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Abstract 
 

The simulated Kalman filter (SKF) is a population-based optimization algorithm that was developed based on a well-known estimator 

called Kalman filter. Meanwhile, a white hole operator has been recently introduced to prevent premature convergence in black hole 

algorithm (BHA). The computation of white hole operator begins by selecting the worst agent as the white hole with event horizon. If an 

agent is located within the event horizon of white hole, the agent is pushed by the white hole. In this study, the white hole operator is used 

to improve the effectiveness of the SKF optimizer. A comprehensive experiment is done to evaluate the proposed SKF with white hole 

operator (SKFWH).  
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1. Introduction 

Recently, the use of a white hole operator to improve a black hole 

algorithm has been reported in literature [1-2]. The white hole op-

erator was proposed to avoid the agents from exploring the area 

near the worst agent, which is also called the white hole agent. If an 

agent is located near the white hole agent, that agent is pushed away 

by the white hole agent.  

On the other hand, the simulated Kalman filter (SKF) algorithm [3-

4] is inspired by the estimation capability of Kalman filtering [5]. 

In SKF algorithm, every agent is regarded as a Kalman filter. Based 

on the mechanism of Kalman filtering and measurement process, 

every agent estimates the global minimum/maximum in a search 

space. To date, the SKF algorithm has been applied to solve several 

engineering problems. In signal processing, Adam et al. has em-

ployed angle-modulated SKF as feature selection in peak 

classification of EEG signal [6-7]. In telecommunication engineer-

ing, the SKF algorithm has been used as adaptive beamforming al-

gorithm [8-11]. In industrial engineering, the SKF has been used to 

solve printed circuit board drill path optimization problem [12-13] 

and assembly sequence planning problem [14]. In scheduling appli-

cation, the SKF has been employed in solving airport gate alloca-

tion problem [15-16]. In image processing, the SKF has been used 

as a template matching algorithm in distance measurement [17-18]. 

In system identification, the SKF algorithm has been used to esti-

mate the model order and parameter value of an ARX model [19-

20]. The SKF algorithm also has been introduced as a tuning 

method for proportional-integral-derivative (PID) controller [21].  

Fundamentally, studies of the SKF algorithm have been reported 

[22-23]. Furthermore, modifications of the SKF [24-25] and hy-

bridization with other algorithms [26-30] have been done to further 

improve the performance of the SKF algorithm. Several extensions 

of SKF algorithm for combinatorial optimization problems have 

also been introduced [31-34]. 

This paper presents a new improvement to SKF optimizer using the 

recently introduced white hole operator [35]. The effectiveness of 

the SKF optimizer with white hole operator is evaluated based on 

unimodal, multimodal, hybrid, and composite functions in 

CEC2014 benchmark test functions. Results show that the used of 

white hole operator significantly improves the SKF as global opti-

mization algorithm. 

2. The simulated Kalman filter optimizer 

The simulated Kalman filter (SKF) algorithm is illustrated in Figure 

1. Consider n number of agents, SKF algorithm begins with initial-

ization of n agents randomly. The maximum number of iterations, 

tmax, the initial value of error covariance estimate, P(0), the process 

noise covariance value, Q ∈ [0, 1], and the measurement noise co-

variance value, R ∈ [0, 1], are defined during the initialization stage.  

After the initialization, every agent is subjected to fitness evaluation 

to produce initial solutions {X1(0), X2(0), X3(0), …, Xn-2(0), Xn-1(0), 

Xn(0)}. The fitness values are compared and the agent having the 

best fitness value at every iteration, t, is registered as 𝑿𝑏𝑒𝑠𝑡(𝑡). Sub-

sequently, 𝑿𝑡𝑟𝑢𝑒 is updated only if the 𝑿𝑏𝑒𝑠𝑡(𝑡) is better than the 

𝑿𝑡𝑟𝑢𝑒. As shown in Figure 1, there are 6 important computations in 

the SKF algorithm.   
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Fig. 1: The original simulated Kalman filter algorithm [3-4]. 

 

3. The white hole operator 

If the black holes exist, then it should be possible to reverse the 

equations governing them to get the opposite of black hole, which 

is the white hole. As oppose to black hole agent in the black hole 

algorithm (BHA) [36], the white hole can be assigned to the worst 

agent in the population.  
The white hole has its own event horizon as shown in Figure 2. The 

radius of the event horizon, RWH, can be calculated based on the 

following equation: 

 

RWH =
𝑓𝑖𝑡𝑊𝐻

∑ 𝑓𝑖𝑡𝑖
𝑁
𝑖=1

                  (7) 

 

where fitWH is the fitness value of the white hole, N is the number 

of agents, and fiti is the fitness value of the ith agent. 

