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Abstract 
 
In this paper we have proposed a framework which uses high utility itemset mining to store data stream elements in a compressed form 

and then detect events from the sliding window. This approach promises to reduce the memory requirements when applied to frequent 
pattern mining in data streams. 
In addition to this, a method to dynamically define the value of minimum support threshold based on data in the data stream is presented. 
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1. Introduction 

With recent advancements in computational devices and software, 
there is an increasing demand for data mining methods which can 
handle huge streams of data. A data stream is a huge sequence of 
data elements which arrive at high rate. A data stream is often 
generated from sensors, financial markets, social networks, 
etc[2][3][4][5]. 
An example of a data stream is the posts which are posted on 

microblogging websites. The number of active users on 
microblogging sites is huge and so are the messages posted by 
them. There are many agencies that are interested in mining 
knowledge from microblogging data such as the current topic of 
discussion between users on microblogging websites. Finding 
answers to such queries is challenging due to the large amount of 
microblogging data generated online. In this case we consider a 
data stream as a stream whose elements are messages. Each ele-

ment of the data stream is an itemset where each item is a word. 
In this paper we use an approach to compress the data stream ele-
ments by using high utility itemset mining. High utility itemset 
mining associates a profit value, called as utility, to an itemset. 
This utility of an itemset could be profit on retail price, frequency 
of its occurrence, etc. 
In this paper we present utility of an itemset in terms of the 
amount of memory that is saved by replacing the itemset by its 
compressed form in the sliding window. This approach will re-

duce the amount of memory required to store a sliding window. 
In addition to this, we present a framework to define the value of 
minimum support threshold from the distribution of itemsets in 
the data stream dynamically, specifically the sliding window. 
Replacing the user given fix value of minimum support with a 
dynamic one has the following two advantages. Firstly, the value 
is defined based on the data in the sliding window and not merely 
specified by the user who otherwise has no idea about the distribu-

tion of itemsets across the data stream. Secondly, the value chang-
es as the window slides across the data stream. Since the mini-
mum support value is specific for a sliding window, it would ac-

tually be most suitable one, in that sliding window, to identify the 
frequent itemsets. It eliminates the situation of having a constant 
minimum support value for all sliding window across the entire 
data stream. Since data streams in terms of their data are dynamic 
in nature, a dynamic value of minimum support threshold is more 
suitable. 
This paper is organized as follows. Related works has been pre-

sented in section 2. The problem is defined in section 3. Section 4 
describes the proposed approach. The experimental study is pre-
sented in section 5 with section 6 concluding the paper. 

2. Related work 

High utility itemset mining has been worked upon in [8] and [9]. 

The approach in [8] compresses the elements using codes gener-
ated based on their occurrences in the previous batch. Using codes 
of a previous batch to compress the elements of the current batch 
is not suitable. So also, the codes are generated and stored for 
every batch. The approach in [9] compresses elements by dividing 
the data stream into same sized batches. It finds frequent patterns 
for each batch and uses these patterns to compress the elements of 
the batches. Both the approaches compress the elements of the 
entire data stream in batches. 

In this paper we propose a framework which compresses elements 
in a sliding window incrementally. By incremental we mean that 
compression is done while an element enters or leaves the sliding 
window and not at the end of a batch of elements altogether. The 
compression of elements is based on the utility of the element in 
the current sliding window. The approach presented in this chapter 
is suitable for processing data stream using a sliding window 
model as it allows more elements to be stored in a sliding window 

for a fixed memory budget. 
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3. Problem Definition 

3.1. Preliminaries 

Let D = (T1,T2,...) be a data stream where Ti is an itemset. Let SW 
be a sliding window of size w which slide over the data stream D. 
The support of an itemset X, denoted as supp(X), is the number of 
element containing X in the sliding window SW. 
The idea is to replace the itemsets in elements of the sliding win-
dow by links to the itemsets themselves stored as closed itemsets 
in the intermediate summary data structure. A link to an itemset 

can be a pointer or a code of the itemset stored in the summary 
data structure. Not all the itemsets in the sliding window are re-
placed but the ones which are chosen based their utility in the 
sliding window. The method to find the utility of an itemset is 
described in the subsequent subsections. 

