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Abstract 
 
Wide use of internet generates huge data which needs proper organization leading to text categorization. Earlier it was found that  a doc-
ument describes one category. Soon it was realized that it can describe multiple categories simultaneously. This scenario reveals the use 
of multi-label classification, a supervised learning approach, which assigns a predefined set of labels to an object by looking at its charac-
teristics. Earlier used in text categorization, but soon it became the choice of researchers for wide applications like marketing, multimedia 
annotation, bioinformatics. Two most common approaches for multi-label classification are transformation which takes the benefit of 
existing single label classifiers preceded by converting multi-label data to single label, or an adaptation which designs classifiers which 

handle multi-label data directly. Another popular approach is ensemble of multiple classifiers taking votes of all. Other approaches are 
also available namely algorithm independent and algorithm dependent approach. Based on results produced, suitable metric is used for 
example or label wise evaluation which depends on whether prediction is binary or ranking. Every approach offers benefits and issues 
like loss of label dependency in transformation, complexity in case of adaptation, improvement in results using ensemble which should 
be considered during design of underlying application. 
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1. Introduction 

Multi-label Classification (MLC) is an act of allotting a set of 
predefined labels to an unseen entity by observing its characteris-
tics. It’s a supervised learning approach [20]. Classification is the 

most popular supervised data analysis approach and machine 
learning is widely used for it from many decades [36]. It has been 
used in various applications as listed in Table 1, like text categori-
zation, image classification, graph classification, bioinformatics, 
functional genomics, emotion recognition, scene classification, 
semantic indexing of articles, mining social media, parallel tasks 
and multimedia annotation and many more [1-12]. Over the last 
two decades, lots of research papers, books and PhD theses have 

been published [1-79] and various survey papers [14-20] are also 
available for the same.  

 

Table 1: Reported applications of multi-label learning 

Application Reported in 

Text Categorization (TC) [1, 2, 7, 12, 15, 44] 

Image Classification [3, 4, 15] 

Graph Classification [5] 

Bioinformatics [6, 15, 67] 

Functional Genomics [7] 

Emotion Recognition [8, 15] 

Scene Classification  [9, 72]  

Semantic Indexing of Biomedical Articles [1] 

Understand Students’ Learning Experiences [10] 

Parallel Tasks [11] 

Multimedia Annotation [13, 15] 

 

The remaining contents are arranged in the following way. Section 
2 shows taxonomy of MLC. Section 3 describes basic approaches 
and methods which follow these approaches. Section 4 shows 

another taxonomy of MLC according to dependency. Sections 5 
and 6 list various attempts done by researchers to implement MLC 
like feature selection, label correlation, use of clustering, natural 
algorithms and many more. Sections 7-9 talk about performance 
metrics, datasets and tools. In section 10, conclusion is presented. 

2. Taxonomy of multi-label classification 

Multi-label classification is classified by various researchers in 
different manner. In 2007, Grigorios T. and Ioannis K. [14] have 
categorized present MLC techniques into transformation and ad-
aptation as shown in Table 2. The hierarchy is shown in Fig. 1 
[14-20]. As the name indicates, transformation involves conver-
sion of data from multiple labels to single label followed by single 
label classification (SLC). The adaptation category involves modi-

fication of basic single-label algorithm to process multiple label 
data directly. In 2009, Grigorios T. et al [15] further categorized 
transformation into various methods depending on how many 
labels are handled at a time. These methods use either a single 
label, a pair of labels, or multiple labels at a time. These three 
methods are termed as first, second and high-order strategy re-
spectively by M. L. Zhang et al [19]. Also some authors men-
tioned one more category namely ensemble methods.  Ensemble 
methods are formed by combining number of existing MLC 
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Fig. 1: Taxonomy of multi-label classification approaches 

 

 
Fig. 2 Taxonomy of multi-label classification methods according to dependency 

 

methods in different ways [15] [18].  In 2009, Andre et al [16] 
categorized MLC methods based on dependency of algorithm. 
They formed two categories namely an algorithm independent 
method and an algorithm dependent method as shown in Fig. 2 
[14-20]. The reported literature according to taxonomy shown in 
Fig. 2 is listed in Table 3. 
Multi-label learning can be categorized according to tasks per-
formed during learning as shown in Fig. 3. These categories are 

namely classification and ranking [17] [18]. In the classification, 
labels are divided into relevant and irrelevant labels whereas rank-
ing sequences all the labels in the order of relevance. One more 
task can be seen which combines functionality of ranking and 
classification [19]. According to the learning task, suitable metric 
can be used for evaluation discussed in section 7. 
Gjorgji Madjarov et al [18] have used twelve multi-label algo-
rithms run on eleven datasets to evaluate performance using six-

teen evaluation measures. Analysis of efficiency using training 
and prediction time is carried out. Nemenyi and Friedman tests are 
used to understand statistical significance. 
 

Table 2: Classification of reported algorithms based on approach 

Multi-label classifica-

tion approach 

Reported in 

Transformation [6, 8, 10, 11, 14-22, 29, 30, 32-35, 37, 41-

43, 49, 56, 60, 61, 63, 64, 71, 78] 

Adaptation [1, 7, 14-22, 24, 26, 29, 32-35, 37, 41-43, 

56, 60, 63, 64, 71] 

Ensemble [1, 15, 18, 19, 29, 31, 35, 41, 64] 

3. Basic methods, modifications, comparative 

discussions and weaknesses 

According to taxonomy given in Fig. 1-3, the most common 
methods are discussed in brief in this section. 
 
 

3.1 Transformation 

As the name indicates, transformation involves conversion of data 
from multiple label to single label followed by single-label classi-
fication (SLC). It includes methods which are further classified 
according to the number of labels considered by classifier. These 
methods use either a single label, a pair of labels, or multiple la-
bels at a time. Accordingly they are termed as first, second and 

high-order strategy respectively by M. L. Zhang et al [7] [9] [15] 
[19] [24] [28] [53] [57].  
In this section some of the methods used for transformation ap-
proach are explained in brief. 
 

