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Abstract 

 
This paper investigates the capability of probabilistic FEM to predict temperature distribution due to thermal cutting process. The 

application of transient heat source causes non-uniform temperature distribution across the parent metal that can lead to non-uniform 

expansion and contraction during heating and cooling cycle. This phenomenon will induce thermal stresses to the workpiece that can 

subsequently lead to unwanted cutting deformation. Therefore, forecast of temperature distribution is important in order to control the 

amount of heat required in the cutting process. The temperature prediction was computed by using non-linear thermo-elastic-plastic 

numerical analysis with isotropic strain hardening which is also known as deterministic FEM. For comparison, another extension simulation 

which is probabilistic FEM using Monte Carlo method was carried out by varying the input power. In this study, both simulation methods 

had been executed by using FEM software MSC MARC. The material used for the simulation was low carbon steel C15 with the thickness 

of 2 mm. Based on the results obtained, it was found out that slight differences of temperature distributions were predicted between both 

methods. The small observable differences occurred due to the probabilistic method was only executed to fluctuate the input power, while 

the other process parameters were still unchanged. Nevertheless, the Monte Carlo method was successfully integrated into the normal 

simulation which then transforming it into probabilistic analysis. Hence, through probabilistic method, reliability on prediction could be 

increased in which the prediction would be closer to reality. 
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1. Introduction 

A heat treatment process, where a metal plate is subjected to a large 

amount of concentrated heat and the applied part of the metal plate 

melts or vaporizes away is known as thermal cutting. Thermal 

cutting is an exothermal process, which means that the burning 

process maintains itself with less heat required. There are several 

types of thermal cutting processes such as flame cutting, plasma arc 

cutting and laser cutting [1]. Plasma arc cut-ting (PAC) is a cutting 

method that uses extremely hot plasma gas that melts and partially 

vaporizes workpiece material. This plasma gas jet is formed by an 

arc and inert gas flow. Plasma arc is concentrated with a nozzle to 

produce more precise and even hotter arc, that operates in the region 

of 10 000 – 14 000 °C. Molten material is removed by the high 

velocity gas jet, like in oxyfuel gas cutting. Plasma arc is generated 

by heating gas with an arc. This gas then becomes partially ionized 

and thus, being able to conduct electricity. Heating the gas rapidly 

as it travels along the arc causes it to expand. Then the gas is 

accelerated through the nozzle towards the workpiece. Gases 

employed in plasma cutting comprise nitrogen, argon, oxygen, air 

and mixtures of nitrogen/hydrogen and argon/hydrogen [2-3]. 

Laser cutting is a non-contact thermal cutting process which is a 

state-of-the-art technology that eliminates such effects as ma-chine 

vibration, mechanically induced thermal damage and tool wear [4]. 

It is the most extensively used for producing complex shapes and 

different geometries with narrow kerf in almost all categories of 

materials such as metals, non-metals, ceramics and composites. The 

cutting capability of laser primarily depends on the thermal and 

optical properties of the material instead of the mechanical 

properties [5]. The focused laser beam locally melts the material to 

be cut and produces a kerf when the molten material is blown away 

with the aid of assist gas, which flows coaxially with the laser beam. 

Numerous numerical methods have been applied to perform 

thermal analysis. In [6], prediction of temperature distribution due 

to thermal cutting had been carried out on Inconel 718. The finite 

element analysis was computed based on thermo-mechanical 

analysis using temperature-dependent material properties. The 

results showed that the predicted temperature distribution well 

agreed to the experimental measurement. It was found out that the 

temperature trend in the specimen with 1 mm thickness was slightly 

lower than that of specimen with 2 mm thickness. Referring to the 

explanation in [7], arc-welding process is based on the same 

principles as arc-cutting process. A welding process normally adds 

up filler material to the base metal, whereas some materials are 

removed from the base metal in cutting process. RN Lidam et al. 

