

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.38) (2018) 1642-1646

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

A Review on Test Case Prioritization Technique for Event

Sequence Test Cases

Johanna Ahmad1*, Salmi Baharom2, Abd Azim Abd Ghani3, Hazura Zulzalil4, Jamilah Din5

1Faculty of Computer Systems and Software Engineering, Universiti Malaysia Pahang, 26 300 Gambang, Pahang, Malaysia
2Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

*Corresponding author E-mail: johanna@ump.edu.my

Abstract
Software testing is a process to verify and validate the correctness of a software product before it is delivered to the customer. Any modi-

fications on the requirements or codes can cause the testing process to be redone all over again. Such occurrences could cause additional

time, resources, and cost during testing. Hence, the test case prioritization (TCP) technique has been proposed, with the objective of pri-

oritizing test case sequences and finding faults as early as possible to increase the effectiveness and efficiency of the testing process.

Various TCP techniques are available, with the combination of different factors, research area, methodologies, and evaluation metric.

This paper summarizes and discusses how the TCP technique can be applied for event sequence test cases. Analysis results from this

preliminary study would help the researchers plan for future work, which is to propose an enhancement of the TCP technique for applica-

tion with event sequence test cases.

Keywords: Test case prioritization; Event Sequences; Review paper

1. Introduction

Software testing is one of the stages in the software development

life cycle that is conducted to verify and validate the software

before it is delivered to the top management. However, a number

of possible tests are needed to perform software testing, which

would require a lot of time, resources, and cost. Longer duration

of software testing will increase the cost, resources, and time.

Furthermore, frequent changes may occur during the software

development phase and this may increase the expected time to

deliver the system. All the modification codes and change re-

quirements must be tested again. This can cause the test suite to

grow enormously, and rerunning the entire test suite is time con-

suming and would delay the project’s completion [1]. Another

reason for performing a software test is to avoid retesting the un-

wanted test cases, which would be redundant or obsolete [2].

Hence, numerous techniques have been proposed, such as test

minimization, test selection, and test case prioritization (TCP).

These techniques have been proven by an empirical study as being

able to reduce time, cost, and resources, apart from avoiding ex-

haustive testing [3]. Test selection is a technique that focuses on

giving the best test cases for the execution during testing. The

selection is based on the concept of how relevant the test case is to

the system [4]. Hence, the minimization technique will generate a

smaller test suite compared to the original test suite [5]. The effec-

tiveness of the smaller test suite is measured based on its perfor-

mance, which should at least be equal to the performance of the

original test suite. The TCP technique was proposed to produce a

new ordering of test cases for the execution during testing. [6] has

defined the TCP technique as follows:

Current TCP technique

Given: T is a test suite, while PT is a set of permutations of T, and

f is a function of PT to the real numbers.

Problem: To find T' ϵ PT, whereby (ɏT'') (T" ϵ PT) (T" ≠ T') [f(T')

≥ f(T'')]

The PT is presented as a set of possible orderings of set T, while f

is a function that can be applied with any ordering, yields, and

award values that were ordered. The f is represented as a quantifi-

cation that is used to measure the success of the prioritization

technique. The selection of the function f refers to the selected

criteria to prioritize the test case, T. The previous definition also

states that priority will be given to the higher award values [6].

The main objective of applying the TCP technique is to increase

the performance of the test, with the new ordering test case, which

is capable of detecting faults faster [7]. This paper presents a

summary and discussion related to TCP for the event sequence test

cases. TCP for a single event test case is different from the TCP

for event sequence test cases. The reason for this will be explained

in next section. This paper is organized as follows; related work

on TCP technique, discusses how TCP technique can be imple-

mented for event sequence test cases, and how to measure the

effectiveness and efficiency of the TCP technique. Lastly, con-

cludes this paper and future work.

2. Related Work

TCP technique is a method that is used to increase the effective-

ness and efficiency of the test by providing new orderings for the

test case execution. The execution starts with a test case that has

higher priority, followed by the lower priority. Rothermal et al. [8]

have distinguished two types of TCP: general and version-

specific. In a general TCP for a given program P, and test suite T,

the new ordering will be based on the prioritized technique, which

will be useful for the subsequent modified versions of P. The gen-

eral TCP is suitable for initial testing, where no information from

the previous testing is available.

