent alternative to replace quenched and tempered martensitic steels in the manufac-

ture of forged components. To meet the desired industry standards in highly loaded components, properties like surface hardness, fatigue 

strength, wear and friction resistance of these steels can be further improved by subsequent mechanical and thermochemical treatments. 

Therefore, this paper presents the state of the art in the use of continuous cooling bainitic steels for forging and low energy consumption 

surface improvement techniques such as: deep rolling and plasma nitriding. Finally, case studies are presented, and conclusions drawn on 

the current trends and reported practices. Surface modification techniques must be carefully controlled and combined with the material of 

interest to ensure that undesirable characteristics are not introduced during the manufacturing of the components. The development of 

processes based on the use of forged continuous cooling bainitic steels can be an excellent alternative to replace the conventional quench-

ing and tempering treatment with considerable reduction of the energy consumption. 
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1. Introduction 

The industrial sector is responsible for over 50% of the energy demand worldwide [1]. Given this scenario, the savings obtained in ener-

gy efficient actions in the industrial sector represent benefits for whole society and the environment. In the metal forming industry, ac-

tions such as heating and reheating of material as well as heat treatment furnaces are among the major responsible for high consumption 

[2]. In hot and warm forging, the parts need to be heated to the forging temperatures in order to reduce the yield stress and increase the 

deformability. After forging this heat is generally lost to the environment. In the conventional processing route, the forgings need to be 

reheated for the indispensable tempering of the martensitic microstructure. Processes such as direct quenching emerged to take advantage 

of this heat and reduce energy waste [2], [3]. 

The use of new bainitic steels for forging can be an alternative to make the processes of manufacture of hot forged parts more flexible. 

Traditional process of quenching and tempering could be replaced by controlled or continuous cooling, contributing to the reduction of 

energy consumption in the manufacturing processes. The controlled cooling of the bainitic steels immediately after the hot forging can 

produce an adequate cooling rate for the development of the bainitic microstructure and consequently provide a good compromise be-

tween hardness, toughness and fatigue strength [3–5]. 

In order to obtain a steel with a microstructure that presents adequate properties (similar or better than quenched and tempered steels), 

several research groups [6–10] have focused their studies on the development of refined bainitic microstructure. In some studies [9], [11] 

the development of a nanostructured bainitic microstructure, also called Super-Bainite, has been reported. In the Nanobain project, with 

support from the European Union, a bainitic microstructure free of carbides and containing retained austenite has been developed. The 

metallic materials processing seeking for energy saving and near net shape is being called Green Manufacturing. This paradigm topic has 

been explored in several research projects, as in the case of the AiF–DFG joint program EcoForge [12]. The developed innovative pro-

cess chain was designed to obtain a ductile bainite microstructure by continuous cooling directly after the forging. Fig. 1 summarizes 

recent developments in forging steels according Charpy impact energy vs. Yield strength diagram [4], [13]. 

Because these materials have a good combination of mechanical strength and toughness, they are considered an excellent alternative for 

quenched and tempered martensitic steels [3], [5], [14–18]. The possibility of associating thermochemical treatments with good structural 

quality of bainitic steels has aroused interest of several researchers [16], [19], [20]. According to Lembke et al. [16], the surface hardness 

of bainitic steels after nitriding can be compared with that of quenched and tempered steels, making them attractive for many automotive 

components that are subject to high dynamic loads, friction wear and corrosion [21–23]. 
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Traditionally, the carburizing process is widely used to increase surface hardness and wear strength of mechanical components [24–27], 

however, due to the process characteristics (high temperature, fast cooling, phase change, etc.), this thermochemical treatment causes, in 

general, strong deformations and embrittlement of these materials [16], [26], [28]. 

 

 
Fig. 1: Main Steel Types Used in the Manufacturing of Parts for the Automotive Industry. Reproduced from [4], [13]. 

 

Surface treatments such as plasma nitriding can be carried in lower treatment temperatures [20], [29–32], therefore being more suitable 

for these steels because it preserves the bainitic microstructure and does not take effect on the core hardness. In addition, this process 

maintains the congruence with the main philosophy of the energy consumption reduction trend, since this process does not require subse-

quent stages of quenching and tempering to produce the hardening of the nitrided layer [32–34]. Since the two surface treatment process-

es have similar objectives, there is potential for plasma nitriding to be used to replace carburizing. However, to make this substitution, 

several aspects need to be considered, such as: generated deformations, surface hardness, depth of hardened layer and manufacturing 

costs [24], [26], [32], [35]. 