 
Fig. 3 Taxonomy of Multi-label learning tasks 

3.1.1 Single label approaches 

Methods which follow single label approach for transformation 
consider only one label at a time. BR and Ignore/Select are the 
methods which follow this approach. 

Ignore/Select: These methods either remove an instance with 
multiple labels or select one label and associate it with that in-
stance respectively. It is described in section 4.1 of algorithm in-
dependent methods.  
Binary Relevance (BR): Consider there are three labels Cx, Cy 
and Cz respectively. Then BR designs three separate classifiers 
where each classifier handles these three labels independently. As 
many traditional methods are available to handle individual label, 
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any one method can be picked. Finally for classification of new 
data, results of all the three classifiers for three labels are consid-
ered. The cons of the technique is that relation among different 
labels is simply ignored [18-22]. But it has many good features 
also. As it treats each label independently, the classifier model can 
be easily updated dynamically if the label set is appended with a 
new label and scales linearly with the number of labels. Also it is 
beneficial to handle active data. The classifier model can run in 

parallel multiple classifiers of different labels. Due to so many 
features and ease of design, BR is very popular and widely used. 

3.1.2 Pair of labels 

RPC and CLR are the methods which follow transformation ap-
proach to consider two labels at a time. 
Ranking by Pairwise Comparison (RPC): Let there be m classes 
in the data. Then there are m*(m-1)/2 pairs of classes. For each of 

these pairs, a separate classifier is designed in RPC [78]. Each 
classifier say Cxy observes only those instances which have either 
class Cx or Cy. It ignores all the instances which have none of Cx 
and Cy classes or have both of them. The instance is marked as 1 
or 0 if Cx or Cy is associated with it respectively. Then all the 
classes are ranked according to votes obtained from all such Cxy 
pair models [17] [21]. 
Calibrated Label Ranking (CLR): In RPC, relevant and irrele-

vant labels are not distinguished separately. This is achieved in 
CLR method which appends the label set of size m in the original 
data with a virtual (imaginary) label [78] and applies the same 
procedure as in RPC. As a result, all the (m+1) labels are ranked 
where relevant labels are clearly separated from irrelevant labels 
by an imaginary label [17-21]. 

3.1.3 Multiple labels 

In this approach, all the labels or a group of multiple labels be-
longing to an instance are used. LP, RAkEL, CC and ECC use this 
approach. LP uses all the labels of each instance whereas CC, 
ECC and RAkEL use a group of labels. 
Label Powerset (LP): As mentioned in section 4.1, creation of 
new label is one technique to deal with multiple labels an instance 
has. LP [17] [18] [20-22] follows similar technique. Whenever 
multiple labels belong to an instance, this unique combination of 
labels is treated as a new class. Then the data can be viewed as 

multiclass data which can be processed by traditional classifiers. 
As multiple labels are processed simultaneously, relation among 
labels is also considered, thereby handling drawback of BR. The 
problem with this method occurs when many combinations of 
labels appear in the original data thereby leading to many classes, 
where each class may be represented by comparatively less num-
ber of instances. Some classes may possess very few instances 
among others, which hampers accuracy. The model predicts most 

probable set of labels for the unseen data. Also it can predict only 
existing labelsets. 
PPT (Pruned Problem Transformation): As seen in LP, some 
labelsets may possess very few instances among others, which 
hampers accuracy. This issue is overcome in PPT [17] [29]. Those 
labelsets which appear number of times less than a user defined 
criteria, are removed and replaced by their disjoint subsets which 
appear number of times less than a user defined criteria. 

Random k-Labelsets (RAkEL): The complexity of LP is re-
duced in this method by considering only a group of labels to-
gether even if an instance has many labels associated. This group 
of labels is termed as a labelset. It requires to set parameter k 
which limits count of labels to be considered at a time by one 
model. Also it is required to set parameter m which denotes the 
number of models to be designed. It is crucial to decide parame-
ters k and m as they affect the results. Value of k should be com-

paratively small obviously upper bounded by size of label space 
and m should not be very small. Suggested value for m is at least 
twice the number of labels [17] [19-21]. Also which combinations 

of labels are used by m models is important from results point of 
view. All the predictions of m models are averaged for an unseen 
instance. The benefit is that a non-existing label set in the original 
data may be predicted for the new data. G. Tsoumakas et al [21] 
has proposed two variations of the algorithm, one with disjoint 
labelsets and the other with overlapping labels respectively. 
Classifier Chain (CC): As seen in BR method, three independent 
classifiers are designed if there are three labels Cx, Cy and Cz re-

spectively. But this approach loses the relationship among labels if 
any. This problem is removed in CC where these three labels are 
chained in particular sequence [22]. Let the sequence be Cy, Cx 
and Cz. Then a classifier is designed by considering all the fea-
tures to predict Cy. Then another classifier is designed by consid-
ering all the features and predicted Cy to predict Cx. Next another 
classifier is designed by considering all the features and previous 
predictions to predict Cz. Thus the process is totally serialized by a 

particular sequence of labels thereby considering relations among 
labels and hence cannot be parallelized. Finally for classification 
of new data, results of all the three classifiers for three labels are 
considered. Permutation of labels can be obtained in various ways 
[19] [20] [22]. New measure called log loss is also introduced in 
[22]. It is related to grading error by the certainty at which it is 
predicted. Prediction of false positives having less certainty pre-
sents logarithmically smaller penalty than prediction having high 

certainty. Probabilistic classifier chains (PCC) [39] is also sug-
gested by Jesse Read et al which uses the probabilistic output of 
classifier yielding posterior probability computed using Naïve 
Bayes. 
Ensemble of Classifier Chain (ECC): As seen in CC method, the 
sequence of labels is crucial for getting good accuracy. It is diffi-
cult to find out which sequence is the best one. Hence Jesse Read 
et al [22] solved this issue by combining results of number of CC 
models run with different sequences of labels, thereby getting 

