

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.19) (2018) 1036-1040

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

A Novel Approach for Building Adaptive Components using

 Top-Down Analysis

Sampath Korra
1
*,D.Vasumathi

2
,A.Vinaybabu

3

1Research Scholar, Dept of CSE, JNTU College of Engineering, JNT University, Kakinada,India

2Professor, Dept of CSE, JNTUH College of Engineering, JNT University, Hyderabad, India
3Retd Professor, Dept of CSE, JNTUH College of Engineering, JNT University, Hyderabad, India

*Corresponding author E-mail: sampath_korra@yahoo.co.in

Abstract

Developing reusable components are one of the main objectives of component-based software engineering. They play a crucial role in
the field of application development and support. CBSE use certain architectural patterns and infrastructures of standard software to

increase overall product quality. CBSE apply two parallel engineering activities, domain engineering and component-based development
(CBD). Domain analysis explores the application domain with the intent of finding functional, behavioural, and data components that are
candidates for reuse and places them in the reuse repository. Strategies for developing adaptive reusable components using top-down
domain analysis leads to good quality in the component. Domain analysis promotes strategies and models that have been developed for
their specific areas. Therefore, these models are suitable for their own domain, but may not be entirely suitable for domain analysis of
other domains. So, developing the reusable components using the top down domain analyses existing components. This paper describes
how to build a domain to use top-down analysis of reusable software components.

Keywords: component; reuse; adaptive; domain analysis; software; top-down; bottom-up;

1. Introduction

In software engineering, product line analysis or domain analysis
is the process of analyzing related software systems in the field to
find common and variable parts. However, this domain analysis,
which is purely bottom-up, gives a view of the domain that also
limits what has been developed in the past. What we also need has

to be developed in the future to determine which components
provide reuse. In order to obtain the views of the future, we can
analyze the business model as part of the name resolution process.
In order to promote large-scale reuse, we should consider how to
re-use the method of a software component. Although recycling is
the most common type, and sometimes do not turn out to be a very
difficult part, we should try to reuse software component
architecture, specification, and design of a higher level, because

they are less dependent on the future change [1]. In addition, the
design of the reusable component using top-down analysis should
always be able to solve technical problems with it [2].
Software developers use "plug and play" approach, in order to
promote development and integration of reusable software
components. Software architects and designers will create a top-
down layered architecture and interface that will use for the
development of reusable components [3]. It will result in software
solution products, adaptability, and scalability. This article

discusses the use of the field of component based software
engineering for developing reusable software components using
top-down domain analysis [4].
By reusing software development projects, we can build the
solution of new products and processes. Over the reuse, we can
build the solution development of software, the formation of

recent products and advanced technologies. On the product side,

we have to make sure that the delivery forms can support reuse in
the process. Our approach requires the improvement and
application of the products. In the process, we must able to handle
both abstract problem areas and build reusable solutions. The
system may be developed within the solution area and then used.
The processes and products may be started for successful reuse. In
the first process, to adapt existing systems to meet the new needs
generally used. In the second, new approach, the process of

determining ownership, supporting, and customizing parameters is
often a unique requirement. The third method to abstract the
underlying engineering approach and find use of a common
software-based software system that is adaptive [5].
What is Adaptability?
Adaptability is the properties of software that refers to how much
work is needed to change the running program or the ability of
software to adapt and changes in the environment. Software with

certain adaptability is called adaptive software. Software pro-
gramming techniques suitable for supporting adaptable software
are referred to as Adaptive Programming Technology (APT).
Adaptive software systems have a great advantage over traditional
software systems. Traditional software systems adapt to external
changes: the system is difficult to adapt to external changes.
Whenever external conditions change, they need to be recoded and
tested. They may even affect the detailed design, overall design,
and requirements analysis. Changes in the system's life cycle may

involve higher levels, requiring the involvement of operators,
programmers, designers, and even analysts.
Adaptive software systems adapt to external changes. External
changes only affect the maintenance cycle and they do not affect
the other cycles of the life cycle. Therefore, maintenance costs can
be greatly reduced.

http://www.sciencepubco.com/index.php/IJET

International Journal of Engineering & Technology 1037

With the continued growth in the field of software engineering,
researchers and practitioners to bring new perspectives and
insights into the field of software reuse [6].
Here the essential focus on application software products that have
been particularly in the field of model and software architecture
analysis. Accepted domain analysis in software reuse is a very
important first step in the decision [7].
Top-down domain approach

 Hierarchically organized component architecture,

 All the necessary components are arranged in ascending or-
der.

