

Copyright © 2018 P. Nagabhushan Reddy, Dr. T. Bhaskara Reddy. This is an open access article distributed under the Creative Commons Attrib-

ution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering &Technology, 7 (4) (2018) 6649-6651

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

doi: 10.14419/ijet.v7i4.28509

Research paper

ScalabletTest Framework for device driver validation

P. Nagabhushan Reddy1*, Dr. T. Bhaskara Reddy2

1P. Nagabhushan Reddy, Research Student, RU, Kurnool – 518002

2Professor, Dept. of Computer Science, S.K. University, Anantapur-515003

*Corresponding author E-mail:bhaskarareddysku@gmail.com

Abstract

Real-time embedded systems are increasingly being implemented on system-on-chip (SoC) devices in order to take advantage of lower

power consumption, lower unit cost, and higher integration. These SoCs have processors, memory, peripherals, controllers, and other

subsystems on the same silicon die. Based on the different business requirements wide variety of SoCs are designed and manufactured.

The application development on these SoCs requires device drivers for communicating with the peripherals. Some of the most common

device driver categories are: Serial (I2C, SPI, UART), Storage (MMC/SD, NAND etc), Audio, Connectivity (USB), Networking and

Video. The interfaces and implementation of these device drivers vary with different SoCs and RTOS (e.g. DSP/BIOS, PrOSetc).

With increasing number of SoCs and less time to market, the device driver validation needs to be efficient and reliable. Typically test

benches or test suites are developed to carry out the validation. Such test benches should have an architecture that helps plugging in new

testcases easily, provide test case portability across SoCs and RTOS, enable ease of use, help in regression tests, provide better maintain-

ability and improved time to market.

The purpose of this paper is to explain the architecture of the test bench that we have developed. We also want to share the details on

prior work/experience, what motivated us to develop the test bench. We will also cover the impact of these test benches across different

teams within our organization and our customers. Finally we will conclude with the status of current work and future plans.

Keywords: Device Drivers; Framework; Test Bench; Test Case.

1. Introduction

1.1. System on chip

Typically a System on chip has a processor, peripherals and other

resources on the same silicon die.

Fig. 1:Block Diagram of A Soc (Example).

1.2. Device driver

Applications use device drivers to communicate with hardware

peripherals and devices present in the system. A device driver

communicates with the peripheral using the underlying hardware

mechanism. There are different categories of device drivers like

serial, networking, display, audio, video and storage drivers. The

implementation/ interfaces of each driver vary with different plat-

forms and operating systems.

Fig. 2:Software Stack with Device Driver Layer.

1.3. Device driver validation

Validation of device driver includes creating different categories

of test cases which can be run on the required platform and operat-

ing system.

RTOS

Application

Hardware (EVM)

Serial drivers Storage driv-
ers

Connectivity
drivers

Other drivers
Periph-
eral 1

Proces-
sor

(ARM/DS

P)
Other
shared

re-
sources Periph-

eral 2

Periph-

eral 3

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET
http://en.wikipedia.org/wiki/Hardware

6650 International Journal of Engineering & Technology

Fig. 3:Categories of Tests.

2. Problem statement

Semiconductor companies produces various SoCs having different

set of peripherals and configurations.The device drivers are deliv-

ered independently for each platform and operating system. The

driver validation activity specifically the test framework is de-

pendent on following attributes.

2.1. Maintainability

The test bench architecture should define a standard way to add

test cases for a new driver, new test cases for existing drivers. This

will enable the test developers to develop the test cases in a well

defined way.

2.2. Portability and reusability

The APIs and parameters of device driver for a particular periph-

eral could vary across platforms and RTOS. Test cases developed

for a device driver should be portable across multiple platforms

and RTOS to enable reuse of test cases.

2.3. Test case configurability

All the test parameters should be configurable at run time. The

user should be able to execute a test case with varying parameters

through a test script or user interface. Varying of test parameters

should not require changing the test code. This will increase the

robustness of test code and increase the flexibility to add new test

cases on the fly.

2.4. Test execution and analysis

The test bench needs to be executed on the target. The test bench

should provide a user interface through which the user should be

able to run all the predefined tests at one shot using a test script. It

also should give the flexibility to execute a particular set of tests

and on the fly configuration of tests during execution.

The test logs should provide very clear details regarding the test

case that is executed, test parameters, the intermediate logs and

result. The log should help in further analysis and debugging.

2.5. Test bench as a product

The test bench should be productized and releases should be made

available to the developer as well as the customer.

Developers can use the test bench for unit testing and regression

testing before the release to the validation.

Customers can use the test bench and can execute the tests on their

custom hardware.

3. Literature review

The main idea of this thesis is to introduce a scalable test bench

architecture to validate device drivers for an IP on various SoCs

and Platforms. The test architects can re-use 98% of the code us-

ing this architecture when moving into new platform. Only the

Platform Abstraction layer and OS abstraction layer need to

change and all the test cases can as it is be run with this.

4. Proposed work

4.1. Test bench architecture

The following figure 1 represents different modules of the test

bench.

Fig. 4:Test-Bench Architecture.

The functionality of each module is explained below:

• User interface: User can communicate with the test bench

using the user interface module. Through this interface the

user can choose to execute the test scripts at one go or exe-

cute the required tests. The parser which is part of this mod-

ule would parser the command and invokes the required

test.