As shown in Figure 2(a), an arbitrary agent i may be positioned 

within the event horizon of the white hole. In this case, the agent is 

pushed by the white hole as illustrated in Figure 2(b). Due to this, 

the position of the agent i is updated as follows: 

 

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑟𝑎𝑛𝑑 × (𝑋𝑊𝐻 + 𝑋𝑖(𝑡))                     (8) 
 

where Xi(t+1) and Xi(t) are the locations of the arbitrary agent i at 

iterations t+1 and t, respectively. The rand is a random number be-

longing to [0,1] and XWH is the location of the white hole agent. This 

white hole operator is computed after the measurement step in SKF 

algorithm as shown in Figure 3. Note that the white hole operator is 

applied only to the agent that is located within the event horizon of 

a white hole agent. Otherwise, the solution is updated using (5) as 

of the original SKF algorithm. 

4. Experiment, Result, and Discussion 

The CEC2014 Benchmark Test Suite for single-objective optimiza-

tion [37] was employed to observe the performance of the SKF al-

gorithm with white hole operator. This test suite comprises of 30 

functions of minimization problem. The experiments were repeated 

for several runs and the mean fitness was calculated. In all experi-

ments, Q = R = 0.5. 

In the first experiment, the performance of the proposed SKFWH 

algorithm is compared with the performance of the original SKF 

algorithm. Using the CEC2014 functions, the problems’ dimension 

can be adjusted. Therefore, 10-dimensions and 50-dimenstions test 

functions were tested. Obviously, 50-dimensions test functions are 

more difficult to solve than the 10-dimensions test functions. The 

optimization process involved 100 agents and it is stopped at 

1,000,000th function evaluation. After 50 runs, the mean fitness was 

calculated as tabulated in Table 1 and Table 2. 

To analyze the experimental result, Wilcoxon signed rank test [38] 

was used for pairwise non-parametric statistical analysis. The Wil-

coxon test usually is used when the population cannot be assumed 

to be normally distributed or it can be used to compare two related 

samples, matched samples, or repeated measurements on a single 

sample to assess whether their population mean ranks differ. The 

null hypothesis for the test assumes that there is no significant dif-

ference between the mean values of test algorithm and competing 

algorithm while the alternative hypothesis tries to determine if there 

is a significant difference between those two algorithms using 5% 

(α = 0.5) significance level. Since the number of samples is 30, the 

critical value for the test is equal to 137. The sum of ranks where 

the test algorithm outperforms a competing algorithm is denoted as 

R+ while the sum of ranks where the test algorithm is outperformed 

by the competing algorithm is denoted as R-. Hence, the test algo-

rithm is better than the competing algorithm if R+ > R- and the 

competing algorithm is significantly better than the BH algorithm 

if R- value is less than the critical value. 
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(a) 

 

 
(b) 

Fig. 2: The concept of white hole operator (a) The white hole agent (the worst solution of an iteration), the white hole’s event horizon, and an arbitrary agent 

(located within the event horizon) are shown. (b) The agent located within the event horizon is pushed away by the white hole agent. 

 

Based on Table 1 and Table 2, for the 10-dimensions problem, out 

of 30 functions, the SKFWH outperforms the original SKF in 27 

test functions, while for the 50-dimensions problem, the SKFWH 

outperforms the original SKF in 21 test functions. Based on the Wil-

coxon signed rank test results shown in Table 3 and Table 4, since 

R- < 137 (R- value is written in bold if it is less than 137), the pro-

posed SKFWH outperforms the original SKF for both cases. This 

analysis indicates that the proposed SKFWH would performs sig-

nificantly better than the original SKF in solving low and high di-

mensional problems. 

For the second experiment, the number of agents of SKFWH were 

increased from 10 to 50 and finally to 100 while maintaining the 

number of function evaluations (NFE) as 1,000,000. The number of 

function evaluations can be calculated as NFE = number of agents 

× number of iterations. The number of dimensions in this experi-

ment is 50. The mean fitness values are tabulated in Table 5. Based 

on the result of the Wilcoxon signed rank test in Table 6, since the 

critical value is 137, SKFWH with 50 agents performs significantly 

better than the SKFWH with 100 agents. R- value is written in bold 

if it is less than 137. 

The third experiment investigates the importance of different initial 

values of error covariance estimate, P(0), towards the performance 

of the SKFWH algorithm. The number of agents is 100, the number 

of iterations is 10,000, and the number of dimensions is 50. Several 

P(0) values were investigated. Those values are 1, 10, 100, and 

1,000. The mean fitness values are tabulated in Table 7. Based on 

the mean fitness values, the Wilcoxon signed ranked test was per-

formed and the results are tabulated in Table 8. R- value is written 

in bold if it is less than 137. It is found that none of the pairwise 

tests show any significant difference. Hence, the initial values of 

error covariance estimate, P(0), gives no impact to the performance 

of the SKFWH algorithm. 

The last experiment investigates the performance of the SKFWH 

algorithm with different values of the number of agents, which are 

10, 100, and 1000 agents. In this experiment, the number of itera-

tions is 100 and the number of dimensions is 50. The mean fitness 

values are tabulated in Table 9. Based on the mean fitness values, 

the Wilcoxon signed ranked test was performed and the results are 

tabulated in Table 10. R- value is written in bold if it is less than 

137. It is obvious that when the number of function evaluation is no 

longer a limit, significantly better results could be obtained when 

the number of agents is increased. 