Reusable software components, typically the designer will provide
software and hardware architecture system design in the reusable
framework or model.

2. Problem statement

Component-based development, also known as the development
of "reuse", involves application building. By reusing existing
components new applications are developed. If necessary,
anybody can develop new components that can even be obtained
from a third party. An important issue in CBSE is that even if the
requirements are not fully present, it is more important to reuse
existing components rather than develop new components. It
reduces costs and time to market but requires a search mechanism

to access all available components. Therefore, in order to be
effective, CBSE must provide a way to find, connect and adjust
the existing components. It must also support the addition of
developed components during this period.
The component combination integrates the component (whether
qualified, adapted or designed) into the work system. Integration
of components is solved by establishing an infrastructure that
binds components of the operating system. This infrastructure is

usually a specialized component library. It provides components
and specific service correlative models that facilitate to coordinate
components with each other and common tasks perform. Many of
the functions of the software system come from the interaction of
their components.
The functionality created from the component architecture can be
understood as a careful component. At present, there are two
standard mechanisms for the component. Components
interconnected languages and standard interfaces.

The interconnection between programming languages:
Interworking language is a special purpose description language
that describes how a component is connected. At least, the
interconnected language expresses the general structure of the
system and an advanced linkage language that describes the
functions of the system likewise the communication protocol and
connector properties. Interworking languages help to abstractly
specify components in an isolated modeling language. While this

enhances the clarity of the model, it increases the exploration of
updating the system specification when the component definition
changes or the combination of components is different. The most
primary category of interconnected languages is Module
Interconnection Language (MIL).
Component Adaptation Techniques

 White-box wrapping - Integration conflicts were removed

when code-level changes are made to the code.

 Grey-box wrapping -Used when the component library

contains a component extension language or API that allows
to remove or mask conflicts

 Black-box wrapping – Require the introduction of pre-

treatment and post-processing in the component interface, so
that conflicts can be removed or covered

Standardized interfaces:
The formation of standard interface methods and language

interconnection distinction. In an interconnected language, the
connection between components is explicitly indicated in a higher
level of language. Standardization allows a component to absolute

appeal to a service defined in a canonical interface and then
consists of any component that implements the interface. Develop
a standardized interface for each region. Finally, the development
component implements a specific area of the interface. It is said
that these areas are parameterized to clearly identify components
of other standardized interface areas. A component combination is
a process that replaces a domain parameter with a specific
component of the field.

Adaptor specification:
In this paper, we present a simple notation to express the specifi-
cation of the adapter with intent feature interoperability of one or
more components. The adapter specification consists of a series of
correlation table actions and parameters of two components. The
distinctions part of the entry is that it generates a high level, the
partial specification of the adapter. The meaning of the adapter
specification can be formalised in a set of properties and those

properties are discussed in the below algorithm.
Pragmatic programmer:
Pragmatic developers have a practical and unknowable component
approach because he does not have any particular brand, type of
component and is, therefore, superior with other components in
the general sense manner. The software is nothing but software,
whether it is a good or bad development, in the professional
development of closed business software industry has a lot of bad

software examples, because a community has driven open source
project with the hacker world. An approach may not exclude the
option, but rather than selecting the most appropriate component
for any particular task or case.