[8] conducted a simulation study on multipassed welding distortion 

of combined joint types induced by gas metal arc welding (GMAW) 

process. The simulation had been executed using SYSWELD based 

on thermo-mechanical-metallurgical analysis. 

The plasticity criterion was calculated based on isotropic strain 

hardening owing to non-cyclic loading in which the mechanical 

calculations were computed according to metallurgical history 

primarily following the constitutive equation proposed by Leblond. 

The outcomes uncovered that the angular distortions predicted 

using 2D and 3D analyses showed reasonable agreement. It was 

also found out that 2D analysis required shorter computational time 
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as compared to 3D analysis. A research on residual stress field 

induced in pipe girth weld of 316 stainless steel had been carried 

out by J. G. Mullins et al. [9]. The residual stresses were simulated 

based on thermo-elastic-plastic mechanical analysis. Three 

different hardening models had been employed in the finite element 

analysis comprising isotropic, kinematic and mixed hardening 

models. The isotropic, kinematic and mixed hardening models were 

computed according to flow curves at different temperatures, 

bilinear-Ziegler rule and Lemaitre-Chaboche model respectively. 

By comparing the simulation results with the experimental 

verifications, the results revealed that the axial stresses were well 

predicted by means of isotropic hardening model. In addition, the 

hoop stresses calculated via isotropic hardening model were also in 

good agreement with the experimental measurements. The best 

predictions of hoop stresses were achieved through mixed 

hardening model. However, the predictions through kinematic 

hardening model had underestimated both magnitudes of stresses. 

Even though all criteria have been taken into consideration in 

numerical simulation, but generally the FEA is deterministic by 

nature and hence is limited to describe typical characteristics of a 

system [10]. Different sources of uncertainty come up in the study 

of complex phenomena such as human error, dynamic loading, 

inherent randomness of the material and lack of data. The classic 

FEM has been integrated with other methodologies to develop a 

novel type of analysis in order to probe the systems with random 

variations and/or uncertainty in parameters. It has been known as a 

stochastic finite element method (SFEM) [11], a random finite 

element method (RFEM) [12] as well as a probabilistic finite 

element method (PFEM) [13]. Furthermore, to characterize the 

stochastic nature into a system, random fields are implemented in 

the classic FEM to describe and establish different stochastic 

scenarios. The effects of the random variations are evaluated by 

computing the statistical information of the response variables and 

evaluating the probability of an outcome of the system. A research 

on optimization of cutting parameters using probabilistic FEM had 

been performed by Miloš Madić et al. [14]. In this research, 

artificial neural network (ANN) based mathematical model using 

Monte Carlo method was established in order to connect the 

parameters in CO2 laser cutting of 304 stainless steel consisting of 

laser power, cutting speed, assist gas pressure and focus position, 

as well as kerf taper angle. Monte Carlo method was an approach 

which manipulating random numbers in simulation algorithm. The 

Monte Carlo method could be regarded as a general mathematical 

tool for solving various problems. As compared to experiment, 

statistical results showed that the kerf taper angle could be 

calculated through ANN model within good accuracy. The 

optimum laser cutting parameters which minimized the kerf taper 

angle could be defined by implementing the Monte Carlo method. 

It was observed that concentrating the laser beam on around 2/3 of 

material thickness through low assist gas pressure (9 bar) at 

combination of high cutting speed (3 m/min) and low laser power 

(1.6 kW) resulted in acceptable kerf taper angle. By applying the 

Monte Carlo simulation, the optimization was resolved via the 

generation of random numbers ri,j which distributed uniformly in 

the range between 0 and 1. In order to meet the limitations of the 

laser cutting parameter values, the random numbers ri,j were 

manipulated to produce random numbers qi,j which uniformly 

distributed into the range of interest for each of the laser cutting 

parameter [𝑞𝑖
𝑚𝑖𝑛, 𝑞𝑖

𝑚𝑎𝑥]. This was achieved using the following 

equation: 

