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Abstract 
 

Tensegrity structures is a light-weight structure compared to concrete structures that are heavy and rigid in shape. The studies on form-

finding for tensegrity configuration are still ongoing and have been extensively conducted. Additionally, many proposed tensegrity struc-

tures have not been built for real applications. This study aims to determine potential self-equilibrated configurations of three-stage Class 

I tensegrity model assemblage with triangular cells, which may be applied as deployable towers. The form-finding methodology involves 

phases in establishment of desired form and formulation for the self-equilibrated state. The system of equilibrium equations was solved 

by Moore-Penrose generalized inverse method.  A range of twist angles 10o – 50o for triangular cells was investigated in the form-finding 

process.  It was found that the form-finding method via changing of twist angles has successfully search self-equilibrated tensegrity mod-

els.  
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1. Introduction 

Tensegrity originates from a combination of words tension and 

integrity.  The structure was popularized by Buckminster Fuller 

since early 1950. It can be seen as a special type of truss which 

consists of set of continuous tensile members (i.e. cables) and 

discontinuous compressive members (i.e. struts or bars).  The 

cables act as strings that are attached at the end of axially loaded 

struts and thus allow no bending moment in the structure.  Fuller 

has described tensegrity as “islands of compressions in an ocean 

of tension”.   A three dimensional tensegrity structure based on 

plywood and monofil sculpture named as X piece was made by 

Kenneth Snelson in winter of 1948. 

Tensegrity structures are categorized into two broad structural 

classes that are pre-stressed and geodesic structures. Anthony 

Pugh was the first person who described the simplest configura-

tion of tensegrity in two-dimensional and three-dimensional by 

referring to the position of its cables [1].  Pugh have also classified 

three basic patterns of tensegrity by using the configuration of 

spherical and cylindrical structures: prism tensegrity, diamond 

tensegrity and zig-zag tensegrity [2].  

The concept of Tensegrity is suitable for the design of deployable 

structures for space and structural applications.  This is owing to 

the separation of compressive elements in tensegrity structures 

which makes the folding process easier. Tensegrity mast is a tow-

er-like, prism or cylindrical-like structure with its struts and cables 

widely extended.  Other potential applications of tensegrity struc-

tures were suggested such as cable domes, weaving tower struc-

ture and Snelson’s triangle tensegrity structure [3].  

Form-finding is considered as an important step in designing a 

tensegrity structure. Form-finding can be defined as a process of 

knowing special geometrical and equilibrium configuration that 

lead to a state of self-stress for tensegrity structure. There are 

many methods that have been classified and reviewed for the 

study of form-finding, particularly kinematical methods and stati-

cal method [4].  Statical methods can solve equilibrium equations 

directly. Several methods that are categorized as statical methods 

are analytical method, force density method, energy method and 

reduced coordinates method. Meanwhile, analytical approach, 

non-linear programming method (i.e. optimization approach) and 

dynamic relaxation method are considered under kinematical 

method.  Optimization approach is always used in the form-

finding strategies.  In this approach, the length of cables is kept to 

constant while the strut length is increased until it reached the 

maximum length or the strut length is kept constant while the 

length of cables is decreased until it reached the minimum length 

[5].  Numerical technique incorporated genetic algorithm with 

only input of number of nodes has been proposed in solving self-

equilibrium state in the form-finding of an irregular tensegrity 

structure [6].  Feasible solution for nodal coordinates and force 

densities has been determine by performing singular value decom-

position of equilibrium matrix has also been investigated [7].  

Form-finding of tensegrity mast [8,9] and tensegrity mimicking 

human backbone [10] have been carried out. 

In this study, form-finding of three-stage (Class I) tensegrity mod-

els with triangular cell was carried out by using computational 

method by [8]. Other than that, investigation of axial forces for the 

three-stage tensegrity models at self-equilibrated state was also 

presented. The authors hope that this study could further contrib-

utes to the field of form-finding of tensegrity structure.  

The remainder of the paper is organized as follows.  Section 2 

presents the methodology of form-finding for multiple-stage 

tensegrity model. Section 3 shows the numerical examples for 

three-stage tensegrity model T1 and T2 using different triangular 

cells. Section 4 presents the axial forces of the tensegrity models 

at self-equilibrium state.  Finally, Section 5 shows the concluding 

remarks for the paper. 

