

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.19) (2018) 1007-1010

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Framework for High Utility Pattern Mining using Dynamically

Generated Minimum Support Threshold

Shankar B. Naik
1
*, Jyoti D. Pawar

2

1 Directorate of Higher Education, Goa

2 DCST, Goa University
*Corresponding author Email: xekhar@rediffmail.com:

Abstract

In this paper we have proposed a framework which uses high utility itemset mining to store data stream elements in a compressed form

and then detect events from the sliding window. This approach promises to reduce the memory requirements when applied to frequent
pattern mining in data streams.
In addition to this, a method to dynamically define the value of minimum support threshold based on data in the data stream is presented.

Keywords: Data mining, high utility itemset, data stream, closed itemset, frequent itemset.

1. Introduction

With recent advancements in computational devices and software,
there is an increasing demand for data mining methods which can
handle huge streams of data. A data stream is a huge sequence of
data elements which arrive at high rate. A data stream is often
generated from sensors, financial markets, social networks,
etc[2][3][4][5].
An example of a data stream is the posts which are posted on

microblogging websites. The number of active users on
microblogging sites is huge and so are the messages posted by
them. There are many agencies that are interested in mining
knowledge from microblogging data such as the current topic of
discussion between users on microblogging websites. Finding
answers to such queries is challenging due to the large amount of
microblogging data generated online. In this case we consider a
data stream as a stream whose elements are messages. Each ele-

ment of the data stream is an itemset where each item is a word.
In this paper we use an approach to compress the data stream ele-
ments by using high utility itemset mining. High utility itemset
mining associates a profit value, called as utility, to an itemset.
This utility of an itemset could be profit on retail price, frequency
of its occurrence, etc.
In this paper we present utility of an itemset in terms of the
amount of memory that is saved by replacing the itemset by its
compressed form in the sliding window. This approach will re-

duce the amount of memory required to store a sliding window.
In addition to this, we present a framework to define the value of
minimum support threshold from the distribution of itemsets in
the data stream dynamically, specifically the sliding window.
Replacing the user given fix value of minimum support with a
dynamic one has the following two advantages. Firstly, the value
is defined based on the data in the sliding window and not merely
specified by the user who otherwise has no idea about the distribu-

tion of itemsets across the data stream. Secondly, the value chang-
es as the window slides across the data stream. Since the mini-
mum support value is specific for a sliding window, it would ac-

tually be most suitable one, in that sliding window, to identify the
frequent itemsets. It eliminates the situation of having a constant
minimum support value for all sliding window across the entire
data stream. Since data streams in terms of their data are dynamic
in nature, a dynamic value of minimum support threshold is more
suitable.
This paper is organized as follows. Related works has been pre-

sented in section 2. The problem is defined in section 3. Section 4
describes the proposed approach. The experimental study is pre-
sented in section 5 with section 6 concluding the paper.

2. Related work

High utility itemset mining has been worked upon in [8] and [9].

The approach in [8] compresses the elements using codes gener-
ated based on their occurrences in the previous batch. Using codes
of a previous batch to compress the elements of the current batch
is not suitable. So also, the codes are generated and stored for
every batch. The approach in [9] compresses elements by dividing
the data stream into same sized batches. It finds frequent patterns
for each batch and uses these patterns to compress the elements of
the batches. Both the approaches compress the elements of the
entire data stream in batches.

In this paper we propose a framework which compresses elements
in a sliding window incrementally. By incremental we mean that
compression is done while an element enters or leaves the sliding
window and not at the end of a batch of elements altogether. The
compression of elements is based on the utility of the element in
the current sliding window. The approach presented in this chapter
is suitable for processing data stream using a sliding window
model as it allows more elements to be stored in a sliding window

for a fixed memory budget.

http://www.sciencepubco.com/index.php/IJET

1008 International Journal of Engineering & Technology

3. Problem Definition

3.1. Preliminaries

Let D = (T1,T2,...) be a data stream where Ti is an itemset. Let SW
be a sliding window of size w which slide over the data stream D.
The support of an itemset X, denoted as supp(X), is the number of
element containing X in the sliding window SW.
The idea is to replace the itemsets in elements of the sliding win-
dow by links to the itemsets themselves stored as closed itemsets
in the intermediate summary data structure. A link to an itemset

can be a pointer or a code of the itemset stored in the summary
data structure. Not all the itemsets in the sliding window are re-
placed but the ones which are chosen based their utility in the
sliding window. The method to find the utility of an itemset is
described in the subsequent subsections.

3.2. Utility of an itemset

The utility of an itemset is the profit offered by an itemset. In this
chapter we define utility of an itemset as based on two factors.
The first factor is the memory saved by replacing the itemset in
the sliding window by a link. This is calculated as the difference
between the size of the itemset and the size of the link to the
itemset. The second factor is the frequency of occurrence of the

itemset in the sliding window, which is the support of the itemset.
Let ui be the memory size of an item. The memory size of an
itemset X is given by

u(X) =∑ui (1)

where ui is the memory size of items in X. Let δ be the size of the
link which could replace the itemset X in the sliding window. The
utility of an itemset X is given by U(X) as

U(X) = u(X) − δ (2)

where u(X) − δ is the memory saved by replacing X in the sliding
window and u(X) is the memory required to store X into the inter-
mediate summary data structure. The term U(X) multiplied by
sup(X) reflects the total memory saved by replacement of the
itemset X in the sliding window. A negative value of utility means
the cost of replacement is more and the itemset should not be re-
placed. If the utility is zero then its a no-profit no-loss situation.