• Test scripts: Test scripts contain the pre defined test cases.

The user can choose to execute the test script so that all the

tests are executed at one go.

• Utility:Utility module contains common modules which can

be used by different test cases.

▪ Log module can be used as a utility for printing the logs and

test information while executing the test case.

▪ Performance measurement module can be used by test ap-

plications that want the CPU load and throughput measure-

ment.

• Test case module contains the set of test cases implemented

for running the test.

• OSAL is an abstraction layer for the OS services and will be

used by the test cases requiring OS services.

• PAL helps in abstracting the platform specific code.

• Driver API Abstraction Layer is an abstraction to the driver

APIs and definitions. The test application will not directly

call the driver APIs but instead call into this abstraction lay-

er. The advantage of having this layer is to isolate the

changes to the test case layer if the APIs, definitions or pa-

rameters of a driver change across the platforms.

Test
scripts

User inter-

face

Utilities

OSAL

Test cases

OS

PAL

Driver

Driver API Abstraction
Layer

 Testbenc
h

International Journal of Engineering & Technology 6651

5. Result

• The test bench has been developed and productized.

• Test bench supports test suites for various drivers. These

include Serial (UART, SPI, I2C), Storage (MMC/SD,

NAND, File system, SATA), Audio, Video drivers.

• Test bench has been ported to the following platforms and

RTOSs.

▪ Platforms: DRx40x, DA830, C6747, DRx45x, C6748 etc.

▪ RTOS: BIOS5, BIOS6, PrOS

• Test bench is being used to run all kinds of tests including

functional, performance, stress, stability etc.

• Test bench releases are being made regularly adding the

new platform support, new test cases and bug fixes.

• Development teams are using test bench for unit testing and

regression testing.

Table 1:Differences between Old and New Test Bench

Features Old Test Bench New Test Bench

Test case reuse <50% >95%

Portableacross OS No Yes

Portableacross Platforms No Yes
Time to port for new Platform 2 months 2 weeks

6. Conclusion

In this paper we have elaborated the importance of devices drivers

and the need for effectively validating them. Generally the device

driver validation test codeis designed for specific platform and

need to re-written for any new platform (or SoC). This will cause

lot of issues in the test case development and also wastes lot of

resources to re-do the things.

The solution we have proposed here addresses each of the prob-

lems and this new framework not only will scale to multiple

hardware platform but also is scalable across various operating

systems. This will reduce the development effort, make the test

cases robust and thus will reduce the overall project cycle time

and enhances the product time to market.

References

[1] Dan Williams, Patrick Reynolds, Kevin Walsh, Emin Gun Sirer,

Fred B. Schneider “Device Driver Safety Through a Reference Val-
idation Mechanism”

[2] JianjunDuan, John Regehr, "Correctness Proofs for Device Drivers

in Embedded Systems"
[3] Shunan Mu, Guoqing Pan, Zhihao Tian and JianchengFeng“A sur-

vey of virtual prototyping Techniques for system development and

Validation”
[4] P. Nagabhushan Reddy, Dr. T. Bhaskara Reddy, “Latest Power

Management Technologies for Mobile Computing Devices”

[5] P. Rashinkar, P. Paterson, and L. Singh, System-on-a-Chip Verifi-
cation Methodology and Techniques. Springer US, 2002.

[6] P. Nagabhushan Reddy, Dr. T. Bhaskara Reddy, “Test bench De-

sign for validating Inter Processor Communication (IPC) in a multi-
core SoC”

[7] Cristiano Calcagno, Dino Distefano, Jeremy Dubreil, Dominik Ga-

bi, Pieter Hooimeijer, Martino Luca, Peter O’Hearn, Irene Papa-
konstantinou, Jim Purbrick, and Dulma Rodriguez “Moving Fast

with Software Verification”

[8] N. Gupta and C. Harakchand, “Embracing the FPGA Challenge for
Processor Design Verification,” in 2014 15th International Micro-

processor Test and Verification Workshop, Dec 2014, pp. 39–43.

[8] K. Kayamuro, T. Sasaki, Y. Fukazawa, and T. Kondo, “A Rapid
Verification Framework for Developing Multi-core Processor,” in

2016 Fourth International Symposium on Computing and Network-

ing (CANDAR), Nov 2016, pp. 388–394
[9] C. Spear and G. Tumbush, SystemVerilog for Verification, Third

Edition: A Guide to Learning the Testbench Language Features.

Springer Publishing Company, Incorporated, 2012.
[10] S. Sarkar, G. S. Chanclar, and S. Shinde, “Effective IP reuse for

high quality SOC design,” in Proceedings 2005 IEEE International

SOC Conference, Sept 2005, pp. 217–224.

[11] D. Stow, I. Akgun, R. Barnes, P. Gu, and Y. Xie, “Cost Analysis

and Cost-driven Ip Reuse Methodology For Soc Design Based On
2.5d/3d Integration,” in 2016 IEEE/ACM International Conference

on Computer-Aided Design (ICCAD), Nov 2016, pp. 1–

6.https://doi.org/10.1145/2966986.2980095.

https://doi.org/10.1145/2966986.2980095

