

Copyright © 2018 Amira B. Sallow. This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering &Technology, 7 (4) (2018) 6603-6608

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

doi: 10.14419/ijet.v7i4.29340

Research paper

Android multi-threading program execution on single and

multi-core CPUS with matrix multiplication

Amira B. Sallow *

Department of Computer Science, Nawroz University, Duhok, Iraq

*Corresponding author E-mail: amo_bibo@yahoo.com

Abstract

Most problems involving complex computations can be solved by implementing them using Chip Multiprocessor (CMP) approach char-

acterized by high speed, high performance for personal computers and mobile devices. In this paper Android multi-threading Program for

matrix multiplication executed on single and multi-core CPUs. the use of this technology greatly reduced the time required to execute the

code of the matrix multiplication for great size loads.

The main goal of this paper is to compare the single-core technique with CMP approach to execute Android matrix multiplication Pro-

gram on single and multi-core CPUs and see what limitations in single-core architecture triggered the transition to CMPs, and to know

that the use of this technology greatly reduced the time required to execute code of matrix multiplication for great size loads. The results

show that the parallel algorithm outperformed the sequential algorithm by an average of speedup equal to 5.2.

Keywords: Sequential Algorithm; Parallel Algorithm; CMP; Multi-Threading; Multicore; Speedup; Android.

1. Introduction

The rapid development of the mobile devices industry has culmi-

nated with the rise of modern operating systems, specifically op-

timized to use the advantages and limits of the hardware environ-

ment in order to interface with the user. While many mobile oper-

ating systems have been developed in the recent years, in today’s

market, the most widely adopted are Android [1], developed by

Google and iOS developed by Apple. Being open-source software,

Android has been extended and used by some of the major mobile

device manufacturers, being advantageous from the development.

[2]

The multicore processor comprises two or more cores or computa-

tional/processing units that operate in parallel to read and execute

instructions. These multiple processing units or cores are fabricat-

ed on a single die. So, it’s also called a Chip Multiprocessor

(CMP). The key factor about the multicore processor is that it

gives the same performance of a single faster processor at lower

power dissipation and at a lower clock frequency by handling

more tasks or instructions in parallel [3]. Multicore processors

work on multiple instructions and multiple data. Multiple cores

execute multiple threads (multiple processes/instructions) while

using different parts of memory (multiple data). The main memory

is shared by all cores. Each core is associated with its own cache

and they all share the system bus. [4]

The main goal of this paper is to compare the single-core tech-

nique with CMP approach to execute Android matrix multiplica-

tion Program on single and multi-core CPUs and see what limita-

tions in single-core architecture triggered the transition to CMPs,

and to know that the use of this technology greatly reduced the

time required to execute code of the matrix multiplication for great

size loads. The rest of this article is organized as follows. section

2, mentions the related work. section 3, describes application exe-

cution. section 4, explains structuring applications for perfor-

mance. section 5, thread basics, section 6, android application

threads. section 7, the need for multiprocessing. section 8, the

proposed methodology of the proposed system in details. section

4, implementation results. Section 10 illustrates the speed up. sec-

tion 11 presents the conclusion.

2. Related works

(Guliani & Bagga) in 2017 [5] exhibited an investigation concen-

trated on multithreaded quicksort and was compared with the se-

quential quicksort. Each thread is assigned part of the input array

after partition method is applied. Similar OS resource and address

space were shared by each thread. Multithreading quicksort has

illustrated a bigger efficiency over sequential quicksort and the

results are validated using various performance qualifications like

Maximum Frequency, Idle Time, Processor Utility, Total Execu-

tion Time and Processor Time.

The main objective of (Rinku & Asha Rani) in 2017 [6] was to

explore the advantages of multi-threading on a multi-core CPU in

terms of execution times. The focus was on splitting a single pro-

cess into multiple code segments (threads). to demonstrate the

advantage of multithreading on multi-core CPUs, they executed it

on single core ARM Processor, and on quad-core ARM Cortex-

A7.

(Singh et al.) in 2017 [7] developed two tools, first, using C# con-

sole. application to individually measure the cores’ performance

of the CPU percentage of load on each core is used as metric of

performance is the measurement. While the second tool was made

by using windows C# application for plotting the graph with re-

spect to time of CPU load in percentage. The performance is

measured by both tools while quicksort was running in the serial

and parallel manner for a huge data elements number.

