

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.6) (2018) 410-414

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

A Neural Network Based Hybrid Approach for Analysing and

Detecting Malware Threat in Android Applications

Hetal Suresh1, Joseph Raymond V 2

1M.Tech in Information Security and Cyber Forensics, 1,2SRM Institute of Science and Technology,

Kattankulathur, Chennai, India

*Corresponding author E-mail: hetalsuresh01@gmail.com

Abstract

Mobile phones has become very integral part in our day to day life. In the digitalized world most of our day to day activities rely on
mobile phone like banking activities, wallet payments, credentials, social accounts etc. Our system works in such a way that if there is an
advantage to a technology there also exists a disadvantage. Every users have all their private and sensitive data in their mobile phones
and download random applications from different platforms like play store, App store etc. There is a huge possibility that the
applications downloaded are malicious applications. The existing system provides a solution for detection of such applications with the
help of antivirus which has pre-built signatures that can be used to obtain an already existing malware which can be modified and
manipulated by the hacker if they tend to do so. In this project, our purpose is to identify the malicious applications using Machine
learning. By combining both static analysis and dynamic analysis we can use a Hybrid approach for analysing and detecting malware

threats in android applications using Recurrent Neural Network (RNN). The main aim of this project will be to ensure that the
application installed is benign, if it is not, it should block such applications and notify the user.

Keywords: Android, Malicious Application, Machine Learning, Hybrid approach, RNN

1. Introduction

The Android operating system, is a trending OS now that is used
in most of the mobile phones. There are many Advantages of
android OS, these operating systems powers more than billions
of smartphones, tablets and TV. Android phones are also
available in good budget rates, so common man can also afford
it. Since there are various end users they are mostly targeted for
security breach as any other technology.The existing system

approach concentrates on signature based approach which is
antivirus, the antivirus based approach has pre-built signatures
which can be used to detect malware threats whose signatures
are given to those pre-built signatures. This is a vulnerable
approach since the attacker tries to penetrate a malicious
application bypassing the signatures that are pre-built. The
attacker bypasses the signature by creating a new/encrypted
signature thereby reaching the target device for performing

malicious activity. In our proposed system, we try to overcome
the major disadvantage of using antivirus based approach. We
propose a machine learning approach that can find the malware
threats by using a learning environment.
Why machine learning is the future? In this generation of
technology data is everything and we can find data everywhere,
everything is stored in form of data in different formats. From
text messages to messenger, whatsapp, social networking apps,

maps, shopping apps everything uses data as a common medium
for storage. So, it is necessary to manage these data. Humans
cannot manage this whole lot of data, they have limit for
managing data. One of the major solution found in recent years

is an approach called machine learning. A machine learning is to
make a machine learn about particular pattern without being
explicitly programmed. This approach is basically like you teach the

machine twice on how the patterns are and analysis report, the third
time the machine itself brings up with a solution and the fourth time
it does it in a better way. For making our system more secure and
less vulnerable we use this machine learning approach in our
android applications. Our system with machine learning approach
will be more efficient than the previous
existing approach in majority of the ways. That was what our aim
and that is exactly what which leads to the development of an

android application, using machine learning approach, capable of
distinguishing a malicious application from a benign application.
We use Recurrent Neural Network (RNN) model to detect and
analyse the malware threats in android application. This is one of
the deep neural network approach of machine learning. This
algorithm has provided various significant result when provided
with appropriate dataset. Let’s continue with how we are going to
build our system.

2. Analysis of Application

2.1. Application Compatibility

Application Compatibility is the term used for checking whether the
android application is compatible i.e. whether it is capable of
working on various devices and platforms. Since there exists a
features based variations, based upon the configuration of the
devices. There are various devices like mobile phone, tablets, smart

http://www.sciencepubco.com/index.php/IJET

411 International Journal of Engineering & Technology

TV etc. Which has to be given its own input of imported dataset
according to our project which will be given to the machine

learning RNN algorithm. There are certain device configurations
that are different for different versions of android OS. The scope
of our project is to identify the malware threats in mobile phones
and its applications.

2.2. Static Code Analysis

In malware analysis technique, to analyse without running it, we
use static analysis. To find whether the input is malicious or not
the static analysis uses different techniques.
In our system static analysis occurs before installing the android
applications, which analyses the android Manifest.xml file
which has pre-built permissions. For android application the

extension used is .apk which is android package kit file that is
package file format, like how windows uses .exe executable file
format. The apk file consists of one of the most important file
which is Manifest.xml file contains all the details needed by the
android system about the android application like permissions
and works as an intermediate between
developer and the platform. For static analysis we use this
manifest.xml file. All the permissions in the android

Manifest.xml file will be given as an input for static analysis that
checks for malicious behaviour. The analysis produced will be
given as an input to the machine learning environment to our
recurrent neural network algorithm for producing significant
output.