2. Form-finding Procedure 

This section presents the procedure of form-finding for three-stage 

(Class I) tensegrity model with triangular cells. The procedure 
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includes the establishment of element connectivity, preparation of 

geometrical inputs, and determination of self-equilibrium stress 

state and analysis of slackened cables. Form-finding for three-

stage tensegrity models was carried out by using proposed compu-

tational method by Oh et al. (2016). Summary of the methodology 

is shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                 

 

           
Fig. 1: Form-finding Procedure 

2.1. Terminology 

Several terminologies have been used in this study such as 

tensegrity mast, elements and nodes, stage, sag depth, twist angle 

and vertex.  

• Tensegrity mast is defined as a tower like structure that are 

prism and cylindrical shape between the struts and cables.  

Figure 2 shows an example of tensegrity mast that consists of 

three struts and nine cables. 

• Elements refer to struts and cables whereas nodes refer to the 

joints between struts and cables. 

• Stage is defined as the numbers of triangular cells when the 

cells are stacking up to form a tensegrity mast.  A tensegrity 

mast can be assembled from stage 1, 2 and up to stage n. In 

this study, tensegrity mast consists of three triangular cells, 

which the cells are stacked up until stage 3 (n = 3).  

• Sag depth is defined as a height between the top nodes of 

cells at lower stage (i.e. stage 1) and lower nodes of cells at 

upper stage (i.e. stage 2). It is also known as saddle height. 

• Twist angle is a difference is rotational angle of the upper 

triangular surface of a cell with respect to the lower triangular 

surface.  The vertex angle is the interior angle of the triangle 

for the triangular surfaces. 

 
Fig. 2: Example of tensegrity mast 

2.2. Three-stage tensegrity model 

A total of two three-stage tensegrity models with triangular cell, 

namely models T1 and T2 are investigated in the study. Triangular 

cell is chosen for the models because of its simplicity in geometry.  

A triangular cell consists of nine cables and three struts. The ca-

bles have been divided into two parts, mainly the horizontal and 

diagonal cables.  The horizontal cables are located horizontally at 

the bottom and top of the model whereas the diagonal cables con-

nected struts between cells.  

The form-finding process starts with the development of element 

connectivity followed by preparation of geometrical input such as 

nodal coordinate.  Nodal coordinates of the tensegrity model are 

firstly identified in order to assemble the model by using triangu-

lar surface as shown in Figure 3. Table 1 shows the difference 

vertex angles in model T1 and T2.  In a triangular cell, each stage 

of the tensegrity model consists of six nodes respectively. There-

fore, in this study, a total of 18 nodal coordinates are determined 

to establish a three-stage tensegrity model.  

Figure 4 shows the element connectivity chart developed by Oh et 

al. (2016). It is noted from the chart that the cells are stacked up in 

stages.  LiB denotes the position of lower triangular surface of the 

first stage cell whereby LiT is positioned at upper triangular sur-

face of cell-i (see Figure 3).  i is numbers of stage in the model (i.e. 

i = 1, 2, …, 3).  In this study, the element connectivity of the 

three-stage tensegrity models T1 and T2 are arranged according to 

the element connectivity chart in Figure 4. 
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Fig. 3: Plan view triangular surface at base 

 
Table 1: Vertex angle 

Model 
Vertex angle 

1 (°) 2 (°) 

T1 55 70 

T2 60 60 
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Fig. 3: Element connectivity developed by Oh et al (2016) 

 

Next, material properties for struts and cables are prepared for 

determining the upper and lower limit of axial forces. The material 

used for the struts and cables are steel. The value of Young Modu-

lus for the material is 200 GPa. Cross sectional area of struts and 

cables are 50.3 mm2 and 3.14 mm2, respectively.  The density of 

steel is 7.7 x 10-5 kg/mm3 and yield strength is 250 MPa. No self-

weight is considered in the study. 