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET

6604 International Journal of Engineering & Technology

3. Application execution

Android is a multiuser, multitasking system that can run multiple

applications at the same time and let the user switch between ap-

plications without noticing a significant delay. The Linux kernel

handles the multitasking, and application execution is based on

Linux processes. [Efficient Android Threading.[8]

3.1. Linux process

Linux assigns every user a unique user ID, basically a number

tracked by the OS to keep the users apart. Every user has access to

private resources protected by permissions, and no user except

root, the superuser can access another user’s private resources.

Thus, sandboxes are created to isolate users. In Android, every

application package has a unique user ID; for example, an applica-

tion in Android corresponds to a unique user in Linux and cannot

access other applications’ resources. What Android adds to each

process is a runtime execution environment, such as the Dalvik

virtual machine, for each instance of an application. Fig (1) shows

the relationship between the Linux process model, the virtual ma-

chine (VM), and the application.

Fig. 1: Applications Execute in Different Processes and VMS.

3.2. Lifecycle

The application lifecycle is encapsulated within its Linux process,

which, in Java, maps to the android.app.Application class. The

Application object for each app starts when the runtime calls its

onCreate() method. Ideally, the app terminates with a call by the

runtime to its onTerminate(), but an application cannot rely upon

this. The underlying Linux process may have been killed before

the runtime had a chance to call onTerminate(). The Application

object is the first component to be instantiated in a process and the

last to be destroyed.

3.3. Application start

An application is started when one of its components is initiated

for execution. Any component can be the entry point for the appli-

cation, and once the first component is triggered to start, a Linux

process is started leading to the following startup sequence:

1) Start Linux process.

2) Create runtime.

3) Create Application instance.

4) Create the entry point component for the application.

Setting up a new Linux process and the runtime is not an instanta-

neous operation. It can degrade performance and have a noticeable

impact on the user experience. Thus, the system tries to shorten

the startup time for Android applications by starting a special pro-

cess called Zygote on system boot. Zygote has the entire set of

core libraries preloaded. New application processes are forked

from the Zygote process without copying the core libraries, which

are shared across all applications.

3.4. Application termination

A process is created at the start of the application and finishes

when the system wants to free up resources. Because a user may

request an application at any later time, the runtime avoids de-

stroying all its resources until the number of live applications

leads to an actual shortage of resources across the system.

4. Structuring applications for performance

Android devices are multiprocessor systems that can run multiple

operations simultaneously, but it is up to each application to en-

sure that operations can be partitioned and executed concurrently

to optimize application performance. If the application doesn’t

enable partitioned operations but prefers to run everything as one

long operation, it can exploit only one CPU, leading to suboptimal

performance. Unpartitioned operations must run synchronously,

whereas partitioned operations can run asynchronously. With

asynchronous operations, the system can share the execution

among multiple CPUs and therefore increase throughput.

An application with multiple independent tasks should be struc-

tured to utilize asynchronous execution. One approach is to split

application execution into several processes because those can run

concurrently. However, every process allocates memory for its

own substantial resources, so the execution of an application in

multiple processes will use more memory than an application in

one process. Furthermore, starting and communicating between

processes is slow, and not an efficient way of achieving asynchro-

nous execution. Multiple processes may still be a valid design, but

that decision should be independent of performance. To achieve

higher throughput and better performance, an application should

utilize multiple threads within each process. [8].

5. Thread basics

Software programming is all about instructing the hardware to

perform an action. The instructions are defined by the application

code that the CPU processes in an ordered sequence, which is the

high-level definition of a thread. From an application perspective,

a thread is an execution along a code path of Java statements that

are performed sequentially. A code path that is sequentially exe-

cuted on a thread is referred to as a task, a unit of work that coher-

ently executes on one thread. A thread can either execute one or

multiple tasks in sequence. [8].

5.1. Single-threaded application

Each application has at least one thread that defines the code path

of execution. If no more threads are created, all of the code will be

processed along the same code path, and instruction has to wait for

all preceding instructions to finish before it can be processed. The

single-threaded execution is a simple programming model with

deterministic execution order, but most often it is not a sufficient

approach because instructions maybe postponed significantly by

preceding instructions, even if the latter instruction is not depend-

ing on the preceding instructions. For example, a user who presses

a button on the device should get immediate visual feedback that

the button is pressed; but in a single-threaded environment, the UI

event can be delayed until preceding instructions have finished

execution, that degrades both performance and responsiveness. To

solve this, an application needs to split the execution into multiple

code paths (threads).