2.3. Dynamic Behavior Analysis

Dynamic analysis is an analysis based on the behaviour of the
file while running the application, after the application is
installed and the evaluation is done by executing the data in run-
time. For the dynamic analysis to be effective, while installing
the application the list of activities it undergoes after the
installation is tracked during the runtime. These activities

basically are like monitoring the network traffic, CPU
utilization, amount of battery it will be using during its runtime
and other background activities.
Our system with dynamic analysis can acquire continuous
activities from the API (application program interface) call event
log which may consists of registry change, file download, other
unauthorized activity to be malicious that cannot be showcased
immediately after the installation. The dynamic behaviour

analysis can take the high user privilege as admin level, and
provide more accurate results as root access ensures complete
access. Thereby providing accurate measures for analysing the
behaviour.

2.4. Hybrid Analysis

Static code analysis can only perform the analysis without
running the application. Which can be a disadvantage for the
malware triggering after the application apk is installed.
Similarly when considering the dynamic behaviour analysis can
perform analysis only after the apk application is installed and
executed. Which can be a disadvantage for the malware that are

pushed before installing the apk application file. To ensure our
system have a reliable approach we take collaborative steps by
combining both static code analysis and dynamic behaviour
analysis.
Combining the results of both static and dynamic analysis
known as Hybrid analysis. It is a common fact that static
analysis alone or dynamic analysis alone cannot make the
desired results. Our system uses both static analysis and dynamic
analysis for better analysing purposes, since combined result can

have accurate results. In static code analysis the uncompressed
apk is disassembled for searching patterns which are in byte and

hash signatures. It can be used to obtain a threshold value from the
results it obtained. The dynamic behaviour analysis obtained after

installing the apk and executing the apk file, which generate input
on patterns based on the registry change, file download etc. This
threshold value along with the output of dynamic analysis will be
considered for the final output. The overall system idea is to ensure
that our system is efficient by using both static and dynamic
analysis which we call it as hybrid approach. Using this hybrid
analysis, we can differentiate the respective performance for both
the static analysis and dynamic analysis which enables a model that

gives better analysis when combined together. The significant
output of both the analysis can be given as a dataset into the
machine learning environment using RNN (recurrent neural
network) algorithm which will give respective output for our
proposed system.

Fig 2.4.1: Hybrid analysis for a suspicious apk file.

Combining both the analysis we call it as hybrid analysis which

supports both the code based and behaviour based dataset for
training the machine learning.

2.5. Root Privilegde

In static code analysis, while using Manifest.xml the high user
privilege comes into the picture we call it as root privilege. The
purpose of providing root privilege is to ensure that we get the
access to all the commands, registry activities, system files, folder
locations and access privilege that are provided only to the root user
that are not in reach of a common user to perform.
Root privilege is given as removing user privilege and giving
administrator privilege that gives complete access to the user in

terms of the mobile device. In our case, root privilege lets the
Manifest .xml file in apk to have the complete access without which
it is not possible to get easy access to the files inside apk file.
Therefore, Root privilege is required for our system while
performing static analysis. Using which we give dataset to the
machine learning so for appropriate results of analysis we give root
privilege.

3. Problem Statement

The recent solutions for malware threats in android application only
have antivirus, a signature based solution as of now. These antivirus
based solution for detecting malware threats are vulnerable to zero-
day exploits as the malware coders are capable of replicating a new
or encrypted signature for inserting malicious content into the

412 International Journal of Engineering & Technology

application on their own which bypasses the antivirus. Since the
malware coders have a major advantage of zero day

vulnerability they have higher scope of proving vulnerable and
weak in protecting our mobile phones. As they try to manipulate
the malicious code as such that the signature based approach will
not be able to detect them. There also exists a basic check for
malicious apps in play store. There do exists a lot of malware
infected application in the play store which do affect thousands
of its users who download and use it.
Our proposed system is created to face such issues that is created

by the malware coders who can bypass the signature based
approach used in antivirus. Which has some pre-built signatures
in the manifest.xml file for static analysis and collects the
activity changes encountered after the application is installed
from the play store for dynamic analysis. Both the analysis
combined as

hybrid analysis is given as a dataset for the machine learning to

learn the malicious code and identify the pattern which ensures
and differentiates the malicious application from the benign
application.

Fig: 3.1: Signature based detection using antivirus

Flaw in the existing system is that signatures can be bypassed by
the malware coders.