better accuracy as compared to CC. One more important feature of 
ECC is that it surely predicts output and never empty set due to 
different chain sequences.  
Hierarchy of multi-label classifiers (HOMER): One challenge 
in MLC is the scalability of algorithm with respect to dimensions 
of the label space. Because of more labels, the algorithm has to 
suffer from the class imbalance problem, computational cost of 
training and the inefficiency for applications requiring fast re-

sponse times. To handle this problem, first root node is con-
structed which consists of all the labels. Next clustering with bal-
anced k-means [23] is employed to divide labels into clusters 
which represent new nodes. Classifier for each cluster is designed 
to handle labels in that cluster only. If the predicted label is in 
meta-labels of the child node, then only classifier of that child 
node is called. Advantage of balanced clustering is that the related 
labels belong to the same cluster, hence same node of the tree. So 

only classifier of that node need to be invoked thereby reducing 
cost of prediction. Also each node handles less training instances 
thereby improving predictive performance. Note that clustering of 
labels is done by G. Tsoumakas et al by partitioning labels into 
clusters and tree structure is used for representation [17] [20].  

3.2 Adaptation 

The adaptation category involves modification of basic single-

label algorithm to process multiple label data directly. MLC is 
based on supervised learning approach and many machine learn-
ing algorithms are already available for supervised learning. Many 
researchers have used these machine learning algorithms with 
necessary modification to suit for multi-label data in the past and 
still there is a need for the research in this area. 
These methods consists of algorithms suitable to deal with the 
multiple label data. M. L. Zhang et al [19] described these meth-

ods as they “fit an algorithm to the data”. These methods have 
tuned the basic classifiers like decision tree, support vector ma-
chine, Naïve Bayes, neural network and k nearest neighbors to suit 
multiple label data without conversion [14-20]. 
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In this section some of the methods used for algorithm adaptation 
approach are explained in brief. 
Multi-Label k Nearest Neighbours (ML-kNN): It is an adapta-
tion of conventional kNN to handle multiple label data [24]. For 
an example in the dataset, k neighbors are computed using Euclid-
ean distance. For each label Cm of an example Xn, number of 
neighbors having label Cm is counted. For each label Cm not be-
longing to an example Xn, but still having neighbors with label Cm 

are counted. Using these counts, likelihood probability is com-
puted. From the training set prior probabilities are also obtained 
by counting examples having label Cm and not having label Cm 
respectively. Next labels of new example are obtained using MAP 
(Maximum a posteriori) whose base is Bayes theorem [12] [10]. 
Using prior and likelihood probabilities, posterior probability to 
have label Cm is computed for an unseen example, given exact 
count of neighbors having label Cm. MLkNN [17-21] [24] has 

shown better results compared to various algorithms though it has 
one drawback of not considering relationship between labels. 
AdaBoost.MH: Boosting [48] [70] is the process which assigns 
weights to training examples. Training <example, label> pairs 
which are tough to classify correctly are assigned higher weights 
whereas those which are easy to predict are assigned lower 
weights. It forces the learner to give attention to those labels and 
examples which will prove to be the most beneficial to get a 

highly accurate classification rule. R. Schapire and Y. Singer [25] 
proposed AdaBoost.MH algorithm to handle multiple labels. As 
output of all classifiers cannot be given equal importance, their 
weights are obtained to increase the performance of classifiers. 
AdaBoost.MH aims to minimize the hamming loss. It predicts all 
of the correct labels using classification [17] [18] [21] [25]. 
Backpropagation Multi-label neural network (BP-MLL): It’s a 
modification of conventional neural network with feed-forward 
for handling multiple label data. M. L. Zhang et al [7] have de-

signed global error function by considering label correlation. In 
this function, mth error term gives network error on (xm, ym) in-
stance. It computes how much output of the network differs on 
relevant and irrelevant labels of xm. Bigger the difference, the 
performance is better. Negative value of this difference is given to 
exponential function. This error function which is global, is mini-
mized by combining backpropagation and gradient descent. As a 
future work, authors have mentioned ensemble of BP-MLL to 

improve performance [17] [18] [21]. 
ML-C4.5: A. Clare and R. King [26] modified traditional C4.5 
decision tree [27] algorithm for handling multiple labels. They 
also introduced technique for feature selection in multi-label data 
namely ML-IG. It finds entropy for each class Cx using the infor-
mation of probability of class Cx. It uses the information of in-
stances which belong to class Cx and instances which do not be-
long to class Cx respectively. Such probabilities are calculated for 

each class. This information is used for feature selection followed 
by C4.5. The difference is that leaves of the tree are assigned set 
of labels and not a single label. As a result, stable and accurate 
rules are generated for many labels at one and two levels in the 
tree. At three and four levels, no useful rules were found. The 
algorithm follows transformation approach [16] [18] [19] [21] [26] 
[27]. 
MLNB: Zhang M. L. et al [28] have done adaptation of Naïve 

Bayes to suit multi-label data. First for each class Cx, the prior and 
conditional probabilities are computed which are then used to 
estimate the posterior probabilities. The problem with this algo-
rithm is that the correlation between labels is not considered and 
this may affect its performance. 

3.3 Ensemble 

It is observed that sometimes single classifier cannot predict with 

the expected accuracy level. But accuracy level improves if the 
same classifier is run several times with significant variation of 
some parameter and then the obtained results are combined. This 
approach is used by RAkEL [18] [21] and ECC [18] [22]. As de-

scribed in section 3.1.3, RAkEL is an ensemble of several LP 
classifiers. Ensembles of classifier chains (ECC) is a technique 
that uses several classifier chains as base. Ensemble approach can 
further be classified as homogeneous or heterogeneous [1]. 
RAkEL, ECC and EPS (Ensemble of Pruned Sets) [18] [30] are 
homogeneous ensembles as they use same type of base classifiers 
namely LP, CC and PS respectively. MULE [1] is heterogeneous 
ensemble as it uses different types of base classifiers. 