Another alternative recently developed to improve the surface properties of the new continuous cooling bainitic steels, without harming 

the microstructure of these materials, is the deep rolling process [36–40]. In this context, this paper aims to provide an overview of the 

new continuous cooling bainitic steels for automotive applications and some surface treatment techniques to improve their mechanical 

properties, keeping low energy consumption. 

2. New bainitic steels for automotive industry 

Newly developed steels for automotive production must have adequate mechanical properties for them to be used properly in vehicle 

structure and components [41–44]. As the mechanical properties are primarily a function of the steel’s microstructure, which is heavily 

dependent on the processing conditions such as temperature, strain, strain rate, deformation mode and cooling method used [45], [46], 

important considerations about these effects will be presented in continuous cooling bainitic steels.  

2.1. Effect of thermo mechanical processing on the material properties 

Techniques of steel manufacturing involving addition of microalloying elements and strict controls of heating, rolling and cooling can 

produce microstructures with high mechanical properties, which within certain limits of strength and thickness can be achieved without 

the need of additional heat treatment after rolling. In general, this procedure is called thermomechanical processing (TMP), through it 

several categories of steels are obtained [47], [48]. TMP is a metallurgical process that integrates work hardening and heat treatment into 

a single process to control the final microstructure of the materials and consequently improve their mechanical properties during the hot 

forming process [49], [50].  

The development of TMP steels has been used to promote microstructural refinement, strengthening and hardening of manufactured steel 

parts [45], [47], [48], [51]. The microstructural refinement is promoted by the combination of controlled rolling with accelerated cooling 

(ACC) [52]. (Fig. 2) provides an overview of the microstructure evolution in the manufacture of TMP steels with different cooling condi-

tions. 

 

 
Fig. 2: Schematic of Microstructure Evolution in TMP Steels (Tnr: Nonrecrystallization Temperature; Ar3: Transformation Start Temperature; Bs: Bainite 

Start Temperature; Ms: Martensite Start Temperature. Reproduced From [52]. 
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The combined effect of the addition of alloying elements to thermomechanical processing allows the exploration of different hardening 

mechanisms, such as precipitation hardening, grain refinement and phase transformation [45], [53], [54]. The new generation of bainitic 

steels formed during continuous cooling allows the formation of different bainitic morphologies (granular bainite, upper bainite, lower 

bainite, etc.) and may contain other phases such as retained austenite and ferrite. Unlike quenched and tempered steels, which obtain their 

excellent properties after processing steps and subsequent heat treatment, continuous cooling bainitic-martensitic steels already have high 

levels of strength and toughness after hot rolling or forging without the need for further heat treatment, presenting the potential to shorten 

its manufacturing cycle, reducing energy consumption and production costs [17], [55], [56]. 

When it is needed to follow other processing steps (such as machining operations), high strength values and toughness can be detrimental 

to productivity and cause additional costs during manufacturing. To achieve maximum benefit out of these novel steels they must be 

designed in such a way that working proprieties and material characteristics are properly balanced. Over the last decade, new low carbon 

(C-Mn-B) and medium carbon (C-Si-Mn-Cr type) bainitic-martensitic steels have been developed, taking into account possible strategies 

of air cooling in a conventional hot rolling mill for long products. Steel compositions with high manganese and boron additions in com-

bination with titanium can control the transformation of the austenite-bainite phase and ensures the desired steel microstructure which in 

the reported case is a cementite-free granular bainite [16], [55]. 

Refined microstructures with high strength can be obtained by lowering the phase transformation temperature, contributing to the for-

mation of bainitic structures [4], [18]. These steels are designed and manufactured according to conventional thermomechanical process-

es, and achieve significant combinations of strength and toughness, comparable to quenched and tempered conventional martensitic 

steels [57], [58]. However, the specific requirements of the automotive industry need to be carefully considered to optimize the chemical 

composition and processing route [5], [59]. 

2.2. Influence of alloying elements on microstructure and mechanical properties 

The alloying elements can hinder the microstructural evolution control in the processing of high strength steels, due to the final micro-

structure of these steels that is usually a composite with different combinations of ferrite, martensite, bainite, austenite and precipitates. 

As a result, it may not be suitable to simply apply the existing thermomechanical processing routes, as with the continued growth of the 

production of these materials, the strength and quality requirements for the products are becoming increasingly rigid [60]. Therefore, all 

steel manufacturing steps need to be carefully controlled, and different processing strategies must be adopted to fulfill the specified quali-

ty [50].  

