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Abstract 
 

This paper introduces a Nonlinear Autoregressive Neural Network (NARX) to predict the sensor error of IsFET pH drift with accuracy 

over the long period. The Bayesian Regularization (BR) backpropagation was used as network training function for this problem and 

combined with different delay and hidden layer. The results were compared to predict the sensor error in buffer solution pH 4, pH 7 and 

pH 10 over the time. The NARX performance will be measure based on the value of Mean Squared Error (MSE) and coefficient of 

determination (R2). The results proved by using Bayesian Regularization with 10 hidden nodes and 50 delays produced the accurate sensor 

error prediction. This research will provide the significant contributions to the implementation of IsFET pH sensor drift compensation over 

the time.  
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1. Introduction 

Ion Selective field effect transistor (IsFET) based sensor is 

commonly used from 1970 because of the advantages of low cost 

fabrication, small size and robustness. PH IsFET sensor currently 

has wide applications for instant in medical, environment sensing, 

agriculture and liquid waste management. In industrial system 

applications, IsFET sensor needs to be used continuously in liquid 

based solution and most of the IsFET sensor have an issue to 

maintain the good analogue output. The output of IsFET sensors 

drift over the time during a slow-moving variation in the 

IsFET voltage threshold and establishes from a transport 

phenomenon at the interface between the solution and the insulator 

[1]. Each sensor will produce a unique drift characteristic due to the 

different effect factor, for instance, the type of pH solution, the 

substance of sensor surface and dimension. Therefore, 

the compensation approaches cannot depend on 

mathematical method and have to develop in any degree voltage 

variation of temporal gate. In [2] conducted study to develop a 

physical model for drift in pH ISFETs. They found that from the 

physical model of the sensor, it can reduce the drift effect and 

contribute a good output. In [3] an analytical 

method to overcome the drift of Ion-Selective Field Effect 

Transistors (ISFETs). He found that the theoretical basis for the 

proposed correction technique would minimize the drift effect 

issues. In [4] developed a smart IsFET sensor system with drift 

and temperature correction for continuous monitoring. This 

implementation focus on optimum biasing current for ISFET and 

time-variant compensation algorithm. In [5] propose an 

improvement of bridge-type floating source circuit read-out circuit 

technique. In [6] studied the diffusion sensor interface and sensor 

insulation development that is more specific to the sensor element 

improvement. The development protective structure of sensor 

element using semiconductor technologies was done by [7]. They 

claimed that their research capable in reducing the drift issues. 

Another research was done by [8] specific on the sensor 

development using Zirconium dioxide gated 

Ion Sensitive Field Effect Transistors (IsFETs). In [9] developed a 

low noise differential read-out circuit and an insulating layer for 

ISFET sensor. In [10] improved the interpretation of IsFET signals 

in mixed-ion environments. The improvement of the ISFET sensor 

readout board circuit using differential measurements correlated 

double sampling did by [11]. In [12] developed readout board 

source and drain follower circuit of IsFET sensor. To counter the 

drift issues in IsFET sensor, in [13] investigated the development 

of readout board current mode circuit. In 14] developed the 

differential measurement readout board. In [15] focused on the 

readout board improvement in reset switch on the IsFET gate. In 

[16] implemented by applying source voltage compensation of the 

IsFET sensor. In [17] proposed a new method using a time-domain 

correction technique for uncertainty in Sensors Based on Field-

Effect Transistors (FETs). Lately in [18] have implemented a 

Machine Learning algorithm to compensate the temperature for 

Ion-Sensitive Field-Effect Transistor (ISFET) sensor. 

The crucial challenge for drift correction has always lied in its 

unexpected behavior, and this issue is modeled as an exponential 

relationship of time. In order to overcome this, it is important to 

develop an algorithm that can learn the sensor characteristic drift 

parameters. Artificial Neural Network (ANN) algorithm is one of 

the most suitable application on the prediction of drift 

characteristic. The NARX architecture is a dynamic Artificial 

Neural Network that relates the modeled change based on lagged 

input-output parameters and error prediction [19]. The NARX 

Neural Network embedded memory provides a shorter way to 

generate the data information and back propagate the error 
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of signal, which is reducing the prolonged dependencies. This type 

of Neural Network can contribute optimum predictions without 

losses of computational data in comparison with the traditional 

recurrent neural networks [20-21]. In time series prediction, NARX 

neural networks have been used [22] and gave a great achievement 

in solving most of the non–linear problem. Recent researches have 

presented the NARX model advantages in diverse fields [23-26].  