4. Multi-label classification according to de-

pendency 

4.1 Algorithm independent methods 

These methods consists of those methods which can use wide 
range of already exiting single-label algorithms. It is possible be-
cause these methods modify their input data characteristics from 

multi-label to single-label [14-17] [21]. Thus the data is changed, 
and not an algorithm. Zhang M. L. and Zhou Z.H. [19] described 
these methods in very appropriate words as they “fit the data to an 
algorithm”. These methods are further categorized to label and 
instance-based respectively. Let the original multi-label data con-
sists of C labels.  
A. Label-based methods: In label-based methods, C single label 

classifiers are designed. Each Ck classifier treats instances 
having label k as relevant and instances not having label k as 
irrelevant.  

B. Instance-based methods: In instance-based methods, again 

variations are available according to the way used for assign-
ing label(s) to an instance. 

a. Ignore: The easiest way which simply ignores all those in-

stances which are associated with more than one label. 
b. Creation of new label: It creates new label to represent each 

distinct set of two or more labels appearing in the data. 
c. Conversion: It converts data from multi-label to single-label. 

One method for conversion is to split the instances. For ex-
ample, if there are only two labels Cm and Cn. Then data is 
split into D1 and D2. If an instance k has both classes Cm and 
Cn, then (instance k, class Cm) will belong to D1 and (in-

stance k, class Cn) will belong to D2. If an instance has only 
one class as (instance p, class Cm), then it will belong to D1 
only.  

Other approach for conversion is based on selection. When an 
instance k belongs to classes Cm and Cn, then  

- Random approach selects Cm or Cn randomly and assigns to 

instance k. 
- Min approach selects Cm if its occurrence is minimum be-

tween Cm and Cn and assigns to instance k. 
- Max approach selects Cm if its occurrence is maximum be-

tween Cm and Cn and assigns to instance k. 
- Replicate approach makes two replica of the instance as (in-

stance k, class Cm) and (instance k, class Cn). 
The problem with ignore approach is that by removing an instance 
with more than one label, lots of data is lost. In the alternative 
approach, data loss is comparatively less in case of min, max and 
random approaches. There is no data loss in replicate and split 
approaches, but the count of instances increases.  

4.2 Algorithm dependent methods 

These methods consists of those methods that follow the approach 
of designing an algorithm which suits multi-label data. These 
methods have tuned the basic classifiers like decision tree, support 
vector machine, Naïve Bayes, neural network and k nearest neigh-
bors to suit multiple label data without conversion [14-21] [26-28]. 
Few of them are described in section 3.2. Some commonly used 

methods for MLC are summarized in Table 4. It assumes that the 
size of the label space is m.  
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5. Other MLC methods 

Many attempts are done in MLC using association classification. J. 
Arunadevi et al [32] used associative classification along with 
evolutionary algorithm for MLC. Authors first perform problem 
transformation from multi-label to single-label. Apply Apriori 

algorithm for generation of rules. Use hybrid evolutionary algo-
rithm for improvement. Ravi Patel et al [33] first convert all the 
nominal attributes to numeric. For example, let Salary is a field 
whose values are Low, Medium or High. Then each cell in the 
dataset with (Salary = Low) is replaced by 1, (Salary = Medium) 
is replaced by 2 and (Salary = High) is replaced by 3. For the other 
attributes, use numbers other than 1, 2 or 3. Thus each nominal 
attribute is replaced by a number. Next use FP-growth algorithm 

to generate association rules. As a future [33], it is possible to pass 
generated rules in genetic algorithm as an initial population and 
get better rules. Also heuristic search methods can be used to dis-
cover informative rules. Raed Alazaidah et al [34] transform mul-
ti-label dataset to single-label. For each instance which belongs to 
multiple labels, they remove all the labels except the one which is 
the least frequent label in that column. Discover positive correla-
tions among labels and create rules for all the instances. For ex-

ample, if labels Cx and Cy are correlated, then create rule as “if Cx 
= 1 then Cy = 1”. Apply the rule-based classification algorithm 
PART on the rules created in the previous step. Last step is the 
prediction phase. In [35], k-means is used along with association 
classification. First k-means is applied for clustering of features. 
Count of clusters is selected from count of labels. Then each clus-
ter Sx is represented by the label Cy which has the maximum pro-
portion of count of instances having the label Cy in the cluster Sx 

to total count of instances in the cluster Sx. Next for each cluster 
data rules are generated. For a test instance, rule is obtained from 
each cluster. 
E. Spyromitros et al [37] has proposed an algorithm BRkNN using 
lazy approach. Initially kNN is applied on the multi-label data to 
obtain k neighbors. Once neighbors are obtained, then BR classifi-
er uses these neighbors independently for prediction of each label. 
Two variations of BRkNN are also implemented by the authors. In 
case there is no relevant label predicted, then first variation returns 

the most probable label and the second variation returns p most 
probable labels where p is equal to average of count of labels be-
longing to k neighbors. Benefit of these methods is that they never 
output empty sets. Authors have compared their methods with 
LPkNN and MLkNN [24]. 
C. Vens et al [38] have proposed three classification approaches 
based on the decision tree: HMC which considers all the super 
classes of a node using mean, SC which constructs separate tree 

for each class and HSC which considers conditional probability of 
class C with its parent. HMC and HSC can also be used for classi-
fication using DAG (Directed Acyclic Graph) whereas SC is not 
applicable to DAG. Authors have used AUPRC (Area Under Pre-
cision Recall Curve) for evaluating prediction performance. Main 
contribution of authors is the use of class hierarchy DAG which is 
not studied earlier [38].  
Classifier chains introduced by Jesse Read et al [22] uses the 

greedy algorithmic strategy. It only searches for the most probable 
label combination. But if all the label combinations are searched 
for, then definitely the best result is obtained. This approach is 
used by PCC [39] which computes the conditional probability for 
every label set based on the product rule of probability. Disad-
vantage is that the complexity is high at the time of prediction. 
Authors [39] have used risk minimization model to minimize rank 
loss, subset 0/1 loss and hamming loss. Ensemble methods ECC 

[22] and EPCC [39] are also used for experimentation. It is ob-
served that the probabilistic versions PCC and EPCC are well-
suited for all the three measures listed here. Also EPCC performs 
the best getting benefit of ensembles.  
Some researchers have also used hypergraph for MLC. Spectral 
learning feature of Hypergraph [40] is useful to explore the corre-

lation of labels. It’s very useful for high order relations. 
Hypergraph, a generalization of simple graph, consists of hyper 
edges. Hung-Yi Lo et al [41] also uses hypergraph to capture the 
relation between multiple labels and the instances jointly. 
[42-44] all use the same base idea. They compute the membership 
degree termed as the degree of relevance. Three terms namely the 
membership degree of each term tx in each category Cy, that of 
each term tx in each document dz and that of each document dz in 

each category Cy are computed and combined to get final mem-
bership degree. All [42-44] perform clustering to reduce computa-
tional cost of kNN and also help to reduce features.  