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET

International Journal of Engineering & Technology 1643

Meanwhile, the version-specific TCP would have information

available from the previous testing, which is useful for improving

the effectiveness and efficiency of the testing process. For a given

program P, test suite T is prioritized based on the new ordering

after a set of changes have been made to P and prior to the regres-

sion testing P’. The version-specific TCP can only be performed

after P’ is available [8]. The TCP technique has been proposed by

numerous researches using various approaches since 1997. How-

ever, the main goal of applying TCP technique is to reduce time,

cost and resources during the testing. This technique can be ap-

plied in various ways, for example, to increase the rate of fault

detection during testing. It can be applied by prioritizing the test

case by executing modules that had failed in the previous testing

[9].

The Proportion-Oriented Randomized Algorithm (PORA) priori-

tizes a test case by optimizing the distance between the test suite

and the hierarchy distributions of the test input [10]. It will com-

pare the proposed technique with other existing techniques, such

as total greedy, automated random technique (ART), and addition-

al greedy technique. The empirical results gained from the exper-

iments have shown that the PORA is more effective and stable

compared to the other three techniques. A model of Software as a

Service (Saas) has been widely used where customers can select

and pay via web. However, numerous challenges must be faced to

maintain the quality of the services. Thus, Hema et al. [11] pro-

posed a model for the regression testing in SaaS environment. One

industrial case study was selected to prove the effectiveness and

efficiency of the proposed model towards SaaS applications. To-

wards the end of the experiment, the proposed model, with the

prioritized technique, had managed to improve the effectiveness

and efficiency of testing compared with the previous version. Fur-

thermore, the information of failure history gained from the previ-

ous testing can help to improve the effectiveness of the new ver-

sion.

Combinatorial interaction testing is a well-known technique that

can improve the efficiency of testing. Fixed-strength and variable-

strength interactions are some of the models available in combina-

torial testing. However, due to the limitations of the existing com-

binatorial testing, which only supports fixed-strength interaction,

[12] proposed two heuristic methods for the implementation of the

variable-strength interaction. The experimental results for the

proposed method have shown that it is more effective compared

with test case generation order, random technique, and fixed-

strength interaction.

Realizing the limitations of the test suite reduction, [4] proposed a

method with the concept of increasing the rate of fault detection

using a new ordering test suite. With this method, even though the

test execution is stopped early, the best test cases that can detect

faults would already have been executed. The empirical study was

conducted using test cases that were based on user-session, with

three subject applications. Furthermore, [4] proposed a new meas-

urement to measure the effectiveness of the proposed method,

known as Mod_APFD_C. Mod_APFD_C is the modification of

the Average Percentage Fault Detected (APFD) that allows a

comparison of test suites with different sizes, and incorporates

them with test generation time and cost. There are five criteria that

could influence the effectiveness of the proposed method, which

are count-based, frequency-based, combinatorial-based, random,

and logged order.

As previously mentioned, combinatorial interaction is widely

used, as proven by empirical results obtained by numerous re-

searchers. However, when testing resources are limited during the

testing, the execution order of the interaction’s test suite may be

critical. Thus, Huang et al. [13] proposed a new “aggregate-

strength prioritization” to improve the effectiveness of the testing.

The combination of interaction coverage at different strengths

managed to perform better than the test case generation, reverse

test-case-generation, and random technique. To find the best test

case for execution, all possible permutation test suites need to be

investigated. This is to ensure that the best test case is not missing

out during the testing. Genetic algorithm has been widely used to

solve the TCP, test case selection, and test suite minimization.

With the genetic algorithm concept, [14] defines the Epistatic Test

Case Segment (ETS) by applying two associated crossover opera-

tors, namely, the Epistasis-based Order Crossover (E-Ord) and

Partially-Mapped Crossover (PMX). The empirical results of these

applications showed that the proposed methods are effective and

efficient. Meanwhile, the Average Percentage Statement Coverage

(APSC) is often used to evaluate the test case execution sequence.

Code coverage is one of the known criteria used in TCP technique.