The aim of this paper is to solve the nonlinear drift effect that exists 

in the IsFET reading values. Three similar types of IsFET sensors 

were used with three pH test buffer solutions that are pH 4, pH 7 

and pH 10. The neural network that used in this paper is the 

nonlinear autoregressive exogenous model. The experiment output 

of the nonlinear drift effect was done by using 

the MATLAB simulation. 

2. NARX model architecture 

Artificial Neural Networks (ANN) has been developed with the 

concept of a human brain, emulating the system of central nervous 

in the brain with a capability to establish a large-scale 

interconnected parallel network, and training of such networks to 

resolve particular issues or problems. ANN is a popular technique 

to solve nonlinear systems problem and the NARX Neural Network 

is one type of ANN family. The NARX advantage is with the same 

structure can be used in others problem and will minimize the 

design activity. The model of NARX able to do a comparison using 

the feedforward network with data from exogenous input. The 

method can reduce the variables required in fine-tune the network 

efficient and accurate compare to other ANN models. The NARX 

model definition known by 

 

u(t) = f ( u(t-1),u(t-2),….,u(t-nu),k(t-1),k(t-2),….,k(t-nk))       (1) 

 

show u(t) and k(t) stand for the outputs and inputs relatively for the 

discrete time step (t) model. The variables for nu and nk are the 

output and input layers for the network. The function, f is a 

nonlinear function and can be perform by the conventional 

feedforward network. The figure 1 show the function, f, used in this 

research. 
 

Figure. 1: NARX neural network with nk = nu = 2 and H = 2 
 

The two input configuration was used for NARX model, which 

perform the exogenous variable's data and feed-forward to the time 

delays. This model will produce single output of time prediction. 

Throughout the NARX model training, the actual data was used 

as input for the configuration of series-parallel network. After the 

training, the compute output was feedback to the model and 

acquired the calculation for the following prediction process. The 

optimization of this model is by decreasing the training iteration 

value. Normally, training involved specific hidden nodes, layer and 

delay value to establish the neural network connections. In this 

research, the value for weight and bias will be start with random 

number and will be change within the iteration process of 

developing the network model. 

3. Experimental procedure 

Experiment was conducted by using three wireless IsFET sensors 

for instant IsFET 1, IsFET 2 and IsFET 3 to measure pH 4, pH 7 

and pH 10 solutions. All sensors were setup in the shield box with 

no interference of lights and any frequency. This is important to 

avoid any disturbance that might affect the reading of the sensors. 

The temperature of the room was set 25Celsius ± 1Celsius and the 

wireless sensors were set in an auto read mode for every 30 minutes 

and was automatically sent signal to the receiver. All data 

collections for each sensor and pH was collected for a period of 1 

month. The data had been saved in the LabVIEW machine for each 

pH solution and the results can be seen in Figure 2. 

 

(a) 

 

(b) 

 

(c) 

Fig. 2: Data collected for (a) pH4, (b) pH7 and (c) pH10 in one month 

 

From the graphs, it can be seen clearly that the output voltage keeps 

on changing without any pH change. This drift situation needs to be 

fixed in all sensors used. The collected data was used to create 

models by using NARX neural networks and the models were 

generated by matching a sensor and all possible combinations of 

other sensors. The model was tested against the data to find the 

correlations. 

4. Results and discussion 

Our experimentation has focused on the compensation of drift pH 

IsFET sensor using nonlinear autoregressive recurrent neural 

network (NARX) for three different types of solutions namely pH 

4, pH 7 and pH 10. In this section, the best achieved results for using 

the NARX ANN model in predicting and correcting the pH IsFET 
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sensor are presented. The NARX neural network that built in this 

paper used 50 time delays and 10 hidden nodes. The input layer for 

this neural network is the sensor voltage and the sensor error value 

is the output layer. The neural network performance has been 

calculated form the value of mean squared error (MSE). The 

hyperbolic tangent sigmoid transfer function was used as hidden 

layer activation function and the output layer was in linear function. 