𝑞𝑖,𝑗 = 𝑞𝑖
𝑚𝑖𝑛 + 𝑟𝑖,𝑗 . (𝑞𝑖

𝑚𝑎𝑥 − 𝑞𝑖
𝑚𝑖𝑛)                                               (1) 

2. Simulation Method and Procedure 

2.1 Geometrical Modelling 

A schematic illustration of solid FE model used in the simulation is 

displayed in Figure 1.  The dimensions of the model are 100mm x 

100mm x 2mm which are referring to the width, length and 

thickness of the model respectively. 

 

Fig. 1: Geometrical model utilized for simulation 

The cutting trajectory is represented by the yellow arrow in which 

the direction of cutting is determined by the arrow direction. The 

type of element used for this model is three-dimensional hexahedral 

element.  

2.2. Material Modelling 

In thermal cutting simulation, low carbon steel material (C15) had 

been used for analysing the temperature distribution. In simulation, 

all the computations were executed based on analysis using 

temperature-dependent material properties as shown in Figure 2 and 

Figure 3. During cutting process, the workpiece was exposing to 

high working temperature which could be beyond its melting 

temperature especially at the focal cutting region and the heat would 

also be spreading over the heat affected zone (HAZ) area and 

dissipating into the base metal and the environment. Thus, due to 

this phenomenon, the magnitudes of values of material properties 

would change according to the temperature variations. Hence, the 

temperature-dependent material properties were very important 

since they would reflect the real situations that occurred to the 

workpiece during the cutting process.  

 

Fig. 2: Temperature-dependent mechanical properties 

If the simulation executed using constant material properties, it will 

merely consider the material behaviour at room temperature which 

in turn can lead to incorrect prediction. However, the other two 

material properties which are mass density and Poisson’s ratio were 
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assumed to be 7850 kg/m3 and 0.3 respectively that were not 

dependent on temperature. 

 
Fig. 3: Temperature-dependent thermo-physical properties 

 

In this study, the temperature analysis was carried out using non-

linear thermo-elastic-plastic analysis in which mechanical analysis 

was also taken into consideration. Based on mechanical analysis, 

the total deformation was computed through the combination of 

elastic and plastic strains as expressed by Equation (2). 

 

ℇ𝒕𝒐𝒕𝒂𝒍 = ℇ𝒆 + ℇ𝒑                                                                          (2) 

 

When the stress in the specimen was below the yield stress of the 

material, the material behaves elastically and the stress in the 

specimen was proportional to the strain. However, when the stress 

in the specimen was greater than the yield stress, the material was 

no longer exhibiting elastic behaviour and thus, the stress-strain 

relationship became non-linear. The yield stress of a material is a 

measured stress level that separates the elastic and plastic behaviour 

of the material. The magnitudes of the yield stresses were generally 

obtained from the mechanical properties as defined through the 

Modulus of Elasticity and flow curve. However, the stresses in a 

structure are usually multiaxial. A measurement of yielding for the 

multiaxial state of stress is known as yield condition. In this 

analysis, for the application of isotropic material, von Mises 

criterion was selected to describe the yield condition which is 

commonly used for ductile materials particularly due to its 

suitability in characterizing metallic behaviour. The von Mises 

criterion states that yield occurs when the effective (or equivalent) 

stress, σ equals the yield stress, σy. The von Mises criterion can be 

described as expressed by Equation (3), where σ1, σ2, and σ3 are the 

principal stresses that will be coupled with the strain hardening rule. 

Figure 4 demonstrates the von Mises yield surface in three-

dimensional stress space. 