[15] proposed several novel similarity-based TCPs using edit dis-

tances or ordered sequences. With five open source programmes,

the experimental results have shown that the proposed technique

manages to increase the rate of fault detection, while being the

most cost-benefit compared with the existing techniques. Several

novel similarity-based TCP techniques applied the farthest-first

ordered sequence (FOS) algorithm and greed-aided-clustering

ordered sequences (GOS) algorithm. The ordered sequences have

been proven effective and been used in various fault location [16].

The TCP can be applied either as code-based or model-based [17].

For code-based TCP, the prioritization technique uses a pro-

gramme from the system as one of the input besides the test cases.

On the other hand, the model-based TCP is based on information

retrieved from the developers or testers, whereby these infor-

mation are useful for developing the model-based technique.

Sometimes, modification of an existing model can be done to fill

the gap left by previous researchers.

3. Test Case Prioritization Technique for

Event Sequence Test Cases

3.1 TCP Technique Limitations

According to the SLR analysis by [18], four major TCP limita-

tions have been identified, namely, failure to prioritize multiple

suites, failure to handle same-priority values, ignoring the practi-

cal weight factor, and most test cases are small in size. The SLR

was conducted using 50 primary studies and the publications were

from 2005 to 2015. Most of the previous researches failed to han-

dle the issue of same priority values. Some papers stated that they

would pick randomly, while other papers did not mention any-

thing about the same priority value. Furthermore, many research-

ers believe that the combination of factors may help to break ties

[19]. Break ties here refer to the case where more than one test

case share the same priority value [20]. The priority value is used

to rank the execution of the test case, which uses the concept that

the highest priority will be executed first compared with the lower

priority.

Table 1 presents some of the techniques and approaches applied

by numerous researchers. Columns for whether the probability of

same priority value exists, did the paper handle the issue of same

priority value, and how they handle this issue were added to the

table to summarize how each of these techniques handled same

priority value. As seen in Table 1, most of these techniques had

randomly applied more than one test case that shared the same

priority value after the prioritization processes ([19], [20], [21],

[22]).

3.2 Factor Determination

Various combinations of factors have been applied by previous

researchers to meet the objective of the TCP technique. To the

best of our knowledge, the combination of factors depends on the

objective and research area. Additionally, the type of test cases

may need to be investigated since the properties of the test case

may influence the performance of the TCP technique. A simple

analysis was conducted to get an overview of how the combina-

tion of factors can be applied in TCP technique. Figure. 1 depicts

1644 International Journal of Engineering & Technology

10 factors that were identified as potential factors, which can im-

prove the effectiveness and efficiency of the TCP technique.

Based on observations, fault has become the most popular factor

to be applied in a TCP technique. Out of 70 papers, 42 of them

had applied fault in their TCP techniques. Some of these tech-

niques combined fault with other factors, such as execution time

[23]. Meanwhile, Zhang et al. [24] combined fault matrix with

distance to propose a prioritization technique using the Adaptive

Random Sequence (ARS) in order to get higher fault detection.

Category-partition-based was applied to assess the diversity of the

test cases. Finally, the experimental results showed that the pro-

posed technique had higher fault detection compared to other

techniques. As depicted in Figure.1, besides fault, redundancy,

complexity, frequency, and requirements had ranked at the top as

well. Thus, it can be concluded that there is a need to combine

more than one factor to improve the effectiveness and efficiency

of the TCP technique.

Figure 1: Number of Papers that Applied Each of the Listed Factors

Table 1: Test case prioritization techniques

Technique Probability

of Same

Priority

Value

Exists?

Same

Priority

Value

Issue is

Handled

or Not

How do They Handle

Same Priority Value

Issue

Proportion-

Oriented Ran-
domized Algo-

rithm

Yes No Pick Randomly

Model for Re-
gression Testing

in SaaS

Yes No Not Available

Weighted de-

pendence propa-
gation model

Yes No Pick Randomly

Two Heuristic

Methods in Or-

der to Prioritize

VCA

Yes No Pick Randomly

Prioritizing Test

Cases Using
Business Criti-

cality Test Value

Yes No Not Available

Modified Cost-
Cognizant Test

Case Prioritiza-

tion (MCCTCP)

Yes No Not Available

Aggregate-
strength prioriti-

zation

Yes No Pick Randomly

Cluster-based
test case prioriti-

zation technique

Yes No Not Available

Epistatic Test Yes No Not Available

Case Segment

(ETS)

Model structure

and test case

profile

Yes No Pick Randomly

Multi-objective
genetic algorithm

method

Yes No Not Available

Novel similarity-

based test case
prioritization

techniques

Yes No Pick Randomly

Test Case Priori-
tization Based on

Genetic Algo-

rithm

Yes No Not Available

3.3 Existing TCP Technique

Various techniques and approaches for the TCP technique have

been proposed since 1997. From the simple analysis conducted for

this paper, it was found that code coverage and requirement cov-

erage are the most utilized techniques since the TCP technique.