3. Proposed work

1. 1. How to improve the adaptive method for a software system

Enhancing the adaptability of the software system means that the
software system can adapt to changes in business performance and
changes in an external environment. Improving the adaptability of
the software system can be done from the following points: [22].
Software interoperability improvement:
Software design relies on business requirements that can meet the
needs of time and have certain versatility. In other words, various

changes that may be encountered during the system design phase
should be considered. When external circumstances change, the
system should be better able to adapt and maintain a stable opera-
tion;
Improvement of software self-description:
The system has a certain ability of self-description. It can describe
the change of external conditions as much as possible through the
form of parameters. When the conditions change, only the corre-

sponding parameters need to be adjusted, but no large-scale soft-
ware modification is required;
Software as a tool to improve:
Some basic, unchanged or often referred to as modules, they can
be considered as an instrument only in the design phase, which
improves system flexibility and call efficiency;
Software modularization improvements:
Create a reasonable, efficient and independent module with func-

tions to call different functions for the modules. These modules
make every effort to use coupled data to minimize the complexity
of the program;

2. Domain analysis method

The domain analysis method is to perform a software system for
collecting information that has a common set of features and data.

In addition, domain Analysis will determine precisely in those
areas and software products Domain is a good resource for reuse
[8]. Overview formulated in a top-down approach of the system
but does not specify any detail about the component. Each
subcomponent is then further purified in more detail.

1038 International Journal of Engineering & Technology

Three primary activities are framed for representing the process:
Scope: It will determine the domain analysis
Domain modeling: It will meet the software domain provided
description requirements.
Architectural modeling: To achieve a solution to the problem
domain creates software architecture.
Domain Engineering is subdivided into 2 parts
Top-down Domain Analysis

Bottom-up Domain Analysis

2.1. Top-down domain analysis

A top-down approach for developing a reusable component
scheme is known as an enumerative classification scheme of
domain analysis [9] [10]. Domain analysis and research, through
the system top down, from the future business plans of top domain
model analysis. To target for developing reusable components
using top-down analysis model, it will determine how many

components are before the next component of the system to
establish a common architecture [11] [12].
Top-down analysis of the domain is the proposed system planned
for analyzing the domain business model. Its purpose is to decide
and build reusable components. Those can be reused for finding
common system identification requirements and regular system
behavior/function. If the regular software architecture has enough
organized, then this is a good sign, re-use should be achieved with

a new approach.
Experience in the analysis of applications shows that the domain
definition and scope of analysis is not easy in many cases. The
range of areas or product lines often depends more on the inside
analysis [13].
Commonalities can find for duplicate system requirements,
functional and regular software architecture of the system
behavior on a daily basis to determine. If the ratio is high enough,

then this is a good sign in the field, if we use these strategies. So
always top-down domain analysis has high priority in the design
of reusable components [14].
Selection of component within the boundary region can
significantly affect the success and domain analysis but is not
uniform throughout the method that can minimally resolve in
some cases [15] [16].
There is no strategic planning and business models to choose from,

often are not performed in the bottom-up analysis. But it also
requires a corresponding top-down [17]. But frame a strategy for
developing reusable components using a top-down approach the
product development time will be reduced [18]. Some of the key
points to be observed while using top-down domain analysis are
shown in below table.

Table 1: Top-down domain analysis

Required specifications in order to improve quality

Accelerate reuse systems throughout the software life cycle

Facilitate future reuse of the product life cycle

Development life cycle assists in the early stages

Better use of existing components

2.2. Bottom-up domain analysis

A bottom-up domain analysis scheme which is also known as a
faceted classification scheme. Some studies, a typical example of
a conventional bottom-up systems domain method, the
components in these systems for the identifying component. By
examining how the use of common components present in the
system. This sample, we can learn how to create a reusable

component [19].
The method is used to determine the recurrence of the whole
system that is looking for the same or similar names, the same or
similar input and output that are similar to the same common
component flow graphs, the same or similar data structure [20].

2.3. Why we are using top-down analysis?

Establish and maintain a database of reusable formal semantics is

described and the use of semantic information, we can focus on
the components do. This method is part of software development
and software reuse. Reusable results are an integral part of the
research domain analysis that can significantly benefit from the
work of other areas.
Classification is nothing more than a combination of similar
components, that is, all members of the group share a feature that
is part of other groups [21]. The Java component, its function is

classified. Evaluating each function may have the same function
for similar parts.
Several domain name resolution of the problems in other
disciplines. Information is a reusable knowledge and extensive
research and technical services. Various components are classified
to meet the overall requirements of the frame to reuse [22].
Here developed a heuristic approximate matching reuse method to
identify a subcomponent of the relevant library specification