 

�̅� = [(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 +  (𝜎3 − 𝜎1)2  ]1/2/√2           (3) 

 

 

 

 
Fig. 4: Three-dimensional stress space 

 

In order to take hardening effects into account, the computational 

analysis was executed corresponding to the information on material 

data that characterize the plastic behaviour of the material in the 

form of flow curves. In addition, these quantities can vary with 

parameters such as temperature and strain rate. Referring to Figure 

5, the slope of the total stress versus plastic strain curve is defined 

as the workhardening slope (H) of the material in which the 

workhardening slope is a function of plastic strain. Some of the 

actual data of flow stresses for the material utilized in this 

simulation were as exhibited in Figure 6. However, there are a lot 

of flow curves that are not displayed here which were actually used 

for the analysis such as the flow curves defined at the same strain 

rates of 8 1/s and 40 1/s with different temperatures ranging 

between 20oC and 1200oC. When it came to a state which was not 

defined by the available flow curves, the decision was being made 

through interpolation.  

 
Fig. 5: Definition of workhardening slope 

 

 
Fig. 6: Flow curves of C15 at the same strain rate of 1.6 1/s 

2.3. Heat Source Modelling 

In cutting simulation, one of the most important steps is to model 

the heat source that can reflect the real process. Suitable heat source 

model must be selected in accordance with the thermal cutting 

process. Hence, for the thermal cutting process, a volumetric 

conical heat source model was employed to replicate the real heat 

source.  

The 3D conical heat source model used in the simulation was 

defined by C. S. Wu et al. [15] which was obtained through 

derivation from heat intensity distribution equation of thermal 
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energy conservation. The Equation (4) was the model equation 

produced as a result of derivation which could characterize the 

through thickness decay of heat intensity distribution of the thermal 

arc. The subsequent Equation (5) was part of the preceding equation 

which determined the decrease of maximum heat source intensity 

throughout the thickness of working material. In these equations, 

Qo represents the power input, r denotes the radial coordinate, z 

refers to the z-coordinate and ro defines the distribution parameter 

of the heat intensity. Whereas, ze and re represent the z-coordinate 

and radius of the top surface of the heat source model respectively. 

Similarly, the z-coordinate and radius of the heat source model at 

the bottom surface are defined by zi and ri correspondingly. The 

configuration of the conical heat source model is illustrated in 

Figure 7. 

 

𝑞(𝑟, 𝑧) =
9𝑄𝑜𝑒3

𝜋(𝑒3−1)
∙

1

(𝑧𝑒−𝑧𝑖)(𝑟𝑒
2+𝑟𝑒𝑟𝑖+𝑟𝑖

2)
∙ exp (−

3𝑟2

𝑟𝑜
2 )                      (4) 

 

𝑟𝑜(𝑧) = 𝑟𝑖 + (𝑟𝑒 − 𝑟𝑖) ∙
𝑧−𝑧𝑖

𝑧𝑒−𝑧𝑖
                                                         (5) 

 

 

Fig. 7: Conical heat source configuration 

2.4. Boundary Conditions 

 There were two types of boundary conditions involved in the 

cutting simulation consisting of thermal and mechanical boundary 

conditions. The thermal boundary conditions were defined by heat 

input of volumetric heat flux as described previously, as well as heat 

losses due to convection and radiation as expressed by Equation (6) 

and Equation (7) respectively. 

 

𝑞𝑐𝑜𝑛𝑣 = ℎ𝑐𝑜𝑛𝑣(𝑇𝑠 − 𝑇∞)                                                              (6) 

 

𝑞𝑟𝑎𝑑 = σɛ(𝑇𝑠
4 − 𝑇∞

4 )                                                                    (7) 

 

 In the above equations, ℎ𝑐𝑜𝑛𝑣 is convective heat transfer 

coefficient, σ refers to Stefan Boltzmann’s constant and ɛ represents 

thermal emissivity, while 𝑇𝑠 and 𝑇∞ are surface temperature and 

ambient temperature respectively. Whereas the mechanical 

boundary condition was defined by fixation on the model nodes to 

prevent body motion.  