6. Other related issues 

6.1 Feature selection or dimensionality reduction in 

MLC 

Many applications in real life use data with complex structures. 
For example, XML web document, chemical compounds, program 
flow, etc. Such data cannot be represented with feature vectors 
properly. In that case, graph proves to be better solution [5]. When 
vectors are used to represent features, then feature selection pro-

cess is somewhat easier because it is assumed that all the features 
are available initially. This is not possible for graphs because as 
size of graph increases, complexity increases too much. Authors 
have mentioned use of label correlations for graph classification 
with feature selection as future scope. 
Trohidis, K. and Tsoumakas, G. et al follow transformation ap-
proach in [8]. General approach for feature selection by many 
researchers is as follows: Convert data from multi-label to single-

label. Then apply traditional single-label feature selection tech-
nique like chi-square and use max or average technique to select 
best features. In max technique, N number of features are selected 
which have maximum chi-square values. In average technique, 
average of all the values for each feature is obtained within all the 
labels weighted by prior probability of every label and then N 
number of features are selected having maximum values. BR can 
be applied on these selected features only. The problem with this 
method is that it considers each label independently. This issue is 

handled by authors [8] by using LP instead of BR. The benefit is 
that LP implicitly considers label correlations thereby giving bet-
ter results when used with chi-square for feature selection. Au-
thors have extracted features of two categories namely rhythmic 
and timbre from music using the Marsyas tool [8] followed by 
emotion labeling and annotation by music experts. 
A. Clare and R. D. King [26] has introduced feature selection 
technique ML-IG to handle multiple label data as given in section 

3.2. Gao, Sheng et al [45] have used Singular Value Decomposi-
tion (SVD) based Latent Semantic Indexing (LSI) for feature se-
lection. Initially term document matrix M is decomposed into 
multiplication of three matrices as M=USVT where U, S and V are 
left singular matrix, diagonal matrix of singular values and right 
singular matrix respectively. Also U and V are column orthonor-
mal. U, S and V matrices are much smaller than M. The advantage 
is that it greatly reduces computation requirements.  

There are two ways for dimensionality reduction namely unsuper-
vised and supervised. For example, first can be achieved using 
Principle Component Analysis and later can be achieved using 
Linear Discriminant Analysis. Y. Zhang et al [46] used basic idea 
which tries to identify a feature space of small size to maximize 
dependency between labels and features. It uses Hilbert-Schmidt 
Independence Criterion (HSIC) for measurement of dependency. 
Initially algorithm constructs label kernel matrix L from label 

space Y. Next eigenvectors conforming to largest m eigenvalues to 
get projection P from original features to the reduced features. 
Authors suggested a variation to use HSIC with gradient descent. 
Ji S. et al [47] used least squares loss for the classification to com-
pute the shared structure and solved a generalized eigenvalue 
problem. M. L. Zhang [28] has implemented feature selection with 
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multi-label Naïve Bayes (MLNB) algorithm. First use multi-label 
dataset Do to apply PCA for feature extraction followed by genetic 
algorithm for feature selection. If f, C and h(.) denote feature, label 
and classifier respectively, then hf(C) = 1 if f is selected otherwise 
hf(C) = 0 if not selected. Form new dataset Dn from selected fea-
tures. Divide Dn into ten parts and use tenfold cross validation for 
evaluation. Author has used the fitness function based upon the 
average of hamming loss and ranking loss generated by portion of 

dataset Dn used in all the ten folds. Next step is to apply MLNB 
which makes use of prior and posterior probabilities. 
PPT along with mutual information is also preferred by some re-
searchers [29] [49]. First PPT (Pruned Problem Transformation) 
[29] is used for data conversion and then mutual information [49] 
is used for feature selection. It follows transformation approach. 
Li S. et al [50] used information gain for an ensemble of multi-
label feature selection. Initially the dataset is partitioned into clus-

ters using k-means. Label cardinality introduced in [14] is used to 
set count of clusters. Then information gain of every feature xk 
with respect to each label Ck is computed and normalized. The 
normalized value 0 and 1 indicate that particular feature and label 
are independent or dependent respectively. Next using normalized 
values of each feature for all labels, IGS value is calculated and 
procedure is repeated for all the features using all instances in 
each cluster separately. Aggregate IGS value of each feature is 

computed as the summation of aggregate IGS value of that feature 
among all the clusters. Summation of aggregate values of all the 
features S is used to decide stopping criterion. All features are 
sorted in descending order of aggregate IGS values. These features 
are selected one by one till addition of their aggregate IGS value is 
less than threshold set and only these features are considered. S*∂ 
is used to set threshold. ∂ belongs to [0, 1]. Authors repeated ex-
periments with ∂ changed from initial value 0.05, step 0.05 and 
final value 0.95 and found that ∂ equal to 0.35 and 0.9 give good 

results in text and biological domain respectively.  
Li L. et al [51] used the information gain to measure degree of 
association between feature fx and label Cy. Larger value repre-
sents better association. It calculates information gain IGS of each 
feature with respect to the whole labelset. These values are nor-
malized and their average is used to decide threshold parameter μ. 
Every feature with IGS value less than μ, is removed from the list.  
Jungjit and Freitas [52] used Pearson’s correlation coefficient and 