4. Framework for high utility itemset mining

using closed itemsets

4.1. The intermediate summary data structure

The intermediate summary data structure is used to store the tem-
porary results generated while processing the data stream. The
intermediate summary data structure presented in this paper is a
table ItemList with four fields- Id, Support, ItemSet and Utility as
shown in figure 1.

4.2 The approach

The approach uses the algorithms described in [6] and [7] to gen-
erated closed itemsets. The algorithm in [7] maitains a list if all
closed itemsets in its summary data structure. When an element of
ths data stream enters the sliding window the intermediate sum-
mary data structure is updated either by inserting the new closed
itemsets in the intermediate summary data structure or increasing

the supports of the already existing itemsets by one. When the
itemset X is inserted into or updated in the ItemList, the approach
calculates U(X) and stores it in ItemList table.

The approach then selects the itemsets to be replaced by the link
to themselves in the ItemList table.

The selections is based on their utility values. The itemsets with

utilities above zero may be replaced.

Figure 1: Data stream and the intermediate summary data structure

4.3 Dynamic generation of the minimum support threshold s0

Most of the approaches use minimum threshold values that are

fixed and specified by the users. Irony being that the users have no
idea about the distribution of data in the sliding window and are
not in a position to specify a proper value of minimum support
threshold. This is mostly true in the case of data streams produced
by social websites and micro-blogging websites. A lower value of
minimum support threshold may lead to a large number of fre-
quent patterns which are trivial. Similarly a high value of mini-
mum support threshold may make frequent patterns escape from
the algorithm in showing them as frequent. It is a good idea to

provide to the user a suitable value of minimum support threshold
based on the data in the sliding window.
In this section we present a method which generates the value of
minimum support threshold based on the data in the sliding win-
dow itself. The user is presented with three values of minimum
support, that are s0 , s0+ and s0−, where s0−≤ s0 ≤ s0+.

4.3.1 Defining values of s0, s0+ and s0−

The value of s0 is defined in the following equation as

 (3)

where N is the total count of itemsets in ItemList. The value as-
signed to s0 is the average of the supports of all the itemsets in
ItemList. However, for certain datasets the value of s0 would be

low enough for trivial patterns to become frequent or too high for
significant patterns to become frequent. Hence we define two
values s0− and s0+ as below

s0− = s0− σ (4)

and

s0+ = s0 + σ (5)

where σ denotes the standard deviation of the supports of all
itemsets present in ItemList at that time. s0+ is a more strict mini-

mum support threshold.The range [s0−,s0+] reflect the variations of
supports of different itemsets in ItemList.

However, we do not eliminate the impact of the ability of the user
to decide the value of minimum support threshold. The values
generated by out approach may not reflect the user’s mind. Never-

theless, the user can then use his/her discretion to specify the value
of minimum support threshold based on the s0,s0− and s0+.

4.4 Detection of frequent events in the sliding window

Each element in the sliding window represents a message posted
on a micro-blogging website. It is a set of items which are words.

The approach generates closed frequent itemsets from the set of

International Journal of Engineering & Technology 1009

closed itemsets in the intermediate summary data structure by
comparing their supports with the minimum support threshold s0.
These closed frequent itemsets will have the set of words which
are mostly occurring in the messages posted on social websites
and micro-blogging websites for the period of which elements are
present in the sliding window.

5. Experiments

Experiments were separately conducted for high utility mining
and frequent pattern mining using dynamic generation of mini-
mum support threshold. All experiments were carried out on
2.26GHz Intel Core i3 PC with 3 GB memory and with Windows
7 operating system. The proposed algorithm is implemented in
C++ language. The programs were compiled using GNU GCC

compiler.

5.1 High utility mining using closed itemsets

These experiments were carried on synthetic dataset. This dataset
was generated using IBM Synthetic Data Generator [2]. Table 1
below contains the details of the dataset.

Table 1: Dataset parameters

Parameters Value

Total transaction count 200K

Transaction item count (average) 10

Distinct item count 200

5.1.1 Varying sliding window size

The experiment was done by varying the size of sliding window
from 1 and 50000 with intervals of 1K. The results are shown in
figure 2. We observed that there is a significant amount of
memory saved using our approach. The amount of memory saved
in storing the elements of sliding window is directly proportional

to the size of the sliding window.

5.1.2 Sliding the window across the data stream

The experiment was by sliding the sliding window across the data
stream by one element. The readings were noted for each sliding
window. We observe that there is a significant amount of memory
saved using our approach. Also that the amount of memory saved
for initial sliding windows is less as compared to the subsequent
ones. This is because in the initial sliding windows the approach is
in learning process about the utilities of itemsets which are based
on their supports. Hence less number of itemsets are replaced

(compressed).