4. Proposed Methodology

Our proposed methodology deals with the implementation of
machine learning based detection and analysis of malware
threats to find whether an application is a malicious or benign
application. The existing system deals with a signature based
approach that stores pre-defined malicious encounters as a
signature in an anti-virus application. Such an anti-virus
application can be manipulated by malware coders and change

the signatures in run-time as well.
Our approach of combining both the static and dynamic analysis
as a hybrid approach makes our system more effective by
filtering the harmful applications with accuracy and efficiency.
The issue in the existing methodology is addressed in our system
which has permissions inside the Manifest.xml file in apk and
not signatures that can be bypassed by a good malware coder.
These permissions along with the denial of activities that are

found to be malicious at the run time.
In this proposed methodology, we have created a predefined rule
set which is created for high success rate on our own to ensure
high efficiency. We propose a hybrid approach that also
combines both the static and dynamic analysis results to acquire
an efficient model. The data set we use for machine learning
purpose is prepared based on these static and dynamic analysis
based result. These results are given as a training set for our

machine learning that uses RNN algorithm for training our machine
with detection of malicious applications. In this paper, the RNN

model we use makes use of the sequential information. Generally
the input given and the output obtained are independent of each
other. To predict the malicious code or activity of an application we
analyse a code with the set of various malicious code and train our
machine. RNN is also known as Recurrent because of their
sequential nature they have the ability to perform the same task
again and again, with the output obtained is based upon the previous
computations. The alternative way of describing RNN would be the

memory it has. The memory can compute the information captured
with the previous obtained calculations.
We use this model of machine learning for analyzing and detecting
malware threats in our project.This dataset acquired by our hybrid
analysis are given as input to the machine learning based RNN
model. By using our RNN model we can determine a desirable
result which can be done more number of times, which ensures that
the result acquired is more efficient and by training the machine

again and again it also gives more accurate results. This accurate
result of determining the malicious code is the main advantage of
our proposed methodology. This model ensures that the malicious
codes format is obtained for the varying inputs of dataset and
obtains a reliable approach for trusting an
application compared to the previous approaches used.
For better understanding we use sequential diagram that
demonstrates the sequence of execution it performs to secure the

user by identifying whether the application is benign or not. We use
a feature extractor that extracts the features like Network details,
CPU utilization and battery and transfers the collected data from
both the analysis to the dataset module. This dataset module further
vectorizes the collected data from the feature extractor and transfers
the vectored data to machine learning classifier. We use RNN based
machine learning classifier that analyses the dataset by training and
analysing the vectored data. Then the Result is obtained
respectively and if analysed result detects malware, it blocks the

application else it allows the application to be used by the user.

Fig: 4.1: Sequential diagram of our proposed system

Detailed sequence of our malware detection system is explained.

In our working system when we install the app, first it performs
static analysis with the pre-built permissions in the form of dataset
and gives the output to the dynamic analysis which itself has an
input of the activities that the app goes through after installation and
gives through result accordingly. If the result is that the app is
malicious
it blocks the application, else it allows the application.

413 International Journal of Engineering & Technology

Fig: 4.2: the overall proposed system architecture.

Analyse the downloaded app using static analysis using android
manifest.xml file and perform dynamic analysis using datasets

of application behaviour.

4.1 Mathematical Calculations

The mathematical modelling for our system relies on the

machine learning approach we use. Since we use Recurrent
Neural Network approach our model proposes the following
equations:

I) is the input given at the time step . For example, can
be taken as a one-hot vector which corresponds to the second
word.

II) is taken as the hidden state at time step . St is the
memory that is given to the network. is computed with the
help of the previous hidden state and the input given at the
current step:

 .

The function is generally a nonlinearity

as tanh or ReLU. , that is needed to compute the initial 1st

hidden state, is generally initialized to all zeroes.
III) is taken out as a desired output at step . For example, if
the next word in a sentence is required to be predicted it would
be vector of our activities change in our environment.

.

4.2. Algorithm

rnn = RECURRENT()
b = rnn.stepper(a) # a = input vector, b= RNN's output vector

class RECURRENT:

def stepper(self, a):
 # hidden state is updated
self.c=np.tanc(np.dot(self.W_cc,self.c)+np.dot(self.W_ac, a))
output vector computation
b = np.dot(self.W_cb, self.c)
return b

b1 = rnn1.stepper(a)

b = rnn2.stepper(b1)

5. Expected Output Result

The expected output result after executing the proposed
methodology by analyzing the activities
and factors using static and dynamic analysis in a hybrid approach

and acquiring the dataset to be given into the machine learning
approach for obtaining desired result after the complete project is
done and implemented into a developed application with the
capability of finding whether the application in the play store is
malicious or benign by using RNN based Machine Learning
Technique as the primary method. The expected minimum success
rate for the system is above 96%.