genetic algorithm for implementation. They represented each in-
stance by n bits string. Bit fx = 1 or 0 denotes whether feature fx is 
selected or not respectively. Fitness function is based upon Pear-
son’s linear correlation coefficient. Individuals at each generation 
are chosen by combining tournament selection operator with elit-
ism generator. Next crossover and mutation are carried out. Fea-
ture selection by HC (Hill Climbing) [52] is used for comparison 
of the results. It should be noted that genetic algorithm selects 

more features as number of input features increases. HC is better 
in this case. 
Zhang, M.L. and Wu, L. [53] have not induced classifier from the 
original features. Instead original features are used to construct 
label specific features using k-means clustering, and then used for 

inducing classification model. That is, m features are represented 
using 2k clusters, k positive and k negative. Thus m-dimensional 
feature space is reduced to 2k dimensional feature space where 
m>>k in the LIFT algorithm proposed by authors. They designed 
two variants of the algorithm, one using information gain of all the 
features and the other using relation between labels and instances. 
Relief [54] is one of the feature selection method used for single 
label learning. It rewards if two attributes have different feature 

value for two classes and apply penalty if two attributes have dif-
ferent feature value for same class. Relief for multi label [55] 
searches for k neighbors and also uses dissimilarity of instances to 
find importance of features.  
Newton Spolaˆor [56] stated about BR that it converts data from 
multi-label to the single-label data. Then for every label, contribu-
tion of each feature is quantified and average of score of all the 
features within all the labels is measured. At the end features hav-

ing average score above threshold are chosen. Lazy approaches 
are proved beneficial while evaluating methods of feature selec-
tion methods. The reason is that classifiers based on lazy ap-
proaches are generally vulnerable to irrelevant features. Three 
approaches of feature selection are practiced by most of the re-
searchers namely filter which is not dependent of the learning 
algorithm, wrapper which is used along with the learning algo-
rithm and the embedded approach in which feature selection is the 

part of training process. Different feature importance measures are 
used widely in the literature like information gain [79], chi square, 
relief, gini index, fisher score, rough set, etc. Information gain and 
chi square do not consider feature interaction and are the most 
widely used. If there are three labels Cx, Cy and Cz, then data with 
all the features and an individual label is constructed. Then for 
each feature xk, its information gain with respect to each label is 
computed separately. Only if the average of all three values is 
greater than the threshold, then feature xk is considered by the 

learning algorithm. The process is repeated for all the features. 
Author has used the threshold value 0.01. Also spider graph is 
used for experimentation and comparison is done using the R 
framework. 

6.2 Label correlation/dependency based MLC algo-

rithms 

Label cardinality and label density introduced by Tsoumakas, G. 
et al [14] imply that datasets having equal label cardinality and 

unequal label density can possess varying characteristics and be-
have different for MLC methods. Former denotes average count of 
labels per example whereas the later denotes ratio of label cardi-
nality to the size of label space. 
[8] [32] and [40] briefed in sections 5 and 6 use label correlation. 
M. L. Zhang et al [57] have used Bayesian network structure that 
very nicely encodes conditional dependencies of labels and feature 
set. It considers feature set X as the common parent of all the  
 
 

  

  
Fig. 4 Taxonomy of performance metrics [15] [18] [19] 

 

labels. Bayesian network constructs DAG to characterize joint 
probability of all labels on feature set. Then a binary classifier is 

designed for every label considering parent labels in DAG as add-
ed features. 
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Z. H. Zhou et al [58] used the basic idea of the relation between 
labels. If two labels are associated, then hypothesis generated for a 
label may help for the other label. Main finding of this paper is 
that the label relationship is asymmetric. If Rs(m, n) is the reuse 
score from label n to m, then Rs(m, n) is not necessarily same as  
Rs(n,m). Authors implemented the boosting approach with hy-
pothesis reuse. It produces an estimate of the label relationship as 
output. There are three kinds of relationships among labels possi-

ble. They are reuse score, co-occurrence relationship and Ø-
coefficient relationship respectively.Basic idea behind [59] is that 
a label correlation may be shared by only a subset of instances 
rather than all the instances. Exploiting such correlations globally 
may be misleading and may hurt the classifier performance by 
predicting some irrelevant labels. The approach used is to separate 
training data into m groups {G1…Gm} where instances in the same 
group Gx share same label correlations. These groups are created 

using k-means clustering by finding similarity in label vectors, 
instead of feature vectors. Each group Gx represents label correla-
tions Rx. Each Gx is represented by a prototype vector Px. For m 
groups, there are m prototype vectors {P1…Pm}. Find similarity of 
each instance xk with these prototype vectors Pk to get LOC code 
vector Lk = {Lk1 … Lkm} where Lko is local influence of Ro on 
instance xk. Then train m regression models with the original fea-
tures as input and LOC codes as outputs. For unseen instance xu, 

first obtain LOC code Lu = {Lu1 … Lum} using m regression mod-
els. Then obtain final label vector Cu using xu and Lu. As a future 
scope, authors mention use of different clustering algorithm and 
different loss function. 
Ying Yu has proposed two techniques MLRS and MLRS-LC in 
2014 [60]. In both techniques, rough set model based on equiva-
lence relation and equivalence classes is used. Samples are said to 
be equivalent if their attribute values are identical to each other. It 
computes neighbors of each instance Xn for each label Cm. More 

the neighbors with label Cm, higher is the probability of Xn related 
to Cm. This information is computed globally for MLRS and local-
ly for MLRS-LC respectively. Global computation involves all the 
instances in the dataset and local computation involves a small 
subset of instances thereby resulting in better results compared to 
global one. The author has suggested high dimensionality reduc-
tion as a future direction. Chi square is univariate and scores each 
feature individually. Hence used with problem transformation 

generally like BR and LP. 
Mutual information [61] is multivariate and useful to find joint 
score of relevant features. Hence mutual information is suitable 
for multilabel classification.  
Some researchers find k nearest neighbors and use their infor-
mation further in the MLC algorithm. The correlation between 
labels can be considered in these algorithms to get better results. 