which is a more detailed assessment that is shown in figure 1.
Indexing of component is based on the use of the classification
function on the component and allows for efficient reuse.
Classification is achieved in a top-down manner; the features that
may be described by the defined automation components[30].
Experts to define the control of the classification system, rather
than a person in the field [23][24].To ensure the most likely
component features to match the standard feature set similar to
reuse. Coincides with the full-size scale can use automated logic

provides components accurately assess applications [25].
For software reuse, it is an essential component which can be
composed without having to know each other. It makes the
component composition[28], without changing the member
(Dynamic Control). For example, the functions call functional
classification, calling a function, rather than assembling, has been
modified in the program text called function [26].
System analysis also provides a complete technology and proven

methods to help us understand the domain name resolution
process. Domain analysis should try to reuse existing research
from other disciplines [27].
Object-oriented programming provides greater flexibility through
dynamic binding. It is very easy to re-use the components, where
each component in the environment may be generated in response
to the other events that are not aware of the receiver member to
create a new event [25] [29].

Algorithm:
(1) s1 and s2 subset of S
(2) Rb(Sn c) > Rb(Sn1 c)
(3) Rb->Reusable component. Reusing a more expensive
component is more beneficial than reusing a cheaper
component.
The cheaper component is Rb (Scm)

(4) Rb (Scv) > Rb (Scm) > Rb (S)
(5) Rb (Scv) ->Adaptive component reuse
(6) Rb (Sn, c) ->Reusable output.
(7) Rb (c) ->Classifications of components
S1->Selective Component 1
S2->Selective Component 2
S->Super set of S1 and S2
Rb-> Reusable components
Scv-> Expensive component

Scm-> Cheaper component
C->Classification
Rb(c)->Reusability using Adaptive Classification.

In the above algorithm, we are discussing how to classify the
components using a top-down approach. Before this approach the
components are unordered. That is shown in figure 1. The compo-
nents are of different technologies ex-java, c++, c language etc.

International Journal of Engineering & Technology 1039

Classification is nothing more than a combination of similar
components, that is, all members of the group share a feature that
is part of other groups [21]. The Java component, its function is
classified. Evaluating each function may have the same function
for similar logic so we classified using subset theory.
If two components need to be more structurally integrated, the two
components can be grouped into one package component. For
example, s1 and s2 are selective components and now those are a

subset of S. The top-down analysis is defined for this purpose.
However, the packaged component needs to delegate the request
to the contained component to meet the system's requirements.
The traditional approach is to define a large set of small methods
on the encapsulated component and forward the message to the
correct encapsulated component. Obviously, this method will lead
to consider implementation costs for software engineers. In addi-
tion, the reusability of the solution is very limited.

Rb->reusable component. Reusing a more expensive component is
more beneficial than reusing a cheaper component. The cheaper
component is Rb(Scm)
The root cause of these problems is that the polymerization is
opaque. When top-down analysis can be used as a compositing
technique, the solution is to define a superimposed entity that
allows combining two or more components without the above
drawbacks.

Informally, the above specification states that the overlay unit
openly transmits all messages in a nested component that defines a
similar method. However Name conflicts or other scenarios, soft-
ware developers can configure explicit interface element map-
pings. Explicit mapping functions override implicit definitions
that are shown in figure2.

4. Results and Discussion

Fig. 1: Component classifications

In the above example components are of different technologies
like c,c++, java,python,.net etc. And all are in unordered list. If we

classify the components based on the selective components then
they are going to form as a subset.
Java and C++ are the component state and behavior available to
the reuse component. According to the language model, all inter-
nal aspects or only some aspects can be used to reuse components.
For example, in python, all methods and instance variables de-
fined in a superclass are available for subclasses, and in C++ it
depends on methods and instance variables that use private and

protected keywords. Can be used for subclasses. Inheritance pro-
vides an important advantage of code that still exists in one place.
However, one of the major drawbacks of inheritance is that when
software engineers rewrite superclass methods and use super
class-defined behaviors to define new behaviors, they must often
have a detailed understanding of the super class’s internal func-
tions.