Bainite microstructure steels presents excellent deformation possibilities for forged components. The variety of different bainitic mor-

phologies requires a heat treatment aligned after forging to achieve maximum performance [61]. Due to the alloy and heat treatment con-

cept, bainite is composed of different microstructural components, such as the primary ferritic phase and the secondary phase, which 

consists of carbides (martensite and/or austenite). Different combinations of mechanical properties can be adjusted in these steels, de-

pending on the arrangement of the primary and secondary phases [13], [62], [63]. 

In the Nanobain project, a carbide-free bainitic microstructure, containing retained austenite was developed [64]. Carbide-free bainitic 

microstructures have considerable potential for automotive application, since they have yield strength over than 1600 MPa, presenting 

good ductility [8], [57], [61], [65], [66]. Thus, (Fig. 3) shows the comparison between the yield strength and total elongation of the usual 

commercial steels with the new bainitic steels, which have carbon levels between 0.2 wt.% and 0.3 wt.%. 

 

 
Fig. 3: Yield Strength and Total Elongation of Advanced Bainitic Steels In Comparison with Other Commercial Steel Grades. Reproduced from [57]. 

 

General design principles of bainitic steels are found in [7–10], [67–71]. It is well established that the mechanical strength of bainite is 

controlled mainly by microstructural refinement. This means that the final bainitic transformation temperature should be sufficiently low, 

which can be achieved with increasing amounts of C, Si, Mn, Cr and Mo. Whereas for steels with content below 0.2 wt.% carbon, the 

granular bainite is predominantly formed [72]. A great effort was done to characterize the specific properties of different types of bainite 

and a description of the different morphologies are found in [14], [57], [61], [73]. Although bainitic forging steels exhibit high strength 

limit values and excellent fatigue strength, these materials must meet special requirements imposed by the manufacturing conditions, 

such as good formability, weldability and machinability [74], [75]. 

There have been studies on microstructure and properties relationships [8], [76], [77], crystallography [78], [79], wear behavior [80], 

[81], and thermal tempering of bainitic steels but it has little to no reported cases aiming to enhance its surface properties [16], [19], [20], 

[82]. Therefore, there will be presented some surface improvement techniques (with low energy consumption) currently used to improve 

the mechanical strength of bainitic steels. 

3. Surface processing to improve the fatigue strength of steels 

Through the development of new steels and processing techniques, there have been corresponding advances in the fatigue performance of 

automotive parts. These advances have promoted life increase of components subjected to high dynamic loads, friction wear and corro-

sion [21–23], [39], [40]. In this sense, new processing approaches to improve fatigue performance are reviewed with emphasis on low 

energy consumption surface treatments such as deep rolling and plasma nitriding. Selected examples are presented to illustrate the im-

portance of the properties of the base steel in the final performance of modified materials on the surface. 
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3.1. Deep rolling 

Deep rolling is a process that uses mechanical work by plastic deformation to increase hardness and reduce surface roughness by intro-

ducing compressive residual stresses into components [36–38], [83–86]. In this process, a mechanically or hydraulically controlled 

sphere or roller scans the parts, applying a specific pressure on the surface of the component, Fig. 4, inducing plastic deformation on the 

surface and subsurface regions, by approximately 1–2 mm [87], [88]. 

 

 
Fig. 4: Working Principles of Deep Rolling Process. Reproduced from [89]. 

 

Deep rolling can induce residual tensile and compressive stresses. This residual compression stresses result in parts with higher fatigue 

strength precisely because they inhibit the propagation of surface cracks. Due to these factors, deep rolling has been a desired alternative 

to increase residual stresses of compression on parts after the machining process [36–40], [84–86], [90]. 

Studies developed by Delgado et al. [88] show the influence of some parameters in the deep rolling process on the residual stresses. The 

main parameters that interfere with the process are speed, applied pressure, number of passes, ball and/or roller diameters and tool feed 

rate. The speed used depends on the sensitivity of the material to deformation and has a direct impact on hardness and roughness of the 

parts subjected to deep rolling [86]. Delgado et al. [88] state that the pressure applied in the deep rolling process should be sufficient to 

cause plastic deformation, and Grabe et al. [86] explain that increased pressure contributes to the reduction of surface roughness. Trauth 

et al. [91] observed that when the pressure exceeds a certain value, the material becomes overloaded and, according to Scheil et al. [92] 

starts to degrade. 