3.2. Utility of an itemset 

The utility of an itemset is the profit offered by an itemset. In this 
chapter we define utility of an itemset as based on two factors. 
The first factor is the memory saved by replacing the itemset in 
the sliding window by a link. This is calculated as the difference 
between the size of the itemset and the size of the link to the 
itemset. The second factor is the frequency of occurrence of the 

itemset in the sliding window, which is the support of the itemset. 
Let ui be the memory size of an item. The memory size of an 
itemset X is given by 

u(X) =∑ui (1) 

where ui is the memory size of items in X. Let δ be the size of the 
link which could replace the itemset X in the sliding window. The 
utility of an itemset X is given by U(X) as 

U(X) = u(X) − δ (2) 

where u(X) − δ is the memory saved by replacing X in the sliding 
window and u(X) is the memory required to store X into the inter-
mediate summary data structure. The term U(X) multiplied by 
sup(X) reflects the total memory saved by replacement of the 
itemset X in the sliding window. A negative value of utility means 
the cost of replacement is more and the itemset should not be re-
placed. If the utility is zero then its a no-profit no-loss situation. 

4. Framework for high utility itemset mining 

using closed itemsets 

4.1. The intermediate summary data structure 

The intermediate summary data structure is used to store the tem-
porary results generated while processing the data stream. The 
intermediate summary data structure presented in this paper is a 
table ItemList with four fields- Id, Support, ItemSet and Utility as 
shown in figure 1. 

4.2 The approach 

The approach uses the algorithms described in [6] and [7] to gen-
erated closed itemsets. The algorithm in [7] maitains a list if all 
closed itemsets in its summary data structure. When an element of 
ths data stream enters the sliding window the intermediate sum-
mary data structure is updated either by inserting the new closed 
itemsets in the intermediate summary data structure or increasing 

the supports of the already existing itemsets by one. When the 
itemset X is inserted into or updated in the ItemList, the approach 
calculates U(X) and stores it in ItemList table. 

The approach then selects the itemsets to be replaced by the link 
to themselves in the ItemList table. 

The selections is based on their utility values. The itemsets with 

utilities above zero may be replaced. 
 

 
Figure 1: Data stream and the intermediate summary data structure 

4.3 Dynamic generation of the minimum support threshold s0 

Most of the approaches use minimum threshold values that are 

fixed and specified by the users. Irony being that the users have no 
idea about the distribution of data in the sliding window and are 
not in a position to specify a proper value of minimum support 
threshold. This is mostly true in the case of data streams produced 
by social websites and micro-blogging websites. A lower value of 
minimum support threshold may lead to a large number of fre-
quent patterns which are trivial. Similarly a high value of mini-
mum support threshold may make frequent patterns escape from 
the algorithm in showing them as frequent. It is a good idea to 

provide to the user a suitable value of minimum support threshold 
based on the data in the sliding window. 
In this section we present a method which generates the value of 
minimum support threshold based on the data in the sliding win-
dow itself. The user is presented with three values of minimum 
support, that are s0 , s0+ and s0−, where s0−≤ s0 ≤ s0+. 

4.3.1 Defining values of s0, s0+ and s0− 

The value of s0 is defined in the following equation as 

 (3) 

where N is the total count of itemsets in ItemList. The value as-
signed to s0 is the average of the supports of all the itemsets in 
ItemList. However, for certain datasets the value of s0 would be 

low enough for trivial patterns to become frequent or too high for 
significant patterns to become frequent. Hence we define two 
values s0− and s0+ as below 

s0− = s0− σ (4) 

and 

s0+ = s0 + σ (5) 

 

where σ denotes the standard deviation of the supports of all 
itemsets present in ItemList at that time. s0+ is a more strict mini-

mum support threshold.The range [s0−,s0+] reflect the variations of 
supports of different itemsets in ItemList. 

However, we do not eliminate the impact of the ability of the user 
to decide the value of minimum support threshold. The values 
generated by out approach may not reflect the user’s mind. Never-

theless, the user can then use his/her discretion to specify the value 
of minimum support threshold based on the s0,s0− and s0+. 