The 70% of sensor data were used for training, 15% for validation 

and another 15% for testing. All the processes for the NARX model 

training and testing were executed using MATLAB software. 

Table 1 shows the comparison of coefficient determination or R2 

for different predictive algorithms that are Bayesian Regularization 

(BR), Levenberg-Marquardt (LM) and Scaled Conjugate Gradient 

(SCG). After five simulations, the average regression recorded in 

BR is the best (0.999248 ≈1) compared to Levenberg-Marquardt 

and Scaled Conjugate Gradient. This shows that the Bayesian 

Regularization training algorithm has better performance among 

others in predicting the sensor error of the IsFET sensors.  

 
Table 1: Comparison of R2 for different model performance 

Simulation 
Regression, R2 

BR LM SCG 

1 0.99926 0.99943 0.99879 

2 0.99926 0.9997 0.99901 

3 0.9992 0.99842 0.99877 

4 0.99926 0.99987 0.99901 

5 0.99926 0.99946 0.99772 

Average 0.999248 0.999186 0.99866 

The Mean Square Error (MSE) and the number of iteration (I) with 

different training algorithms are outlined in Table 2. The diversities 

between training processes were more noticeable as the number of 

delays enlarged. From this table, it can be noticed that the number 

of iterations in Levenberg-Marquardt are less than with Bayesian 

Regularization and Scaled Conjugate Gradient. This explains the 

Levenberg-Marquardt has a fast convergence in network training 

but the Bayesian Regularization much better in prediction 

capabilities compare to other algorithms. The MSE values recorded 

in Scaled Conjugate Gradient are high in every number of delays 

and that suggest Scaled Conjugate Gradient is not an effective 

algorithm in predicting the error of the IsFET sensors. Therefore, 

the implementation of Bayesian Regularization for this research 

gives the best performance with higher predictive capabilities as 

recorder in this table. 

 
Table 2: Iterations (I) and Mean Square Error (MSE) for the model 

performance evaluation  

Delays 
BR LM SCG 

MSE I MSE I MSE I 

75 4.695x10-5 819 4.963x10-

5 

13 6.256x10-

5 

263 

50 4.600x10-5 585 4.917x10-

5 

15 5.812x10-

5 

385 

25 4.681x10-5 1000 4.892x10-

5 

14 9.438x10-

5 

84 

10 4.735x10-5 490 4.849x10-

5 

16 6.088x10-

5 

136 

2 4.861x10-5 940 4.865x10-

5 

29 5.367x10-

5 

237 

Figure 3-5 show graphical representation of R2 for sensor IsFET1, 

IsFET2 and IsFET3 in three different pH solutions that are pH4, 

pH7 and pH10 respectively. From all the graphs, it can be seen 

clearly that the differences between the data and the fitted 

regression line are small. Scrutinizing on the coefficient of 

determinations or R2 values recorded in each cases, the range of the 

R2 is between 0.95-0.99 which gives a good measure on how close 

the date is to the fitted regression line. This indicates that the NARX 

model fits well the data collected from all the IsFET sensors.  

 

 

(a) 

 

(b) 

 

(c) 

Fig. 3: Regressions of pH4 for (a) IsFET1, (b) IsFET2, (c) IsFET3 
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(a) 

 

(b) 
 

(c) 

Fig. 4: Regressions of pH7 for (a) IsFET1, (b) IsFET2, (c) IsFET3 

 

 

(a) 

 

(b) 
 

(c) 

 
Fig. 5: Regressions of pH10 for (a) IsFET1, (b) IsFET2 and (c) IsFET3 

 

Figure 6-8 show the original drifted data and the corrected data after 

implementing the NARX model with ten hidden nodes and fifty 

time delays in pH4, pH7 and pH10 solutions respectively. From the 

graphs, it can be seen clearly that the differences between measured 

and corrected values are seems to be large. This explained that the 

IsFET sensors behave unpredictably and drift issues consistently 

exhibit in an experiment.  
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(a) 