5.2. Multithreaded Application

With multiple threads, the application code can be split into sever-

al code paths so that operations are perceived to be executing con-

currently. If the number of executing threads exceeds the number

of processors, true concurrency cannot be achieved, but the sched-

uler switches rapidly between threads to be processed so that eve-

ry code path is split into execution intervals that are processed in a

sequence. Multi-threading is a popular way to improve application

execution speeds through parallelism. As each thread has its own

independent resource for task execution, multiple processes can be

executed parallel by increasing number of threads. Parallelism is

International Journal of Engineering & Technology 6605

the running of threads at the same time on cores of the same CPU.

Fig (2A) shows the timing diagram of sequential execution model

for executing four printing operations executed each one start after

the previous operation ends, Fig (2B) shows code segments (i.e.

threads) running concurrently within the “context” of that process

the four operations start together and end together. In multithread-

ing environment one thread runs on one CPU core, hence a multi-

threaded process can be distributed over a series of processors as

threads, to scale the performance. [8]
A) Sequential

 B) Mul-

ti-Threading

Fig. 2: Execution Types

6. Android application threads

All application threads are based on the native pthreads in Linux

with a Thread representation in Java, but the platform still assigns

special properties to threads that make them differ. From an appli-

cation perspective, the thread types are UI, binder, and back-

ground threads. [9]

6.1. UI thread

The UI thread is started when the application is started and stays

alive during the lifetime of the Linux process. The UI thread is the

main thread of the application, used for executing Android com-

ponents and updating the UI elements on the screen. The UI thread

is a sequential event handler thread that can execute events sent

from any other thread in the platform. The events are handled

serially and are queued if the UI thread is occupied with pro-

cessing a previous event. Any event can be posted to the UI

thread, but if events are sent that do not explicitly require the UI

thread for execution, the UI-critical events may have to wait in the

queue before being processed and before responsiveness is de-

creased.

6.2. Binder threads

Binder threads are used for communicating between threads in

different processes. Each process maintains a set of threads, called

a thread pool, that is never terminated or recreated but can run

tasks at the request of another thread in the process. These threads

handle incoming requests from other processes, including system

services, intents, content providers, and services. When needed, a

new binder thread will be created to handle the incoming request.

In most cases, an application does not have to be concerned about

binder threads because the platform normally transforms the re-

quests to use the UI thread first.

6.3. Background threads

All the threads that an application explicitly creates are back-

ground threads. This means that they have no predefined purpose,

but are empty execution environments waiting to execute any task.

The background threads are descendants of the UI thread, so they

inherit the UI thread properties, such as its priority. By default, a

newly created process doesn’t contain any background threads. It

is always up to the application itself to create them when needed.

7. The need for multiprocessing

Mobile devices perform a wide variety of tasks such as Web

browsing, video playback, mobile gaming, SMS text messaging,

and location-based services. Due to the growth in the availability

of high-speed mobile and Wi-Fi networks, mobile devices will

also be used for various performance-intensive tasks that were

previously handled by traditional PCs. The next generation of

smartphones called “Superphones” and tablets will be used for a

wide variety of tasks such as playback of high definition 1080p

videos, Adobe® Flash®-based online gaming, Flash-based

streaming high definition videos, visually rich gaming, video edit-

ing, simultaneous HD video downloads, encode and uploads, and

real-time HD video conferencing. The quality of experience on

devices based on single core CPUs rapidly degrades when users

run several applications concurrently, or run performance inten-

sive applications such as games, video conferencing, video edit-

ing, and more. In order to improve CPU performance, engineers

employ several techniques, such as using faster and smaller semi-

conductor processes, increasing core operating frequency and

voltage, using larger cores, and using larger on-die caches.

Increasing the size of the CPU core or cache delivers performance

increases only up to a certain level, beyond which thermal and

heat dissipation issues make any further increase in core and cache

size impractical. From basic semiconductor physics, we know that

increasing operating frequency and voltage can exponentially

increase the power consumption of semiconductor devices. Even

though engineers may be able to squeeze out higher performance

by increasing frequency and voltage, the performance increase

would drastically reduce battery life. In addition, processors that

consume higher power would require larger cooling solutions

resulting in an undesired expansion in device size. Therefore,

increasing the operating frequency of the processor to meet the

ever-increasing performance requirements of mobile applications

is not a viable solution for the long run.[10]

8. Proposed methodology

Initially, matrix multiplication has been chosen to test the work-

load on different cores of CPU. matrix multiplication is executed

in serial and parallel with variable size of workloads, on Dual

Core, Quad Core, Octa Core of the processor. Result of execution

time for each workload is stored in table1. The same implementa-

tion of computation of 10000*10000 Matrix multiplication repeat-

ed on dual core, quad core and octa core with different size of the

workload with multithreading technology. Finally, Results are

compared to draw the final conclusion.