In general, studies by Perenda et al. [93] confirm that the roughness tends to decrease after the deep rolling process. Prabhu et al. [94] 

analyzed the behavior of roughness values Ra varying some process parameters, among them the pressure and the number of passes. In 

their work, it was contacted that the increase in the number of passes reduces the value of Ra, while the increase of the pressure does not 

exert significant influence. Abrão et al. [37] showed that the number of passes has no significant influence on the residual stresses in-

duced by deep rolling. On the other hand, Abrão et al. [38] conclude that the increase in the number of passes provides an increase in the 

hardness in the subsurface, due to the plastic deformation generated by the Hertzian contact pressure. 

Results presented by Matlock et al. [39] and Richards et al. [40] show the importance of microstructure and base material properties in 

the subsequent response to surface modification by deep rolling. Three medium carbon bar steels with microstructures characteristic for 

forging steels of interest for crankshaft and other automotive applications, were investigated: a quenched and tempered steel with a 

heavily tempered martensitic microstructure; a non-traditional bainitic direct-cooled steel that contains 14.5 pct. retained austenite; and a 

hot rolled ferritic/pearlitic low alloy steel. A comparison of the deep rolled S-N data and the baseline data of bainitic direct-cooled steel 

NTB are shown in (Fig. 5). All three materials exhibited a significant increase (> 50%) in the endurance limit as a result of the deep roll-

ing process. 

 

 
Fig. 5: A Comparison of Deep Rolling and Baseline Bending Fatigue Behavior for the Bainitic Direct-Cooled NTB. Reproduced from [39], [40]. 

 

For Matlock et al. [39] and Richards et al. [40] the response of the deep rolling will depend on the deformation behavior of the substrate. 

In this context, residual stresses and hardening may decrease over the life of the component, either by the effect of temperature or fatigue 

stresses and/or a combination of both [95–98]. In fact, the relationship between the properties of the materials as well as the parameters 

of deep rolling have not yet been fully explored and understood. This may be the reason why inconsistent results are often observed, 

especially with respect to the influence of the rolling parameters on the hardness distribution and surface finish [36], [38]. 
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3.2. Plasma nitriding 

Plasma nitriding is a diffusional process where the surface modification of components is carried out through the addition of nitrogen to 

improve the wear resistance and increase its lifespan, generating modified surface layers without dimensional changes of the final prod-

uct [99]. There are two main mechanisms involved in surface hardening due to nitrogen diffusion: solid solution hardening and precipita-

tion hardening. Since the nitrogen atoms are smaller than the ferritic matrix atoms, then the interstitial solid solution causes an increase in 

hardness. This increase in hardness is very small when compared to precipitation hardening. After the nitrogen saturation occurs in the 

matrix, it interacts with nitriding forming elements, such as iron or alloying elements, developing high hardness compounds. In commer-

cial applications, the typical modified surface zone is up to 200–300 μm deep, rarely exceeding 600 μm [100]. 

During the plasma nitriding process a fine layer of compounds formed by iron nitrides ε(Fe2-3N) and/or γ’(Fe4N) is produced on the sur-

face of the samples, also a relatively thick diffusion zone just below the compound layer is formed [31], [33], [101], (Fig. 6). The chemi-

cal composition of the steel, the previous structure and the hardness of the core are extremely critical factors and influence the formation 

of the nitrided layers. Depending on the composition of the gas mixture, there may or may not be the formation of the compound layer 

[102], [103]. 

 
Fig. 6: Schematic Illustration of the Nitrided Zone of an Iron-Based Workpiece. The Nitrided Zone Can Be Subdivided Into the Compound Layer and 
Diffusion Zone. Reproduced from [101]. 

 

Both the compound layer and the diffusion zone depend on the process parameters (time, temperature, nitriding potential) and the diffu-

sivity of the nitrogen, the latter being strongly influenced by the grain structure and composition of the materials [104–107]. The com-

pound layer produced by the plasma nitriding process is responsible to improve the tribological and anticorrosive properties, while the 

diffusion zone determines the mechanical properties through the hardness and depth of the layer [108], [109]. For Podgornik et al. [31], 

the degree of improvement varies with the structure of the material, and with the distribution and residual stress levels. Therefore, for 

optimization of surface treatment, knowledge about the distribution and levels of residual stresses is essential. 

The hardness of the compound layer is not affected by the carbide-forming elements (Al, Cr, Mo, Ti, V), since it is formed by nitrides of 

iron ε(Fe2-3N) and/or γ’(Fe4N) [33], [103]. The gamma phase γ' (Fe4N) usually formed with a gas mixture containing 15-30 wt.% nitro-

gen, has lower hardness and lower wear resistance, however, has a higher toughness and is recommended for applications in parts subject 

to high impact loads. The epsilon phase ε(Fe2-3N) developed with mixtures between 60-70 wt.% nitrogen, presents higher hardness and is 

better for applications in which good wear resistance and fatigue strength are desired, but does not have a good response to the impact 

[33]. 