Meanwhile, fault coverage, interaction coverage, historical data,

statement coverage, and execution time were applied by four pre-

vious papers, followed by input information with three papers, and

lastly, programme changes with two papers. Some of the previous

researches had combined more than one technique to increase the

number of faults detected [25]. Some researchers agreed that a

combination of more than one technique could optimize the test-

ing process by detecting faults earlier and increasing the number

of faults detected [26]. Code coverage has become the most uti-

lized technique because of its ability to enhance failure-detection

and the confidence on software reliability [9], [27]. However,

various perspectives have been reported regarding the effective-

ness of the code coverage to be applied in TCP technique. Figure.

2 presents a summary of the analysis done regarding the number

of papers for each of the technique that exists in TCP.

Figure 2: Number of Papers that Applied Each of the Listed Factors

3.4 TCP Technique for Event Sequence Test Cases

TCP technique can be applied either for event sequence test cases,

or for a single event test case. Based on the SLR analysis that was

conducted in 2016, out of 50 primary studies, only 36 per cent had

applied the TCP technique for event sequence test cases [18].

Previous studies have pointed out that the event sequence test case

is more complex compared with the single event test case due to

several reasons, such as the huge amount of test cases, with con-

siderable degree of redundancy [28]. The large input sequence

may lead to the possibility of the test case to have a combination

of events [29]. Furthermore, [30] has addressed that the complexi-

ty of the event sequence testing was due to the large test space,

different positions of the events, and also because of the curious

permutations of inputs.

International Journal of Engineering & Technology 1645

Generally, there are seven types of transition criteria for the event

sequence test case, namely, single event single outcome, many

events and single outcome, event to event, event to component,

component to event, and component to component [30]. Event

sequence test cases mostly consist of a combination of methods in

one class, thus the link between methods should be taken into

consideration to avoid exhaustive testing. [31] proposed the idea

that since the event sequence test case has an enormous number of

states, thus, every state should be tested. Hence, the change of

internal data state from one state to another needs to be under

consideration since it involves the interaction between the events.

The properties of the event sequence test case, as previously intro-

duced, are useful for proposing a TCP technique for the event

sequence test cases, with the goal of offering effective prioritized

test suite compared to the original test suite.

4. Evaluation to Determine the Effectiveness

of Test Case Prioritization Technique

Numerous evaluation metrics have been proposed to measure the

effectiveness and efficiency of TCP technique. Based on the litera-

ture, existing evaluation metrics include the Average Percentage

Fault Detected (APFD), Average Percentage Statement Coverage

(APSC), Average Percentage of Faults Detected per Cost (AP-

FDc), and Normalized Percentage of Faults Detected (NAPFD).

Most researches would use the APFD. The SLR analysis by [18]

had also shown that out of 50 primary studies, 58 per cent of the

existing TCP techniques had applied APFD as their evaluation

metric, to measure the effectiveness and efficiency of the proposed

technique.

The APFD is often used to measure how quickly faults can be

detected within the testing process. [9] proposed the APFD in

2001, with the objective of quantifying the rate of fault detection

for the prioritized test suite. The APFD value ranges between 0

and 100. The higher APFD value shows that the technique is ef-

fective compared to other techniques. The expectation is that the

prioritized test suite should obtain higher APFD value compared

to the original test suite. However, there are two limitations that

need to be satisfied before the APFD can be applied, as listed

below:

• All faults must have equal fault severities.

• All test cases must cost the same.

If these assumptions are not fulfilled, unsatisfactory APFD values

would be produced [32]. According to [9], the APFD can be cal-

culated using the following Equation (1):

where n denotes the number of test cases, while m is the number

of faults revealed, and is the position of the first test case,

and T reveals the fault.