5.1.3 Discussion

The approach presented by us need not always be promising high
in terms of the amount of memory saved. The results vary accord-
ing to the kind of data distribution in the dataset. They depend on
the size of itemsets as well as on the frequency occurrence of
large itmesets in the dataset. For instance, if the frequency of oc-
currence of large itemsets is high, then the savings on memory
would be high.

5.2 Frequent pattern mining using dynamic generation

of minimum support threshold

The experiment was performed on real dataset[1]. The dataset is a
collection of ball-by-ball commentary of 577 IPL matches. The
elements of the datasets are pre-processed to keep information
about matchid, batting teams, bowling team, bowler, batsman,
non-striker, runs scored, extra run, etc. The total number of ele-
ments in the dataset is around 13K.

Figure 2: Memory saved against sliding window size

The following are the observations made. The value of s0 generat-
ed using the proposed approach is 3.058415243 while s0+ is
6.52430226. A total of 11343 patterns were found to be frequent
for the generated value of s0 and 4565 patterns were found to be
frequent for the generated value of s0+. The value of s0− was gen-
erated as -0.407471774 in this case.

5.2.1 Discussion

The above results depict very broad analysis on the dataset. The
aim of the experiment is to generate frequent patterns in general
by considering every value in the dataset element as an item.
Even though the value of s0 is assigned close to 3 it is to be no-
ticed that the highest support value is 63. However, the method
can be further improved upon to have more strict values of s0.

6. Conclusion

The major contribution in this section is design of an approach
that stores element of a sliding window in a compressed form and
detects events for the sliding window using the data from sum-
mary data structure.

The replacement of the items in a transaction by the link to the
itemset in the intermediate summary data structure may generate
false positive results. This could be avoided by generating closed
frequent itemsets.
This approach also detects events in the sliding window by auto-
matically estimating a suitable value for the minimum support
threshold. This estimated value of minimum support threshold
gives an idea about the data distribution in the sliding window and

helps the user to specify his/her own minimum support threshold
value. This approach is useful in detecting events from posts on
micro-blogging websites.

References

[1] https://www.kaggle.com.

[2] Rakesh Agrawal, Tomasz Imielin´ski, and Arun Swami. Mining

association rules between sets of items in large databases. In Acm

sigmod record, volume 22, pages 207–216. ACM, 1993.

[3] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and

Jennifer Widom. Models and issues in data stream systems. In Pro-

ceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART sym-

posium on Principles of database systems, pages 1–16. ACM, 2002.

[4] Jiawei Han, Hong Cheng, Dong Xin, and Xifeng Yan. Frequent

pattern mining: current status and future directions. Data Mining

and Knowledge Discovery, 15(1):55–86, 2007.

[5] Jiawei Han, Jian Pei, Yiwen Yin, and Runying Mao. Mining fre-

quent patterns without candidate generation: A frequent-pattern tree

approach. Data mining and knowledge discovery, 8(1):53–87, 2004.

[6] Naik, S. B., & Pawar, J. D. (2013, December). An efficient incre-

mental algorithm to mine closed frequent itemsets over data

streams. In Proceedings of the 19th International Conference on

Management of Data (pp. 117-120). Computer Society of India.

[7] Naik, S. B., & Pawar, J. D. (2015, March). A quick algorithm for

incremental mining closed frequent itemsets over data streams.

1010 International Journal of Engineering & Technology

In Proceedings of the Second ACM IKDD Conference on Data Sci-

ences (pp. 126-127). ACM.

[8] Matthijs Van Leeuwen and Arno Siebes. Streamkrimp: Detecting

change in data streams. In Joint European Conference on Machine

Learning and Knowledge Discovery in Databases, pages 672–687.

Springer, 2008.

[9] Xintian Yang, Amol Ghoting, Yiye Ruan, and Srinivasan

Parthasarathy. A framework for summarizing and analyzing twitter

feeds. In Proceedings of the 18th ACM SIGKDD international con-

ference on Knowledge discovery and data mining, pages 370–378.

ACM, 2012.

[10] Naik, S. B., & Pawar, J. D. (2012). Finding frequent item sets from

data streams with supports estimated using trends. Journal of In-

formation and Operations Management, 3(1), 153.

[11] Naik, S. B., & Pawar, J. D. (2017, May). Clustering attribute values

in transitional data streams. In Computing, Communication and Au-

tomation (ICCCA), 2017 International Conference on (pp. 58-62).

IEEE.

[12] Naik, S. B., & Pawar, J. D. (2017, July). A single-pass algorithm

for incremental mining patterns over data streams. In Intelligent

Computing, Instrumentation and Control Technologies (ICICICT),

2017 International Conference on (pp. 565-569). IEEE.

[13] Naik, S. B., & Pawar, J. D. (2017, June). Mining association rules

between values across attributes in data streams. In Computational

Intelligence in Data Science (ICCIDS), 2017 International Confer-

ence on (pp. 1-6). IEEE.