 

(b) 

 

(c) 

 
Fig. 6: Correction of pH4 for (a) IsFET 1, (b) IsFET 2, (c) IsFET 3  

 

 

 

(a) 

 

(b) 

 

(c) 

 
Fig. 7: Correction of pH7 for (a) IsFET 1, (b) IsFET 2, (c) IsFET 3 
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(a) 

 

(b) 

 

(c) 

Fig. 8: Correction of pH10 for (a) IsFET 1, (b) IsFET 2, (c) IsFET 3 

5. Conclusion  

This paper showed the NARX neural network capabilities in sensor 

error prediction for pH buffer solution over the times. We 

acknowledged the precise and effective training algorithm using 

voltage data as input and predicted sensor error for a pH 4,7 and 10. 

Based on the MSE performance and training results, Bayesian 

Regularization with 10 hidden nodes and 50 delays was the precise 

model (MSE = 4.600x10-5, R2 = 0.99928) for the sensor drift study. 

The outcomes acquired in this research proved the NARX model 

capability to predict sensor error over the long period. Nevertheless, 

this network depends on the training data availability, and the 

prediction relies on the input data quality applies during the 

training process. Further research will contain the compensation of 

pH drift effect and the evaluation of the NARX implementation 

with the light and temperature effect's variables.  

Acknowledgement 

Authors gratefully thank Universiti Malaysia Pahang for the 

research grant (RDU1703231) and MIMOS Berhad for supporting 

this work by providing laboratory facilities during research. 

References  

[1] Moser, N., Lande, T. S., Toumazou, C., & Georgiou, P. (2016). 

ISFETs in CMOS and emergent trends in instrumentation: A review. 

IEEE Sensors Journal, 16(17), 6496-6514. 

[2] Jamasb, S., Collins, S. D., & Smith, R. L. (1998). A physical model 

for threshold voltage instability in Si/sub 3/N/sub 4/-gate H/sup+/-

sensitive FET's (pH ISFET's). IEEE Transactions on Electron 

Devices, 45(6), 1239-1245.  

[3] Jamasb, S. (2004). An analytical technique for counteracting drift in 

ion-selective field effect transistors (ISFETs). IEEE Sensors Journal, 

4(6), 795-801.  

[4] Chen, D. Y., & Chan, P. K. (2008). An intelligent ISFET sensory 

system with temperature and drift compensation for long-term 

monitoring. IEEE Sensors Journal, 8(12), 1948–1959. 

[5] Chung, W. Y., Cruz, F. R. G., Yang, C. H., He, F. S., Liu, T. T., 

Pijanowska, D. G., Torbicz, W., Grabiec, P. B., & Jarosewicz, B. 

(2010). CMOS readout circuit developments for ion sensitive field 

effect transistor based sensor applications. In J. W. Swart (Ed.), Solid 

State Circuits Technologies. London: IntechOpen, pp. 421-444.  

[6] Sundaram, S., & Sharma, N. N. (2010). Modeling interface diffusion 

as a mechanism for threshold voltage drift in pH sensors. 

Proceedings of the IEEE Sensors, pp. 2547-2550.  

[7] Lee, S. K., & Choi, S. Y. (2010). Improvement of drift characteristic 

to continuously measure Al2O3 pH-ISFET with the protective 

structure. Proceedings of the Meeting Abstracts, pp. 38-38.  

[8] Chang, K. M., Chang, C. T., Chao, K. Y., & Lin, C. H. (2010). A 

novel pH-dependent drift improvement method for zirconium 

dioxide gated pH-ion sensitive field effect transistors. Sensors, 10(5), 

4643-4654.  

[9] Jiao, L. H., & Barakat, N. (2013). Ion-sensitive field effect transistor 

as a pH sensor. Journal of Nanoscience and Nanotechnology, 13(2), 

1194-1198.  

[10] Abdullah, W. F. H., Othman, M., Ali, M. A. M., & Islam, M. S. 