5. Conclusion

The main goal of the TCP technique is to improve the effective-

ness and efficiency of the testing process. Detection of faults ear-

lier in the TCP technique can reduce time, cost, and resources of

testing. In the TCP technique, a test case that has high priority

value will be executed first compared to the lower priority. This

paper has summarized several researches on TCP technique,

which included different techniques, evaluation metrics, ap-

proaches, and methodologies. Each technique had applied differ-

ent factors, different areas, and has its own advantages and disad-

vantages. The essence of this review paper will be used to identify

areas of improvements in TCP technique for event sequence test

cases.

Acknowledgement

The authors would like to acknowledge the Ministry of Higher

Education Malaysia (MOHE) for the financial support under the

Fundamental Research Grant Scheme (FRGS); Project code-08-

01-15-1723FR.

References

[1] G. Rothermel, R. H. Untch, C. C. C. Chu, and M. J. Harrold, “Test

case prioritization: an empirical study,” Proc. IEEE Int. Conf. Softw.
Maint. - 1999 (ICSM’99). ’Software Maint. Bus. Chang. (Cat.

No.99CB36360), 1999.
[2] A. A. Haider, A. Nadeem, and S. Rafiq, “On the Fly Test Suite

Optimization with FuzzyOptimizer,” 2013 11th Int. Conf. Front. Inf.

Technol., pp. 101–106, 2013.
[3] S. Nayak, C. Kumar, and S. Tripathi, “Effectiveness of

prioritization of test cases based on Faults,” 2016 3rd Int. Conf.

Recent Adv. Inf. Technol. RAIT 2016, pp. 657–662, 2016.
[4] S. Sampath and R. C. Bryce, “Improving the effectiveness of test

suite reduction for user-session-based testing of web applications,”

Inf. Softw. Technol., vol. 54, no. 7, pp. 724–738, Jul. 2012.
[5] M. A. Sapaat and S. Baharom, “A Preliminary Investigation

Towards Test Suite Optimization Approach for Enhanced State-

Sensitivity Partitioning,” no. November, pp. 40–45, 2011.
[6] G. Rothermel, R. H. Untch, C. Chu, M. J. Harrold, and I. C. Society,

“Prioritizing Test Cases For Regression Testing Prioritizing Test

Cases For Regression Testing,” IEEE Trans. Softw. Eng., vol. 27,
no. 10, pp. 929–948, 2001.

[7] H. Do, G. Rothermel, and A. Kinneer, “Prioritizing JUnit Test

Cases : An Empirical Assessment and Cost-Benefits Analysis,” pp.
33–70, 2006.

[8] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case

prioritization: a family of empirical studies,” IEEE Trans. Softw.
Eng., vol. 28, no. 2, pp. 159–182, 2002.

[9] S. Elbaum, A. Malishevsky, and G. Rothermel, “Incorporating

varying test costs and fault severities into test case prioritization,”
Proc. 23rd Int. Conf. Softw. Eng. ICSE 2001, pp. 329–338, 2001.

[10] B. Jiang, W. K. Chan, and T. H. Tse, “PORA: Proportion-Oriented

Randomized Algorithm for Test Case Prioritization,” 2015 IEEE
Int. Conf. Softw. Qual. Reliab. Secur., no. 61202077, pp. 131–140,

2015.

[11] H. Srikanth and M. B. Cohen, “Regression testing in Software as a
Service: An industrial case study,” 2011 27th IEEE Int. Conf. Softw.

Maint., pp. 372–381, 2011.

[12] R. Huang, J. Chen, T. Zhang, R. Wang, and Y. Lu, “Prioritizing
Variable-Strength Covering Array,” 2013 IEEE 37th Annu. Comput.

Softw. Appl. Conf., pp. 8–11, 2013.

[13] R. Huang, J. Chen, D. Towey, A. T. S. Chan, and Y. Lu,
“Aggregate-strength interaction test suite prioritization,” J. Syst.

Softw., vol. 99, pp. 36–51, Jan. 2015.

[14] F. Yuan, Y. Bian, Z. Li, and R. Zhao, “Search-Based Software
Engineering,” vol. 9275, pp. 109–124, 2015.