6.3 Clustering 

Clustering is the most popular form of unsupervised data analysis 
[62]. Many researchers have used clustering to reduce computa-
tional complexity of MLC [23, 35, 40-44, 50, 53, 59]. Some of 
them are discussed briefly in sections 3, 5 and 6. Let’s see few 
more. 
G. Tsoumakas [63] designed CBMLC algorithm in which k clus-
ters are formed using training instances where value of k is speci-

fied by the user. Labels are not considered during clustering. Next 
k multi-label classification models are constructed for k clusters 
independently. For a test instance, its closest cluster is searched 
and model of that cluster is used for classification. According to G. 
Tsoumakas, CBMLC is the first attempt on applying clustering 
analysis on the dataset before feeding the data to a classifier. 
In [64] authors apply clustering on the dataset. After forming clus-
ters of labels, new train data is constructed such that only those 

instances which belong to label Cx are considered for training Cx. 
Accordingly the train data in clusters is modified. Next PS (Prunes 
Set) classifier is trained with modified train data.  

Zhilou Yu  et al [65] run k-means algorithm several times to get 
correlations between labels and to confirm the chain of labels in 
CC. Note that clustering of labels is done, not instances.  
Initially G.A. Kaminka et al [66] apply dimension reduction using 
orthonormalized Partial Least Squares to find direction of maxi-
mum covariance between feature space and label space using SVD. 
Next create clusters using k-means and use Laplacian Eigen map 
to learn meta-labels within each cluster. Last step is to build clas-

sifier chains over meta-labels for local model learning.  

6.4 Natural algorithms 

Inspiring from how various things work in nature, evolutionary 
algorithms are evolved. Neural network in the machine learning is 
inspired from the working of the neuron in our brain. Ant Colony 
algorithm used in artificial intelligence is inspired from the life of 
ants. Attempts are done to improve MLC using such natural algo-

rithms. Some of them are listed here. [28] [52] have used genetic 
algorithm (GA) whereas [52] has also used Hill climbing. In [33], 
association classification and evolutionary algorithms are used as 
mentioned section 6.1. In MLOCS [67], genetic algorithm is used 
to improve association rules. Initially the problem transformation 
is applied followed by the application of single label rule mining 
using association rules. Next genetic algorithm is applied to obtain 
better rules by performing bit change either on the left side of the 

rule or on the right side of the rule. As mentioned in section 3.1.3, 
J. Read et al [22] has written that the sequence of labels is very 
important to get desired accuracy in classifier chain. In [68], base 
classifier used is CC and GA is used to find the order in which 
labels are used in the chain of classifier. In [69], authors use Pear-
son’s correlation coefficient to measure dependency between fea-
ture and feature as well as feature and label, and also the mutual 
information to find the correlation between two labels. Algorithm 

is implemented using Hill climbing as well as genetic algorithm. 
GA is applied on features for selection. 

7. Assessment of MLC algorithms 

Assessment of MLC algorithms can be done based on calculation 
[71] or output of learner [15]. Example based metrics assess per-
formance of each example individually whereas label based met-

rics assess performance of each label individually [18] [19] [21] as 
shown in Fig. 4 and reported in references listed in Table 5. Based 
on the output of learner, result can be generated in three ways: 
learner can predict C binary values for C labels in the label space 
indicating whether test instance belongs to particular label or not, 
it can rank C labels according to their relevance or produce C 
probability values for C labels respectively.  
Multi-label classification can be defined as follows. Let R be set of 

(xp, yp) denoting a training set consisting of features and labels 
respectively. Aim is to find a function g(x). It maps each xp to a set 
yp, where yp ⊆ S. Here S denotes complete label set. 

Let and be a set of actual labels for training instance xi and 

a set of predicted labels by a classifier for the same. Let g denotes 
a classifier. Let E and S denote a test set and a set of disjoint labels 
respectively. Some metrics are described next. 

 

Table 5 Performance metrics used for assessment of MLC methods 

Metric Reported in 

Hamming loss [6-9, 12-20, 23-25, 28-30, 32, 35, 37, 39, 41, 43, 46, 

49, 52, 53, 56, 60, 61, 64, 66-68, 71, 72, 78] 

Ranking loss [4, 5, 7-9, 11, 13, 15, 17-20, 24, 25, 28, 39, 41, 46, 

52, 53, 61, 72, 78] 

One error [7-9, 12, 13, 15-20, 24, 25, 28, 41, 46, 52, 53, 72, 

78] 

Coverage [7-9, 12, 13, 15-20, 24, 25, 28, 46, 52, 53, 61, 72] 

Average precision [4, 5, 7-9, 11-13, 15-20, 24, 25, 28, 41, 46, 52, 53, 

60, 72, 78] 

Accuracy [6, 10, 14, 15, 17-20, 22, 29-33, 35, 37, 44, 49, 56, 

60, 61, 67, 68, 71] 

https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Zhilou%20Yu.QT.&newsearch=true
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Subset accuracy [6, 11, 15, 17-20, 37, 56] 

Precision [6, 10, 11, 14, 15, 17-20, 31, 32, 67, 71, 78] 

Recall [6, 10, 11, 14, 15, 17-20, 31, 32, 67, 71, 78] 

F-measure [6, 11, 15, 17-20, 29-31, 37, 41-43, 47, 56, 60, 64, 

71, 78] 

ROC [25, 40, 47, 53, 71, 78] 

Macro precision, 

Macro recall 

[18, 19] 

Macro F1 [1, 2, 8, 10, 18, 19, 21, 22, 37, 56, 66] 

Micro precision, 

Micro recall 

[18, 19, 78] 

Micro F1 [1, 2, 8, 10, 18, 19, 21, 23, 37, 56, 63, 66] 

Macro AUC, 

Micro AUC 

[3, 8, 19] 

AUPRC [22, 38] 

Hierarchical loss [17] 

Log loss [22] 

Exact match [66] 

Recall, Precision, F-Measure and accuracy [31]: 

, ,  

 ,         (1) 

Ranking loss: measures how many times an irrelevant label is 
ranked above the relevant labels. Small value is expected.  