2.5. Monte Carlo Simulation 

Monte Carlo simulation is a method that takes variability of the 

inputs into account. The simulation analysis could involve 

numerous of recalculations before it is complete. Through this 

method, it could be able to produce distributions of possible 

outcome values. In this study, to perform the probabilistic analysis, 

the heat input power of the heat source was fluctuated within a 

certain range while the other proses parameters had been 

maintained. To ensure it happened, the input power would be varied 

by using Gaussian random variables. Thus, in order to support this 

process, a source of random numbers should be produced. There are 

a lot of random number generators available, but the most 

extensively used is linear congruential generator (LCG) which is 

defined by the following formula [16,17]: 

 

𝑥𝑖+1 = (𝑎 ∙ 𝑥𝑖 + 𝑐)𝑚𝑜𝑑 𝑀,         𝑖 ≥ 0                                         (8) 

 

where M is the modulus, 𝑎 and c are the multiplier and increment 

respectively while 𝑥𝑜 is the seed or start value. Through this 

method, a sequence of pseudo-random integer numbers {𝑥𝑖} could 

be generated. Furthermore, in order to produce a random number 𝑋𝑖 

in the range between 0 and 1, the random number 𝑥𝑖 generated 

previously should be divided by M as shown below: 

 

𝑋𝑖 =
𝑥𝑖

𝑀
 ,         𝑖 ≥ 1                                                                       (9) 

 

However, the random number 𝑋𝑖 produced previously was 

uniformly distributed, U (0,1). For this typical simulation, the 

Gaussian or normal random variable, N (0,1) is preferable. Hence, 

Box-Muller method [18,19,20] could be employed as a tool to 

transform the uniform random variable into the Gaussian random 

variable. Through this method, the transformation could be 

implemented by converting a pair of uniform random variables 

(𝑋1, 𝑋2) into a pair of Gaussian random variables (𝑌1, 𝑌2) via the 

subsequent equations: 

 

𝑌1 = √−2𝑙𝑛 (𝑋1)𝑐𝑜𝑠 (2𝜋𝑋2)                                                    (10) 

 

𝑌2 = √−2𝑙𝑛 (𝑋1)𝑠𝑖𝑛 (2𝜋𝑋2)                                                    (11) 

 

For verification of the probabilistic method, the variation of the 

input power generated by the algorithm had been computed using 

general Fortran 77 program. This programming language was 

employed due to MSC MARC is built based on the same platform. 

In the cutting simulation, it was executed by using 150 values of 

different input powers for the variation instead of a single constant 

value. Therefore, the Fortran program was tested to generate a 

sequence of 150 random numbers. The program outputs are 

exhibited in Figure 8. From the red bell curve as shown in the figure, 

it could be proven that the random input powers were generated 

according to normal distribution. 
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Fig. 8: Distribution of random variables 

 

In this study, both simulations of deterministic and probabilistic 

analyses were carried out using the process parameters as follows: 
 

Table 1: Thermal cutting parameters 

   Parameters 

Types of analyses 

Normal Monte Carlo 

(Deterministic) (Probabilistic) 

Input power, P (W) 300 µ = 300W, σ = 10 

Cutting speed, v (mm/s) 10 10 

Heat source model 3D conical 3D conical 
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3. Results and Discussion 

After the simulations were completed, the postprocessing analyses 

could be implemented in which the temperature distributions 

caused by the thermal cutting process could be observed. Figure 9 

displays the predicted result of temperature distribution at 5 seconds 

after the cutting process was finished which was at the final time 

(15s) of simulation. The cutting time was 10 seconds.  
 

 
Fig. 9: Temperature distribution after the thermal cutting process was 
finished (15s). 

 

 
Fig. 10: Comparison of temperature distributions at 5 seconds for the 

probabilistic (upper) and deterministic (lower) methods. 
 