Once the topology and material properties of the models are pre-

pared, formulation of self-equilibrium condition of the models are 

carried out.  Basic formulation of equilibrium equation of tensegri-

ty model is same as model with pinned jointed. The nodal coordi-

nates for an element particularly at near end i and far end j in the 

model are expressed as 

, 
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Thus, total length of element can be determined as 
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The directional cosine of an element is expressed as  
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Static equilibrium equation is obtained as follows 

 
f = Bn                                                    (4)                                                       

 
where f is vector of external forces, B is stiffness matrix and n is 

vector of axial forces.  Equation 4 is reduced if the tensegrity 

model is in the state of self-equilibrium state without external 

forces, f = 0. No self-weight is considered in the study and the 

expression is given as 

 
= 0Bn                                                    (5) 

  
The vector of axial force n can be solved by the following equa-

tion: 

[ ]m
+= −n I B Β β                                                   (6)                                                 

 

where  is an arbitrary vector of coefficient of size m, unless the 

trivial solution exists. m is numbers of elements in the model. 

Microsoft Office Excel Solver tool is used to search one possible 

combination of coefficient . The coefficient  is used to deter-

mine axial forces (see Equation 6). In order to solve the variables, 

conjugate gradient method is utilized. Inequality constraints are 

imposed in the minimization problem to obtain a self-equilibrated 

model that compatible with the material of properties. The con-

straints ensure that the axial forces for cables and struts are kept 

within their lower and upper bound limit: 
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where nc = axial forces for cables, c = yield stress for cables, Ac = 

cross sectional area for cable elements, ns = axial forces for struts, 

Es = Young Modulus for struts, Is = moment of inertia for struts, Ls 

= element length for struts, s = yield stress for struts, As = cross 

sectional area for strut elements. 

It is noted that the cross sectional area for struts in tensegrity mod-

el T1 and T2 is circular. Using Euler’s buckling load, the com-

pressive forces of strut element are determined.   

Additionally, the self-equilibrium stress nodes are extracted for 

the analysis of slackened cables.  When there are none slackened 

cables in the model, the tensegrity models are said to be in the 

self-equilibrium condition and the form-finding process stopped.  

Consequently, the axial forces for tensegrity models in the pre-

stress condition can be determined. 

3. Results and Discussions 

This section presents the results and discussion from the form-

finding of three-stage (Class I) tensegrity models, particularly the 

analysis of slackened cables and self-equilibrated configuration. 

Each of the section follows the aforementioned results for model 

T1 and T2 and the results discussed.  

The configuration of the tensegrity model can be searched based 

on the form finding results. There are two different vertex angles 

as shown in Table 1 that had been applied in order to obtain the 

initial nodal coordinates for the model. A total of 18 nodes and 51 
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elements, specifically 9 struts and 42 cables were established for 

T1 and T2. The element connectivity and nodal coordinates are 

shown in Appendix. 

Twist angles are applied on initial topology of the tensegrity mod-

el to search for the self-equilibrated configuration through form-

finding process. The application of twist angle with range of be-

tween 10 - 50 degrees is investigated in the study. Trial configura-

tion are analyzed after the application of twist angles for initial 

configuration. It is noted that only the x and y-coordinate of trian-

gular surfaces changed after the application of twist angles. The z-

coordinate remain the same as the initial due to constant height. 

Numbers of slackened cables are studied during the search of the 

self-equilibrated model. The models are considered to be in the 

self-equilibrated state when all the cables in tension which means 

there is none slackened cables. 

3.1. Model T1 

Figure 5 shows the number of slackened cables against the twist 

angle for model T1. Firstly, analysis cases with application of 

twist angle 10°– 50°, with interval of 10° were studied for model 

T1. The number of slackened cables decreased significantly for 

the analysis cases with increasing twist angle. Figure 5 shows that 

the maximum and minimum number of slackened cables are 20 

and 1, respectively when the application of different twist angles. 

It shows that the lowest number of slackened cables is recorded 

for twist angle 50° but the form-finding process has yet to meet 

the criteria where there should be none slackened cables exists in 

the tensegrity model. 

 

 
Fig. 5: Number of slackened cables at various (10 - 50°) twist angles for 
model T1 

 

Based on Figure 5, it shows that the number of slackened cables 

between twist angle 40° - 50° is decreasing and getting closer to 0 

which is none slackened cables. So, the twist angle with range 40-

50° has been investigated in the next phase. Since the number of 

slackened cables at twist angle 45°-50° is lower compared to 

slackened cables at 40°-45°, only the results are shown in Figure 

6.  The form-finding continues with the analysis cases with twist 

angles between 45 - 50° and its interval is 1°. From twist angle of 

45° to 46°, there is a significant reduction in number of slackened 

cables from 4 to 2. The number of the slackened cables remain 

constant for both twist angle 46° and 47°. It is found that there is 

no slackened cable at twist angle at 48° which denotes the satis-

faction of the form-finding process and the process stop.  Figure 7 

shows the self-equilibrated model T1. 