4.4 Detection of frequent events in the sliding window 

Each element in the sliding window represents a message posted 
on a micro-blogging website. It is a set of items which are words. 

The approach generates closed frequent itemsets from the set of 
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closed itemsets in the intermediate summary data structure by 
comparing their supports with the minimum support threshold s0. 
These closed frequent itemsets will have the set of words which 
are mostly occurring in the messages posted on social websites 
and micro-blogging websites for the period of which elements are 
present in the sliding window. 

5. Experiments 

Experiments were separately conducted for high utility mining 
and frequent pattern mining using dynamic generation of mini-
mum support threshold. All experiments were carried out on 
2.26GHz Intel Core i3 PC with 3 GB memory and with Windows 
7 operating system. The proposed algorithm is implemented in 
C++ language. The programs were compiled using GNU GCC 

compiler. 

5.1 High utility mining using closed itemsets 

These experiments were carried on synthetic dataset. This dataset 
was generated using IBM Synthetic Data Generator [2]. Table 1 
below contains the details of the dataset. 

 

Table 1: Dataset parameters 

Parameters Value 

Total transaction count 200K 

Transaction item count (average) 10 

Distinct item count 200 

5.1.1 Varying sliding window size 

The experiment was done by varying the size of sliding window 
from 1 and 50000 with intervals of 1K. The results are shown in 
figure 2. We observed that there is a significant amount of 
memory saved using our approach. The amount of memory saved 
in storing the elements of sliding window is directly proportional 

to the size of the sliding window. 

5.1.2 Sliding the window across the data stream 

The experiment was by sliding the sliding window across the data 
stream by one element. The readings were noted for each sliding 
window. We observe that there is a significant amount of memory 
saved using our approach. Also that the amount of memory saved 
for initial sliding windows is less as compared to the subsequent 
ones. This is because in the initial sliding windows the approach is 
in learning process about the utilities of itemsets which are based 
on their supports. Hence less number of itemsets are replaced 

(compressed). 

5.1.3 Discussion 

The approach presented by us need not always be promising high 
in terms of the amount of memory saved. The results vary accord-
ing to the kind of data distribution in the dataset. They depend on 
the size of itemsets as well as on the frequency occurrence of 
large itmesets in the dataset. For instance, if the frequency of oc-
currence of large itemsets is high, then the savings on memory 
would be high. 

5.2 Frequent pattern mining using dynamic generation 

of minimum support threshold 

The experiment was performed on real dataset[1]. The dataset is a 
collection of ball-by-ball commentary of 577 IPL matches. The 
elements of the datasets are pre-processed to keep information 
about matchid, batting teams, bowling team, bowler, batsman, 
non-striker, runs scored, extra run, etc. The total number of ele-
ments in the dataset is around 13K.  

 
Figure 2: Memory saved against sliding window size 

 
The following are the observations made. The value of s0 generat-
ed using the proposed approach is 3.058415243 while s0+ is 
6.52430226. A total of 11343 patterns were found to be frequent 
for the generated value of s0 and 4565 patterns were found to be 
frequent for the generated value of s0+. The value of s0− was gen-
erated as -0.407471774 in this case. 

5.2.1 Discussion 

The above results depict very broad analysis on the dataset. The 
aim of the experiment is to generate frequent patterns in general 
by considering every value in the dataset element as an item. 
Even though the value of s0 is assigned close to 3 it is to be no-
ticed that the highest support value is 63. However, the method 
can be further improved upon to have more strict values of s0. 

6. Conclusion  

The major contribution in this section is design of an approach 
that stores element of a sliding window in a compressed form and 
detects events for the sliding window using the data from sum-
mary data structure. 

The replacement of the items in a transaction by the link to the 
itemset in the intermediate summary data structure may generate 
false positive results. This could be avoided by generating closed 
frequent itemsets. 
This approach also detects events in the sliding window by auto-
matically estimating a suitable value for the minimum support 
threshold. This estimated value of minimum support threshold 
gives an idea about the data distribution in the sliding window and 

helps the user to specify his/her own minimum support threshold 
value. This approach is useful in detecting events from posts on 
micro-blogging websites. 
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