      (2) 

Here  and  belong to and  respectively. For an instance 

r, value of μ(q, r) represents the relevance of label q with it. Small 
value is desired.  

Hamming loss: measures how many times an instance and its 
related label is not classified correctly. Small value is expected 
[25]. 

                                                      (3) 

where Θ denotes symmetric difference. V(.) = 0 if for all labels 
ALi and PLi of an instance i are same, otherwise it’s 1.  
Coverage: measures how deep the list of predicted labels should 
be observed for including all the relevant labels to an example. 
Assume the most labels appear in the beginning. Less value is 
good.  

                                            (4) 

Average precision: computes an average of labels which are 

relevant and ranked better than a specific relevant label. Large 
value is expected. 

      (5) 

Subset Accuracy: computes an average to check if generated 

label set of an instance and its actual label set is same for all the 
instances [14-20]. 

                                                  (6) 

where V(.) = 1 if ALi and PLi are same for all the labels of an 
instance i, else V(.) = 0. 
One-error: measures how many times a predicted label at the top 
rank is not in the list of relevant labels of an instance. Small value 
is desired [14-20]. Value of V(.) is 0 if (.) is false, otherwise 1. 

                        (7) 

Macro averaging and Micro averaging: A binary metric V can 

be measured in terms of count of true positives (TP), false 
positives (FP), true negatives (TN) and false negatives (FN) [14-

20]. For a label c, macro-averaged V and micro-averaged V are 
computed as 

 

             (8) 

8. Datasets 

Different datasets are available from Mulan, MEKA and LibSVM 
for experimentation [73-76]. Few datasets and their domains are 

listed in Table 6.  

Some URLs to get these datasets are:  

 http://meka.sourceforge.net 

 http://mulan.sourceforge.net 

 https://www.cs.waikato.ac.nz/ml/proper/datasets.html 

 http://mlkd.csd.auth.gr/multilabel.html 

 http://slashdot.org 

 http://www.imdb.com/interfaces#plain 
 

Table 6 Datasets used by MLC methods 

Dataset Domain Reported in 

BioASQ Biology [1] 

OHSUMED Text [2, 15, 22, 29, 39] 

ImageNet, 

PASCAL 

Multimedia [4] 

NCI, PTC Biology [5] 

Yeast Biology [6, 7,  14, 15, 17, 18, 20-22, 24, 

28-30, 35, 37, 39, 40, 53, 56, 60, 

61, 64, 66, 68, 71, 78] 

Reuters Text [7, 11, 15, 17, 21, 22, 25, 30, 31, 

39, 42-44, 53, 66, 78] 

Scene Images [9, 13-15, 17, 18, 20-22, 24, 28-30, 

35, 37, 39-41, 53, 56, 60, 61, 64, 

66, 68, 71, 78] 

EUR-Lex Text [11, 15, 53] 

HiFind Multimedia [11, 15]   

Web pages Web [13, 15, 24, 43, 46, 52] 

Genbase Biology [14, 17, 20, 56, 66, 68] 

Medical Text [15, 18, 20-22, 29, 30, 39, 41, 43, 

52, 56, 60, 64, 66, 68] 

Mediamill Multimedia [15, 17, 18, 20-23, 39, 53, 63] 

Enron Web [15, 18, 20-22, 29, 30, 39, 41, 52, 

53, 56, 60, 64, 66, 68] 

Emotions Multimedia [15, 17, 18, 20, 35, 37, 39, 56, 60, 

61, 68] 

FunCat, GO Biology [15] 

Delicious Text [17, 18, 22, 23, 66] 

tmc2007 Text [17, 18, 21, 22, 39, 53, 71] 

Corel5k Multimedia [18, 20, 53, 56, 60, 64, 66, 68] 

Bibtex Text [18, 21, 22, 41, 53, 56, 66, 68] 

Bookmarks Text [18] 

Slashdot Text [22, 39, 53] 

IMDB Text [22, 39] 

AP Titles, UseNet Text [25] 

CAL500 Multimedia [41, 53, 56, 60, 68] 

Language log Text [53] 

Image Multimedia [39, 53] 

Corel16k Multimedia [53, 56, 66] 

Flags Multimedia [68] 

Birds Multimedia [66] 

9. Tools available for implementation 

Different tools available for experimentation of multi-label learn-
ing are given in Table 7 [73-77]. MEKA [73] [77] is an open 

source library. Mulan [74] is another tool for MLC. Both are 
based on WEKA [75]. They provide many multi-label classifiers 
for researchers as well as practitioner. Mulan supports libraries 
which can be used in Java code. LibSVM [76] provides support 
for SVM. All these tools support both Comma Separated Value 
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(CSV) and Attribute Relation File Format (ARFF) of datasets. 
Traditional LIBSVM supports only single-label data. It requires 
some modification to handle multi-label data. 

 

Table 7 Tools available for implementation of MLC 

Tools Reported in 

MEKA [18, 20, 73, 77] 

Mulan [6, 17, 18, 20, 37, 49, 52, 55, 56, 60, 63, 66, 68, 74] 

WEKA [18, 20, 22, 29, 30, 55, 56, 60, 63, 75] 

LIBSVM [3, 10, 11, 17, 18, 41, 47, 72, 76] 

10. Conclusion 

Every approach and method of multi-label classification offers 
benefits as well issues like loss of label dependency in transfor-
mation, complexity in case of adaptation, improvement in results 
using ensemble alike. This should be considered while selecting a 

multi-label classifier approach for underlying application. Lots of 
work is going on in this area. Still there is a scope for improve-
ment of MLC algorithms using natural algorithms, parallel com-
puting, big data and others. After doing the study of some of the 
multi-label research, it is observed that k nearest neighbor is very 
popular among researchers as a choice for base classifier [24] [37] 
[42] [55] [60]. One of the reasons is its simplicity. Because of its 
lazy nature, it is susceptible to newly added label. To find neigh-
bors various distance metrics are available, most common being 

the Euclidean distance. But it is observed that the neighbors se-
lected greatly affect the result of these multi-label classifiers. 
Hence proper selection of neighbors is very important. 
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