8.1. Design and implementation

Many numerical algorithms to check the logic intensive execution

matrix multiplication has been used. Various approaches and algo-

rithms have been developed to make the matrix multiplication

efficient. Applications of matrix multiplication in computational

problems are used in various fields like scientific computing and

pattern recognition and in seemingly unrelated problems such as

counting the paths through a graph.

6606 International Journal of Engineering & Technology

8.2. Algorithm for multiplication of matrix

The definition of matrix multiplication is that if C = AB for an x ×

y matrix A, and y × z matrix B, then C is an x × z matrix. From

this, an algorithm can be constructed which loops over the indices

i from 1 through x and j from 1 through z, computing the above

using a nested loop.

Algorithm 1: Matrix Multiplication

Input: matrices A and B
Output: matrix C

1: Let C be a new matrix of the appropriate size
2: For i from 1 to x:

3: For j from 1 to z:

4: Let sum = 0
5: For k from 1 to y:

6: Set sum ← sum + Aik × Bkj

7: Set Cij ← sum
8: Return C

This is an iterative algorithm which is suitable to check the per-

formance of multi-threading implementation.

8.3. Hardware platform

The above design was implemented on SAMSUNG smartphone

with the model (SM-J600F (j6ltecis)), CPU type

(Octa-Core), operating system Oreo version (8.0.0), SDK (API) 26

and Dalvik VM version (2.1.0). All this device information shown

in Fig (3) was captured using Android CPU-Z Hardware Info ap-

plication version (1.0.7.).
B) Device Info

 B)

CPU Info

Fig. 3: Samsung CPU-Z Hardware Info.

8.4. Software implementation

Software Implementation has been carried out using Android stu-

dio version (3.2.1). Fig (4) show the general view of the proposed

application views which consists of two main parts. The first one

is related to the multithreads main view, that the user can execute

the sequential and execute the parallel proposed algorithm and

show the execution time of each algorithm. The second part illus-

trates the CPU cores information and shows all the processor cores

and their features.

A) Main View

 B)

CPU Core View

International Journal of Engineering & Technology 6607

Fig. 4: Samsung CPU-Z Hardware Info.

8.5. Implementation results

This section performs the analysis of the proposed system on one

core(sequential), dual core, quad core and octa core CPU. Here,

two types of analysis are performed; execution time and speedup.

matrix multiplication serial and parallel version are used for the

analysis. All the experiment is done using Android smartphone.

The results delineated in TABLE (1) show that the parallel algo-

rithm outperformed the sequential algorithm by an average of

speedup equal to 5.2. In the beginning, when operands were re-

spectively sequential matrix multiplication of size (10000x10000)

and parallel matrix multiplication of size (10000x10000), the dif-

ference was not that evident. However, when numbers became

larger, the gap increased and the execution time was speeded up

by around 7.7. Fig (5) shows that Sequential execution takes time

more than Parallel matrix multiplication.

Table 1: Time Results of Experimental Environment

Load CPU Time Speed up

 Sequential Parallel

One multiplication 9100 7494 1.2
Two multiplication 16090 7125 2.3

four multiplication 31841 7188 4.4

Eight multiplication 61432 7931 7.7
Ten multiplication 70892 13107 5.4

Twelve multiplication 87601 11547 7.6

Fourteen multiplication 103585 15745 6.6
Sixteen multiplication 115115 17674 6.5

Fig. 5: Comparison Between Sequential and Parallel Matrix Multiplication.

The CPU usage charts are shown in Fig (7) when Sequential and

Parallel computation were running were captured using Android

System Monitor-CPU-Ram Booster, Battery Saver application

version (6.7.5).

A) Sequential CPU Performance B) Parallel CPU Perfor-

mance

6608 International Journal of Engineering & Technology

Fig. 6: Android System Monitor-CPU Application.

8.6. Speedup

The speedup of code explains how much performance gain is

achieved by running our program in parallel on multiple proces-

sors. The meaning is that the time the program takes to run on a

single processor, divided by the time the program takes to run on

multiple processors. The value of speedup is between 0 and p,

where p is the number of processors. The speedup is defined by

the following formula from [11]

Sp=Ts/Tp (1)

Where:

• Ts is the execution time of the sequential Program.

• Tp is the execution time of the parallel program with p pro-

cessors

Fig. 7: Speedup Ratio by Using Parallel Matrix Multiplication.