6. Conclusion

The existing system approach concentrates on signature based
approach which is antivirus, the antivirus based approach has pre-
built signatures which can be used to detect malware threats whose
signatures are given to those pre-built signatures. This is a
vulnerable approach since the attacker tries to penetrate a malicious
application bypassing the signatures that are pre-built. The attacker

bypasses the signature by creating a new/encrypted signature
thereby reaching the target device for performing malicious activity.
The techniques used in this paper is RNN model, a machine
learning method to handle the malicious threats and thereby find out
whether the application is benign or not. We use machine learning
to ensure that in a learning environment where the datasets will be
different each time an application responds in particular way.
Machine Learning ensures that the inputs of various datasets are

analysed and corresponding outputs are trained to provide an in-
depth analysis of a malware threats in android applications. Using
which we can come to a conclusion whether the application can be
trusted or not.

References

[1] Nayeem Islam ; Saumitra Das ; Yin Chen(2017) On- Device

Mobile Phone Security Exploits Machine Learnin IEEE Pervasive

Computing

[2] (Volume: 16, Issue: 2, April-June 2017)

[3] Rhode, M., Burnap, P., Jones, K., Aug. 2017. Early Stage Malware

Prediction Using Recurrent Neural Networks. arXiv:1708.03513

[cs]ArXiv:1708.03513.

[4] URL http://arxiv.org/abs/1708.03513

[5] D. Arp et al., “DREBIN: Effective and Explainable Detection of

Android Malware in Your Pocket,” Proc. Network and Distributed

System Security Symp. (NDSS), 2014;

www.sec.cs.tubs.de/pubs/2014-ndss.pdf.

[6] Shuang Liang and Xiaojiang Du “Permission-Combination-based

Scheme for Android Mobile Malware Detection” Dept. of Computer

and Information Science Temple University, Philadelphia, PA

19121,USA {shuang.liang2012, dux}@temple.edu, IEEE

[7] Ambra Demontis, Marco Melis, Battista Biggio, Davide

Maiorca,Member, IEEE, Daniel Arp, Konrad Rieck, Igino

Corona,Giorgio Giacinto, Fabio Roli “Yes, Machine Learning Can

Be More Secure! ACase Study on Android Malware Detection”.

https://reference.wolfram.com/language/ref/Tanh.html
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
http://arxiv.org/abs/1708.03513

414 International Journal of Engineering & Technology

IEEE Transactions on Dependable and Secure Computing

(Volume: PP, Issue: 99)

[8] Xiang Li , Jianyi Liu , Yanyu Huo , Ru Zhang , Yuangang Yao

“An android malware detection method based On

androidmanifest file”, Proceedings of CCIS2016, 2016 IEEE

[9] T.Wang et al., “Jekyll on iOS: When Benign Apps Become Evil,”

Proc. 22nd Usenix Security Symp. (SEC),

[10] 2013;www.usenix.org/conference/usenixsecurity13/technicalsessi

ons/presentation/wang_tielei.

[11] J. Oberheide and C. Miller, “Dissecting the Android

Bouncer,”SummerCon, 2012.

[12] N.J. Percoco and S. Schulte, Adventures in Bouncerland: Failures

of Automated Malware

[13] Detection within Mobile Application Markets, Black Hat, 2012.

[14] N. Idika and A.P. Mathur, A Survey of Malware Detection

Techniques, tech. report, Purdue Univ., 2007.

[15] A.P. Felt et al., “A Survey of Mobile Malware in the Wild,” Proc.

First ACM Workshop Security and Privacy in Smartphones and

Mobile Devices (SPSM), 2011, pp. 3–14.

[16] J. Bickford et al., “Security versus Energy Tradeoffs in Host-

Based Mobile Malware Detection,” Proc. 9th Int’l Conf. Mobile

Systems, Applications, and Services (MobiSys), 2011, pp. 225–

238.

[17] S. Poeplau et al., “Execute This! Analyzing Unsafe and Malicious

Dynamic Code Loading in Android Applications,” Proc. 20th

Annual Network & Distributed System Security Symp. (NDSS),

2014;https://cs.ucsb.edu/~vigna/publications/2014_NDSS_Execut

eThis.pdf.

[18] Cyrille Artho,Armin Biere,"Combined Static and

DynamicAnalysis",2005https://doi.org/10.1016/j.entcs.2005.01.0

18

[19] Willems, C., Freiling, F.C.: Reverse code engineering—state of

the art and countermeasures. it-Information Technology, pp. 53–

63 (2011)

https://cs.ucsb.edu/~vigna/publications/
https://doi.org/10.1016/j.entcs.2005.01.018
https://doi.org/10.1016/j.entcs.2005.01.018