Fig. 2: Component classifications after the top-down analysis model

If two components need to be more structurally integrated, the two
components can be grouped into one package component. Here S
is superclass that is going to classify the components s1, and s2
and that is shown in above figure 2.
In below Table 2, an overview of the conventional adaptation
techniques is presented that indicates how well each technique

fulfills the specified requirements. From the table, one can see that
some problems are dealt with well wrapping but not so well by the
white-box techniques, i.e. copy-paste and inheritance, and vice
versa,

Table 2: Conventional adaptation techniques versus the identified prob-

lems and requirements

Requirement Copy-Paste Inheritance Wrapping

C Yes No No

C++ No Yes Yes

Java No Yes Yes

Python Yes No No

.Net No No No

Copy-paste techniques and inheritance are transparent because
reuse and adaptation behaviors are merged into a single entity.
However, according to other requirements, the white box adapta-
tion technology score is not so good. The package is opaque be-
cause it encapsulates the adapted components. By definition, the
package is a black box, and the package is combinable because the

package components can be repackaged by another packager to
accommodate different aspects of the original assembly. Tradi-
tional technologies do not support configurability and reusability
well because there is no distinction between generic behavior and
component-specific behavior. For this reason, it is impossible to
separate common aspects and apply them to different compo-
nents[18][23].

5. Conclusion

Top-down analysis is usually possessed economical issues, but not
the way to take the re-use of an opportunist. To focus on short-term
gains, lower costs to re-use and only those who direct the
application specific system (program) is being developed. There
are two main strategies to build reusable components in the
software engineering field which are top down and bottom up

analysis.

1040 International Journal of Engineering & Technology

For adaptive software, reuse needs successful component
identification, classification, storage, retrieval, and management,
for the understanding of the background of all exported to such
information. By developing a top-down model context, for the
domain basis, maximize they assemble, wherein the reusable
understand and able to infer how to reuse the value can be carried
from one context to the other side. This new model-based
“requirements engineering” field is accurate. Top-down domain

analysis is concerned with the processing of information overload
from the software industry, they do not realize that the only
relevant requirements. To achieve this goal, we recommend that
top-down domain analysis strategies. To achieve the application of
different software architectures, code and using reusable
components for reuse of the building blocks of portable
applications.

References

[1] R.G. Lanergan and C.A. Grasso, “Software Engineering with Reus-

able Designs and Code,” IEEE Transactions on Software Engineer-

ing, vol. SE-10, no. 5, September 1984, pp. 498-501

[2] William B. Frakes and Kyo Kang, "Software Reuse Research: Sta-

tus and Future", 2005

[3] J.M. Boyle and M.N. Muralidharan, “Program Reusability through

Program Transformation,” IEEE Transactions on Software Engi-

neering, vol. SE-10, no. 5, September 1984, pp. 574-588.

[4] C.A.R. Hoare, “Hints on Programming Language Design,” In Pro-

gramming Languages: A Grand Tour, E. Horowitz, ed., Computer

Science Press, Rockville, MD, pp. 31-40, 1983,

[5] Korra, Sampath, A. Vinaya Babu, and S. Viswanadha Raju. "The

adaptive approach to software reuse." Contemporary Computing

and Informatics (IC3I), 2014 International Conference on. IEEE,

2014.

[6] Prieto-Díaz, R., Domain analysis for reusability, Proceedings of

COMPSAC’87, 23–29, (1987).

[7] W.A. Hegazy, The Requirements of Testing a Class of Reusable

Software Modules, Ph.D. dissertation, Department of Computer and

Information Science, The Ohio State University, Columbus, OH,

June 1989.

[8] H.D. Mills, M. Dyer, and R.C. Linger, “Cleanroom Software Engi-

neering,” IEEE Software, vol. 4, no. 5, September 1987, pp. 19-25.

[9] Piho, G, Tepandi, J. and Roost, M., "Domain analysis with arche-

type pattern based Zachman framework for enterprise architecture."

[ed.] A K Mahmood, et al. Kuala Lumpur, Malaysia, 15th-17th

June 2010 : IEEE, 2010. Proceedings The 4th International Sympo-

sium on Information Technology 2010. Vols. 3 - Knowledge Socie-

ty and System Development and Application, pp. 1351-1356.