 

 

 

 

 
Fig. 6: Number of slackened cables at twist angle (45 - 50°) for model T1 

 

 
Fig.7: Self-equilibrated configuration for model T1 

3.2. Model T2 

For model T2, Figure 8 shows the graph of number of slackened 

cables against twist angle. Again, the twist angle of 10° - 50° is 

applied to the model T2 with 10° as the interval. The number of 

slackened cables decreased as the twist angle increased. The max-

imum number of slackened cables is 17 at application of twist 

angle 10° whereby the lowest is 0 at twist angle 50°. This means 

the configuration of self-equilibrated model T2 is found at twist 

angle 50° as shown in Figure 9. 

 

 
Fig. 8: Number of slackened cables at various twist angle (10° - 50°) for 

model T2 
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In the real world environment, the elements of the tensegrity mod-

el shall not collide to each other. The form-finding analysis that 

allows the successful search of the self-equilibrated configuration 

shall incorporate dimensions in the computational strategy.  In this 

study, both model T1 and T2 established with 8 mm struts do not 

show any internal collision by observation.  

 

 
Fig.9: Self-equilibrated configuration for model T2 

 

All of the axial forces for both models are in between the lower 

and upper bound limit for cables and struts. Axial forces for both 

models is shown in Appendix.  In this study, elements 1 – 9 are 

considered as struts whereby the other elements are the cables. All 

of the struts obtained negative axial forces which means that the 

struts are in compression mode. Model T1 shows the highest axial 

force for struts is -203.975 N whereby for model T2, the value is -

271.859 N.  Both of the highest compressive forces are observed 

in strut 7. 

Elements 10 to 51 are cables.  Numbers of diagonal cable are 

more than the saddle and horizontal cables. The cables are consid-

ered as slackened cable if the axial forces are negative. All of the 

values should be positive. The highest axial forces of cables for 

model T1 and T2 are 168.490 N (at element 47) and 203.374 N (at 

element 41), respectively.    In addition, by comparing both mod-

els, the diagonal cables element shows the lowest axial forces 

among all of the cables.  

4. Conclusions 

In this study, two self-equilibrated configuration of three-stage 

Class I tensegrity models T1 and T2 are successfully search 

through a form-finding method. Configuration of the models T1 

and T2 are differentiated with the value of vertex angle in the 

triangular cell. Both the models satisfy the criteria of upper and 

lower limits of axial force.  Both the models are analysed with real 

elemental sizes has also show internal collision free.  It was found 

that the number of axial forces can be changed easily when there 

is slight change in the geometry (i.e. change in twist angle and 

slight difference in vertex angle). The adopted form-finding meth-

od is able to find self-equilibrated tensegrity models based on a 

given initial topology. The axial forces can be determined by after 

the form-finding analysis with none slackened cable. 

Acknowledgement 

The authors would like to thank Ministry of Higher Education 

Malaysia through FRGS grant (FRGS/1/2017/TK01/UITM/02/1) 

for funding this study.  We would like to express our appreciation 

to University Teknologi MARA (UiTM), Selangor in providing 

the facilities. 

Appendix 

Table A.1 and Table A.2 show the nodal coordinates of the initial 

topology for model T1 and T2, respectively.  Table A.3 shows the 

element connectivity for both models.  Table A.4. shows the axial 

forces of both models. 

 
Table A.1: Nodal coordinates for self-equilibrated model T1 

Nodes 
Coordinates 

Position 
Triangular 

Surface x y z  

N1 -12.48 38.51 0 L1B 

1 N2 257.98 -33.96 0 L1B 

N3 174.51 195.46 0 L1B 

N4 58.90 -65.49 200 L1T 

2 N5 293.72 87.00 200 L1T 

N6 67.38 178.49 200 L1T 

N7 213.90 -69.65 150 L2B 

3 N8 199.25 209.96 150 L2B 

N9 6.85 59.69 150 L2B 

N10 88.15 -79.47 350 L2T 

4 N11 286.14 118.52 350 L2T 

N12 45.72 160.95 350 L2T 

N13 -12.48 38.51 300 L3B 

5 N14 257.98 -33.96 300 L3B 

N15 174.51 195.46 300 L3B 

N16 58.90 -65.49 500 L3T 

6 N17 293.72 87.00 500 L3T 

N18 67.38 178.49 500 L3T 

 