(2010). Multiple feedforward classifiers by bagging for ion-sensitive 

field effect transistor sensor response. Proceedings of the IEEE 

International Conference on Computer Applications and Industrial 

Electronics, pp. 90-93. 

[11] Das, M. P., & Bhuyan, M. (2014). New ISFET interface circuits with 

noise reduction capability. Proceedings of the IEEE International 

Conference on Recent Advances and Innovations in Engineering, pp. 

1-6. 

[12] Uzzal, M. M., Zarkesh-Ha, P., Edwards, J. S., Coelho, E., & Rawat, 

P. (2014). A highly sensitive ISFET using pH-to-current conversion 

for real-time DNA sequencing. Proceedings of the 27th IEEE 

International System-on-Chip Conference, pp. 410-414.  

[13] Sohbati, M., & Toumazou, C. (2014). A temperature insensitive 

continuous time ΔpH to digital converter. Proceedings of the IEEE 

International Symposium on Circuits and Systems, pp. 37-40. 

[14] Kalofonou, M., & Toumazou, C. (2014). A low power sub-µW 

chemical Gilbert cell for ISFET differential reaction monitoring. 

IEEE Transactions on Biomedical Circuits and Systems, 8(4), 565-

574.  

[15] Hu, Y., & Georgiou, P. (2014). A robust ISFET pH-measuring front-

end for chemical reaction monitoring. IEEE Transactions on 

Biomedical Circuits and Systems, 8(2), 177-185.  

[16] Moser, N., Lande, T. S., & Georgiou, P. (2015). A novel pH-to-time 

ISFET pixel architecture with offset compensation. Proceedings of 

the IEEE International Symposium on Circuits and Systems, pp. 481-

484.  

[17] Jamasb, S. (2016). A time-domain method for correction of 

instability in sensors based on field effect transistors (FETs). 

International Journal of Circuits, Systems and Signal Processing, 10, 

119–125. 



478 International Journal of Engineering & Technology 

 

 

[18] Bhardwaj, R., Majumder, S., Ajmera, P. K., Sinha, S., Sharma, R., 

Mukhiya, R., & Narang, P. (2017). Temperature compensation of 

ISFET based pH sensor using artificial neural networks. Proceedings 

of the IEEE Regional Symposium on Micro and Nanoelectronics, pp. 

155-158.  

[19] Siegelmann, H. T., Horne, B. G., & Giles, C. L. (1997). 

Computational capabilities of recurrent NARX neural networks. 

IEEE Transactions on Systems, Man, and Cybernetics, Part B 

(Cybernetics), 27(2), 208-215.  

[20] Lin, T. N., Giles, C. L., Horne, B. G., & Kung, S. Y. (1997). A delay 

damage model selection algorithm for NARX neural networks. IEEE 

Transactions on Signal Processing, 45(11), 2719-2730.  

[21] Diaconescu, E. (2008). The use of NARX neural networks to predict 

chaotic time series. WSEAS Transactions on Computer Research, 

3(3), 182-191.  

[22] Diaconescu, E. (2008). The use of NARX neural networks to predict 

chaotic time series. WSEAS Transactions on Computer Research, 

3(3), 182-191.  

[23] Al-Sbou, Y. A., & Alawasa, K. M. (2017). Nonlinear autoregressive 

recurrent neural network model for solar radiation prediction. 

International Journal of Applied Engineering Research, 12(14), 

4518-4527.  

[24] Guzman, S. M., Paz, J. O., & Tagert, M. L. M. (2017). The use of 

NARX neural networks to forecast daily groundwater levels. Water 

Resources Management, 31(5), 1591-1603.  

[25] Pisoni, E., Farina, M., Carnevale, C., & Piroddi, L. (2009). 

Forecasting peak air pollution levels using NARX models. 

Engineering Applications of Artificial Intelligence, 22(4-5), 593-

602.  

[26] Ruiz, L. G. B., Cuéllar, M. P., Calvo-Flores, M. D., & Jiménez, M. 

D. C. P. (2016). An application of non-linear autoregressive neural 

networks to predict energy consumption in public buildings. 

Energies, 9(9), 1-21. 