[15] C. Fang, Z. Chen, K. Wu, and Z. Zhao, “Similarity-based test case

prioritization using ordered sequences of program entities,” Softw.
Qual. J., vol. 22, no. 2, pp. 335–361, 2014.

[16] M. Renieres and S. P. Reiss, “Fault localization with nearest

neighbor queries,” Autom. Softw. Eng. 2003 …, pp. 30–39, 2003.
[17] G. Pardha Sagar and P. V. R. D. Prasad, “A Survey on Test Case

Prioritization Techniques for Regression Testing,” Indian J. Sci.

Technol., vol. 10, no. 10, pp. 1–6, 2017.
[18] J. Ahmad and S. Baharom, “A Systematic Literature Review of the

Test Case Prioritization Technique for Sequence of Events,” Int. J.
Appl. Eng. Res., vol. 12, no. 7, pp. 1389–1395, 2017.

[19] S. Sampath, R. Bryce, and A. M. Memon, “A uniform

representation of hybrid criteria for regression testing,” IEEE Trans.
Softw. Eng., vol. 39, no. 10, pp. 1326–1344, 2013.

[20] Z. He and C.-G. Bai, “GUI Test Case Prioritization by State-

coverage Criterion,” 2015 IEEE/ACM 10th Int. Work. Autom. Softw.
Test, 2015.

[21] A. Ammar, S. Baharom, A. A. A. Ghani, and J. Din, “Enhanced

Weighted Method for Test Case Prioritization in Regression
Testing Using Unique Priority Value,” in Information Science and

Security (ICISS), 2016 International Conference, 2016.

[22] R. C. Bryce and A. M. Memon, “Test suite prioritization by
interaction coverage,” Work. Domain Specif. approaches to Softw.

1646 International Journal of Engineering & Technology

test Autom. conjunction with 6th ESEC/FSE Jt. Meet. - DOSTA ’07,

pp. 1–7, 2007.
[23] M. Tyagi and S. Malhotra, “Test case prioritization using multi

objective particle swarm optimizer,” 2014 Int. Conf. Signal Propag.

Comput. Technol. (ICSPCT 2014), pp. 390–395, 2014.
[24] X. Zhang, X. Xie, and T. Y. Chen, “Test Case Prioritization Using

Adaptive Random Sequence with Category-Partition-Based

Distance,” 2016 IEEE Int. Conf. Softw. Qual. Reliab. Secur., pp.
374–385, 2016.

[25] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, “A
systematic review of the application and empirical investigation of

search-based test case generation,” IEEE Trans. Softw. Eng., vol.

36, no. 6, pp. 742–762, 2010.
[26] A. Khalilian, M. Abdollahi Azgomi, and Y. Fazlalizadeh, “An

improved method for test case prioritization by incorporating

historical test case data,” Sci. Comput. Program., vol. 78, no. 1, pp.
93–116, 2012.

[27] T. Y. Chen, F.-C. Kuo, H. Liu, and W. E. Wong, “Code Coverage

of Adaptive Random Testing,” IEEE Trans. Reliab., vol. 62, no. 1,
pp. 226–237, 2013.

[28] R. C. Bryce, S. Sampath, and A. M. Memon, “Developing a single

model and test prioritization strategies for event-driven software,”

IEEE Trans. Softw. Eng., vol. 37, no. 1, pp. 48–64, 2011.

[29] C.-Y. Huang, C.-S. Chen, and C.-E. Lai, “Evaluation and analysis

of incorporating Fuzzy Expert System approach into test suite
reduction,” Inf. Softw. Technol., vol. 79, pp. 79–105, 2016.

[30] H. Reza, S. Endapally, and E. Grant, “A Model-Based Approach

for Testing GUI Using Hierarchical Predicate Transition Nets Nets
(HPrTNs) and Model Based,” pp. 1–5, 2007.

[31] O. Kumar, P. K. Bhargavi, and V. Kumar, “A Single Model for

Event-Driven Software,” Int. J. Adv. Comput. Theory Eng. Ex., vol.
2, pp. 31–36, 2013.

[32] L. Zhang, S.-S. Hou, C. Guo, T. Xie, and H. Mei, “Time-aware

test-case prioritization using integer linear programming,” Proc.
eighteenth Int. Symp. Softw. Test. Anal. - ISSTA ’09, pp. 401–419,

2009.