Fig (7) showing the speed up ratio for different workload size, as

can be seen here, at low workload size no speedup is achieved.

After the workload size increases enough, the overall speed and

speed gain increase as well by about 7.7.

9. Conclusion

Through this paper, it has been demonstrated that the use of multi-

core processor with multithreading can improve the execution

time of compute intensive processes. Using the example of matrix

multiplication shown that parallel matrix multiplication utilizes

CPU cores compared to its sequential version. On dual-core pro-

cessor speedup achieved is 2.3. In case of quad-core CPU, Cores

speedup achieved is 4.4, while on octa-core speedup achieved is

7.7, the average speed up was 5.2. The parallel version of matrix

multiplication better utilizes the CPU cores in all the cases on a

dual-core processor, quad-core processor, and on an octa-core

processor. The CPU utilization is not directly proportional to the

number of cores in parallel programming, because of the follow-

ing factors parallelism overhead, thread creation time, time spent

at synchronization, the granularity of task decomposition, etc. The

result also shows that the octa-core CPU provides better result to

dual, quad-core CPU on different workload size of inputs.

References

[1] Omar Ahmed; and Amira Sallow, “Android Security: A Review,”

Acad. J. Nawroz Univ., vol. 6, no. 3, pp. 135–140, 2017.
https://doi.org/10.25007/ajnu.v6n3a99.

[2] R. Gyorödi, D. Zmaranda, V. Georgian, and C. Gyorödi, “A Com-

parative Study between Applications Developed for Android and
iOS,” Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 11, pp. 176–182,

2017. https://doi.org/10.14569/IJACSA.2017.081123.

[3] Anil Sethi; Himanshu Kushwah, “Multicore Processor Technology-
Advantages and Challenges,” Int. J. Res. Eng. Technol., vol. 04, no.

09, pp. 87–89, 2015. https://doi.org/10.15623/ijret.2015.0409015.

[4] B. Ahsan; O. Fatma; and Z. Mohamed, “Chip Multiprocessor:

Challenges and Opportunities Bushra Ahsan ElectricalEngineering
Department of Computer Science City University of New York

Department of Computer Science School of Computers and Infor-

mation,” pp. 54–65, 2008.
[5] G. S. Guliani and R. Bagga, “Time sharing based multithreading

approach to Quicksort,” 3rd IEEE Int. Conf., pp. 3–10, 2017.

https://doi.org/10.1109/CIACT.2017.7977314.
[6] D. R. Rinku and M. Asha Rani, “Analysis of multi-threading time

metric on single and multi-core CPUs with Matrix Multiplication,”
Proc. 3rd IEEE Int. Conf. Adv. Electr. Electron. Information,

Commun. Bioinformatics, AEEICB 2017, pp. 152–155, 2017.

https://doi.org/10.1109/AEEICB.2017.7972402.
[7] T. Singh, D. K. Srivastava, and A. Aggarwal, “A novel approach

for CPU utilization on a multicore paradigm using parallel quick-

sort,” 3rd IEEE Int. Conf., pp. 1–6, 2017.
https://doi.org/10.1109/CIACT.2017.7977382.

[8] A. Goransson, Efficient Android Threading: Asynchronous Pro-

cessing Techniques for Android Applications, vol. 6, no. 2. 2014.
[9] Hawkar Shaikha; and Amira Sallow, “Mobile Cloud Computing: A

Review,” Acad. J. Nawroz Univ., vol. 6, no. 3, pp. 129–134, 2017.

https://doi.org/10.25007/ajnu.v6n3a96.

[10] Nvidia, “The Benefits of Multiple CPU Cores in Mobile Devices,”

Nvidia White Pap., pp. 1–23, 2010.

[11] S. R. M. Zeebaree, “Design and simulation of High-Speed Parallel /
Sequential Simplified DES code breaking based on FPGA,” 2019.

https://doi.org/10.1109/ICOASE.2019.8723792.

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Parallel_algorithm
http://en.wikipedia.org/wiki/Parallel_algorithm
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Central_processing_unit
https://doi.org/10.25007/ajnu.v6n3a99
https://doi.org/10.14569/IJACSA.2017.081123
https://doi.org/10.15623/ijret.2015.0409015
https://doi.org/10.1109/CIACT.2017.7977314
https://doi.org/10.1109/AEEICB.2017.7972402
https://doi.org/10.1109/CIACT.2017.7977382
https://doi.org/10.25007/ajnu.v6n3a96
https://doi.org/10.1109/ICOASE.2019.8723792