Table A.2: Nodal coordinates for self-equilibrated model T2 

Nodes 
Coordinates 

Position 
Triangular 

Surface x y z  

N1 0 0 0 L1B 

1 N2 230.94 0 0 L1B 

N3 115.47 200 0 L1B 

N4 0 0 200 L1T 

2 N5 230.94 0 200 L1T 

N6 115.47 200 200 L1T 

N7 0 0 150 L2B 

3 N8 230.94 0 150 L2B 

N9 115.47 200 150 L2B 

N10 0 0 350 L2T 

4 N11 230.94 0 350 L2T 

N12 115.47 200 350 L2T 

N13 0 0 300 L3B 

5 N14 230.94 0 300 L3B 

N15 115.47 200 300 L3B 

N16 0 0 500 L3T 

6 N17 230.94 0 500 L3T 

N18 115.47 200 500 L3T 

 
Table A.3: Element connectivity of T1 and T2 

Description Member Node i Node j 

Strut (L1) 

1 1 5 

2 2 6 

3 3 4 

Strut (L2) 

4 7 12 

5 8 10 

6 9 11 

Strut (L3) 

7 13 17 

8 14 18 

9 15 16 

Horizontal cable 
(base) 

10 1 2 

11 2 3 
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12 3 1 

Horizontal cable 

(top) 

13 17 18 

14 18 16 

15 16 17 

Additional diagonal 

cable (L1) 

16 1 7 

17 2 8 

18 3 9 

Diagonal 1 (L1) 

19 1 9 

20 2 7 

21 3 8 

Diagonal 1 (L2) 

22 9 13 

23 7 14 

24 8 15 

Diagonal 2 (L2) 

25 4 10 

26 5 11 

27 6 12 

Diagonal 2 (L3) 28 10 16 

29 11 17 

30 12 18 

Diagonal 3 (L1) 31 1 4 

32 2 5 

33 3 6 

Diagonal 3 (L2) 34 7 10 

35 8 11 

36 9 12 

Diagonal 3 (L3) 37 13 16 

38 14 17 

39 15 18 

Saddle cable (IM1) 40 9 4 

41 4 7 

42 7 5 

43 5 8 

44 8 6 

45 6 9 

Saddle cable (IM2) 46 15 12 

47 12 13 

48 13 10 

49 10 14 

50 14 11 

51 11 15 

 

Table A.4: Axial forces of self-equilibrated model T1 and T2 

Element 
Axial Forces (kN) 

T1 T2 

1 -131.669 -201.942 

2 -123.427 -199.876 

3 -194.320 -253.844 

4 -176.514 -244.811 

5 -193.200 -270.393 

6 -188.350 -258.941 

7 -203.957 -271.859 

8 -203.599 -268.658 

9 -148.944 -248.972 

10 26.944 94.764 

11 73.039 113.957 

12 78.092 97.7102 

13 116.804 137.149 

14 73.413 111.386 

15 53.982 99.303 

16 3.276 0.00001 

17 8.472 24.426 

18 65.564 56.345 

19 17.752 20.649 

20 60.381 65.765 

21 75.429 74.307 

22 19.724 24.654 

23 45.326 50.296 

24 54.242 49.235 

25 32.846 44.748 

26 0.0001 10.647 

27 18.882 40.899 

28 59.488 77.633 

29 32.261 35.798 

30 85.184 101.526 

31 61.783 64.026 

32 11.811 37.483 

33 0.000 10.896 

34 55.027 76.658 

35 60.470 81.814 

36 57.666 61.402 

37 32.314 50.108 

38 93.406 87.907 

39 37.589 70.612 

40 144.043 198.424 

41 135.323 203.374 

42 106.061 170.662 

43 105.504 186.359 

44 133.979 188.124 

45 122.581 155.956 

46 163.779 191.301 

47 168.490 200.918 

48 144.326 178.865 

49 146.046 179.817 

50 131.117 159.581 

51 139.295 165.303 
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