The temperature distribution as exhibited in Figure 9 represented 

for both types of analyses since the temperature distribution 

produced by deterministic method was similar to probabilistic 

method. Thus, in order to observe the differences in the output 

results, a comparison of temperature distributions for both analyses 

had been made by selecting the results a particular time which was 

at 5 seconds during the cutting proses as shown in Figure 10. 

Referring to Figure 10, there were slight differences in the contours 

of temperature distributions between both methods. Therefore, to 

observe more significant difference in results, one identical node 

for both cases that is node 9803 was chosen. This node was selected 

due to its location which is close to the cutting trajectory. 

Consequently, it would have more significant impact in term of 

temperature variation as compared to the other nodes farther from 

the cutting line. The location of the chosen node is shown in Figure 

11. In both simulations, the geometrical model was constructed by 

using 26779 nodes. 

 

                             

 
Fig. 11: Location of node 9803 

 

Based on the results at the node, temperature distributions had been 

plotted in one graph for both cases in order to compare the 

temperature history from 4.5 seconds up to 5.5 seconds as presented 

in Figure 12. In the graph, MC and Non MC stand for Monte Carlo 

and deterministic (without Monte Carlo) methods respectively. 
 

 
Fig. 12: Temperature distributions at node 9803 between 4.5 and 5.5 
seconds. 

 

From the graph above, it could be observed that there were slight 

differences in temperature distributions between both methods. 

However, in order to observe better result comparison, the exact 

values of temperatures at each increment from 4.5 seconds up to 5.5 

seconds for both methods were tabulated in Table 2 as follows: 

 
Table 2: Temperature variations at node 9803 between 4.5 and 5.5 seconds 

 Monte Carlo Normal Temperature 

Time (Probabilistic) (Deterministic) difference 

(s) Temperature Temperature |ΔT| 
 (oC) (oC) (oC) 

4.5 63.4256 63.3712 0.0544 

4.6 90.4398 90.1612 0.2786 
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4.7 164.049 163.708 0.3410 

4.8 289.593 290.215 0.6220 

4.9 545.476 554.477 9.0010 

5.0 1039.99 1027.11 12.880 

5.1 1042.66 1046.13 3.4700 

5.2 814.877 815.895 1.0180 

5.3 612.892 615.495 2.6030 

5.4 598.513 599.472 0.9590 

5.5 534.597 535.445 0.8480 

 

Based on the numerical values of temperatures as presented in the 

table above, it could be seen that the temperature differences 

varying between 0.0544 oC and 12.880 oC. The temperature 

differences proved that the Monte Carlo method produced different 

results from the deterministic analysis. Hence, this finding could 

also reflect that the other identical nodes in the both models should 

have different values of temperature distributions especially at the 

nodes located near to the cutting trajectory. 

4. Conclusions 

From the analysis of the results, it was found that slight differences 

in temperature distributions had been produced between 

probabilistic and deterministic methods. Even though the 

differences were not very significant, but more importantly the 

Monte Carlo method could be implemented successfully and 

produced different prediction from the normal deterministic 

analysis. In this research, the Monte Carlo method was just 

employed to variate the input power while the other parameters 

were still maintained and thus producing minor changes in the 

predicted results. More significant difference in results could be 

obtained through probabilistic method by varying more than one 

parameter. However, the capability of Monte Carlo method is 

dependent on the output random numbers. In FEM analysis, there 

are a lot of random number generators that can be applied to achieve 

that purpose. The random number generator used in this study was 

one of the simple generators that could be incorporated into the 

normal FEM analysis. Therefore, the effectiveness of probabilistic 

analysis is dependent on the type of random number generator. The 

probabilistic analysis could be able to produce better prediction due 

to it could replicate nearly to the real process as compared to the 

deterministic analysis. In the real process, the supply of input power 

is normally fluctuated in certain range and quite impossible to 

maintain it at certain value. Hence, Monte Carlo method is one of 

the simulation approaches that can be executed to obtain the 

prediction that is close to the reality. 
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