It is already known that the aggregate properties of nitrided components are determined by both the core strength, structural characteris-

tics of the compound layer and the diffusion zone [110]. Therefore, IWT researchers from Bremen systematically evaluated the behavior 

of bainitic steels 7MnB8 and 18MnCrSiMoS64 in the nitriding processes in comparison to conventional (ferritic-perlitic) steels 44SMn28 

and 16MnCrS5Pb. Regular and compact layers of approximately 8 μm in thickness were obtained after nitriding of the selected steel 

grades [16]. 

In the process of plasma nitriding, it is possible to control the formation of the diffused layer, developing good hardness and toughness 

(even without formation of the compound layer), being recommended for situations where the material undergoes dynamic requests and 

high compressive stresses, hardness, friction wear and corrosion strength [111]. Other authors show that plasma surface treatments can 

favor fatigue life, because it inserts compressive stresses on the surface of the material, making it difficult to nucleate and propagate 

cracks [101], [112], [113]. In this context, Abdalla et al. [20] verified an increase in fatigue life of 300 M steel (with bainitic structure) 

after plasma nitriding. (Fig. 7) shows three fatigue curves (S-N) of 300 M steel (already bainitic) subjected to thermochemical treatments 

of laser carburizing and plasma nitriding. The fatigue performance of the steel subjected to the laser carburizing treatment was inferior to 

the steel with a bainitic structure, however, the hardness of the laser carburizing region was similar to that observed in the bainitic struc-

ture and did not contribute to delay the appearance of superficial microcracks. There was also an increase in surface roughness, a factor 

that contributed to decrease performance in fatigue [21]. 

In general, the increased fatigue strength of steels after plasma nitriding process is attributed to the increase of surface hardness, residual 

stress distribution and case depth. In the case of the high-cycle fatigue of quenched and tempered materials, fatigue crack usually initiates 

from the surface while in surface hardened materials crack initiation site shifts from the surface to subsurface region [16], [103], [108], 

[114–116]. Well-nitridable steels contain nitride-forming elements including 1-3 wt.% chromium, 0.2-0.5 wt.% molybdenum as well as 

smaller amounts of vanadium or niobium [117]. Those steels also have superior mechanical properties such as yield strength and tough-

ness [32], [35], [117]. 
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Fig. 7: Fatigue Curves (S-N) for the Conditions: 300 M Steel with Bainitic Structure and Steel with Surface Treatment of Plasma Nitriding and Laser 

Carburizing. Reproduced from [20]. 

 

Even though plasma nitriding treatment is a well-established method for improving the wear performance of steels and tools [28], [30], 

[118], [119], understanding the fracture properties of these hardened surfaces is far from complete [120]. The nitride phases that arise in 

the surface treatments have substantially lower fracture toughness than the underlying substrate [120], and this may adversely affect the 

wear performance of components such as gears that are subjected to severe service environments involving high mechanical stress loads 

and alternate loads [121–123]. 

4. Future developments and possibilities 

As the conventional automotive component manufacturing chain usually consists of a long sequence of processes, different processing 

alternatives may be applied depending on the product specifications and their applications. For maximum improvement in fatigue and 

wear performance, surface modification techniques must be carefully controlled and combined with material of interest to ensure that 

undesirable characteristics are not introduced during the manufacturing of the components [25], [39], [124]. 

The combination of multiphase microstructures in steel opens a new range of possibilities, allowing to adjust levels of strength and duc-

tility [14], [16], [20], [56], [61], [64]. The development of processes based on the use of continuous cooling bainitic steels for the forging 

can be an excellent alternative to replace the conventional quenching and tempering treatment with considerable reduction of the energy 

consumption, since it is not necessary to reheat the material for quenching nor for the tempering [3], [13].  

In order to obtain high performance components, it is verified that there is great potential for the implementation of deep rolling before to 

plasma nitriding. By combining these surface hardening techniques, it is possible to increase the lifespan of mechanical components, 

provide surfaces with higher resistance to wear, corrosion and fatigue, and reduce the coefficient of friction. Previous work by [118], 

[125] point out that the previous superficial state of substrates subjected to plasma nitriding treatments has a direct influence on the for-

mation of nitrided layers. This shows that the deep rolling process combined with nitriding can be more effective than just the nitriding 

process [126]. 
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