[10] J. Krone, The Role of Verification in Software Reusability, Ph.D.

dissertation, Department of Computer and Information Science,

The Ohio State University, Columbus, OH, August 1988.

[11] D.L. Parnas, “A Technique for Software Module Specification with

Examples,” Communications of the ACM, vol. 15, no. 5, May 1972,

pp. 330-336

[12] Daniel Gross and Eric Yu. "From Non-Functional Requirements to

Design through Patterns". Requirements Engineering, 2011, 6:18-

36.

[13] O. Kath, R. Schreiner, and J. Favaro. Safety, Security, and Software

Reuse: A Model-Based Approach. In Proceedings of the 4th Inter-

national Workshop on Software Reuse and Safety, RESAFE '09,

Washington, D.C., US, September 2009.

[14] B.H. Liskov and S.N. Zilles, “Specification Techniques for Data

Abstractions,” IEEE Transactions on Software Engineering, vol.

SE-1, no. 1, March 1975, pp. 7-19.

[15] Software Reusability: Concepts and Models, T.J. Biggerstaff and

A.J. Perlis, eds., ACM Press, New York, vol. 1, 1989.

[16] Hafedh Mili, Fatma Mili, and Ali Mili “Reusing Software: Issues

and Research Directions” IEEE Transactions on software engineer-

ing, VOL 21, NO. 6, JUNE 1995

[17] Schmidt, D. C., Why Software Reuse has Failed and How to Make

it Work for You [Online], Available:

http://www.flashline.com/content/ DCSchmidt/lesson_1.jsp, [Ac-

cessed: 18 August 2002].

[18] Douglas Eugene Harms “The Influence of Software Reuse on Pro-

gramming Language Design” The Ohio State University 1990.

[19] Sullivan,K.J.;Knight,J.C.; “Experience assessing an architectural

approach to large-scale, systematic reuse,” in Proc. 18th Int’l Conf.

Software Engineering, Berlin, Mar. 1996, pp. 220–229.

[20] M. Pat Schuler, “Increasing productivity through Total Reuse Man-

agement (TRM),” Proceedings of Technology2001: The Second

National Technology Transfer Conference and Exposition, Volume

2, Washington DC, December 1991, pp. 294-300.

[21] http://www.encyclopedia.com/science-and-technology/biology-and-

genetics/biology-general/taxonomy

[22] D. Lucredio, A. F. d. Prado, and E. S. d. Almeida, "A Survey on

Software Components Search and Retrieval," in Proceedings of the

30th EUROMICRO Conference, 2004, pp. 152-159.

[23] M. Aoyoma, “New Age of Software Development: How Compo-

nent-Based Software Engineering Changes the Way of Software

Development?,” in Proceedings of the 1998 International Workshop

on CBSE.

[24] Constance Palmer, “A CAMP update,” AIAA-89-3144, Proceed-

ings of Computers in Aerospace 7, Monterey, Oct. 3-5, 1989

[25] Brian W. Holmgren, “Software reusability: A study of why soft-

ware reuse has not developed into a viable practice in the Depart-

ment of Defense,” Masters Thesis, Air Force Institute of Technolo-

gy, AFIT/GSM/LSY/90S-16, September 1990.

[26] yvind Hauge. Adoption of Open Source Software in Software In-

tensive Industry. 2010.

[27] Carl Gutwin, Reagan Penner, and Kevin Schneider. Group aware-

ness in distributed software development. Proceedings of the 2004

ACM conference on Computer supported cooperative work -

CSCW '04, page 72, 2004.

[28] J. Schneider, "Components, Scripts, and Glue: A conceptual

framework for software composition,"Ph.D. Thesis, Ins. of Com-

puter Science and Applied Mathematics, University of Bern, 1999

[29] K. Venugopal Reddy and Sampath Korra “Object-Oriented Analy-

sis and Design Using UML” BS Publications, 2018.

[30] Classification-based Mining of Reusable Components on Software

Product Lines, Maximiliano Arias; Alan DeRenzis; Agustina

Buccella; Andres Flores; Alejandra Cechich, IEEE Latin America

Transactions Vol.14, Issue:2, Feb.2016.