5. Conclusion  

A lot of improvements of the SKF algorithms were reported in lit-

erature. However, this is the first time the SKF algorithm is im-

proved using a new white hole operator. This white hole operator 

has been originally used to improve the black hole algorithm. In 
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future, the usefulness of the white hole operator will be further in-

vestigated and tested to other optimization algorithm, such as finite 

impulse response optimizer [39]. 
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Table 1: The mean fitness based on 10-dimension test functions. Values in 

bold indicate smaller mean fitness. 
Types No. SKFWH SKF 

Unimodal functions 
1 3912948.948 5607771.528 
2 1885.564735 2672632.715 

3 1718.212752 3448.011551 

Simple 

multimodal functions 

4 420.3010925 420.91571 
5 519.9999529 520.0063855 

6 602.4705525 601.9204931 

7 700.1624849 1139329685566 
8 800 802.5417592 

9 909.9052372 913.3856203 
10 1000.553511 1121.796832 

11 1405.400471 1598.084375 

12 1200.080214 1200.122715 
13 1300.241882 1300.265143 

14 1400.165654 1400.329805 

15 1501.204535 1501.436656 
16 1602.286956 1602.519754 

Hybrid 

functions 

17 137217.0239 238934.7477 

18 10378.26401 10225.36109 

19 1901.015338 1901.262963 

20 4420.818952 7589.154424 

21 4894.618402 45650.08519 
22 2211.437594 2264.463448 

Composition functions 

23 2622.868598 2629.807706 

24 2523.171623 2525.825028 
25 2670.516412 2688.776931 

26 2700.154528 2700.189843 

27 2772.816517 2948.974324 
28 3283.214765 3308.24095 

29 3253.417745 72370.09974 

30 4247.948502 4241.064993 

 

Table 2: The mean fitness based on 50-dimension test functions. Values in 

bold indicate smaller mean fitness. 
Types No. SKFWH SKF 

Unimodal functions 
1 4599371.793 4702013.172 
2 2584405.723 24498691.66 

3 15654.3802 18147.70046 

Simple 

multimodal functions 

4 525.7442982 532.7714796 

5 520.0000447 520.0100164 

6 622.5405876 633.4416857 
7 703.775289 700.2462253 

8 804.4771155 807.9813234 

9 1060.718543 1059.138771 

10 1167.850431 1335.183241 

11 6280.91523 6249.367247 

12 1200.197155 1200.236409 
13 1300.564131 1300.55973 

14 1400.315442 1400.300086 

15 1550.736579 1551.658399 
16 1618.971832 1619.125528 

Hybrid 

functions 

17 815048.4382 908272.092 

18 7320683.517 6941389.773 

19 1941.608824 1950.223 

20 31143.98421 34799.058 

21 1140601.748 1186640.91 
22 3414.761688 3429.105828 

Composition functions 

23 2645.270911 2645.689023 

24 2661.797998 2667.249774 
25 2730.285585 2730.401816 

26 2782.399055 2766.385254 

27 3876.071383 3883.341504 
28 6834.144597 7223.369647 

29 8049.657217 5997.830166 

30 19708.47701 19753.28876 

 
Table 3: Wilcoxon signed rank test result based on 10-dimension test func-
tions. 

 R+ R- 

SKFWH vs SKF 422 43 

 
Table 4: Wilcoxon signed rank test result based on 50-dimension test func-
tions. 

 R+ R- 

SKFWH vs SKF 352 113 

 

   
Fig. 3: The SKF algorithm with white hole operator (SKFWH). 
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Table 5: The mean fitness based on 10, 50, and 100 agents. The total num-

ber of function evaluation is 1,000,000. 
No. 10 agents 50 agents 100 agents 

1 6842461.074 8249749.934 4599371.793 

2 7557.765436 67721025.25 2584405.723 

3 7180.761822 20435.18084 15654.3802 
4 558.8601389 542.2949562 525.7442982 

5 520.0008579 520.0000267 520.0000447 

6 634.3263996 626.2770105 622.5405876 
7 700.0483049 700.2555538 703.775289 

8 801.6259361 805.221172 804.4771155 
9 1110.712509 1072.622085 1060.718543 

10 1021.795305 1164.888077 1167.850431 

11 6629.145251 6370.193368 6280.91523 
12 1200.248523 1200.206515 1200.197155 

13 1300.548525 1300.564763 1300.564131 

14 1400.314432 1400.310443 1400.315442 
15 1574.222179 1578.482811 1550.736579 

16 1619.069307 1619.797243 1618.971832 

17 1890246.778 911763.8217 815048.4382 
18 3002.950783 23965767.71 7320683.517 

19 1961.263909 1945.459122 1941.608824 

20 5638.838995 36236.62629 31143.98421 
21 1716825.937 1470818.982 1140601.748 

22 3551.80744 3464.577495 3414.761688 

23 2648.322643 2650.848828 2645.270911 
24 2662.889529 2664.03135 2661.797998 

25 2738.206645 2732.394866 2730.285585 

26 2784.405028 2786.437922 2782.399055 
27 4182.280784 3949.888038 3876.071383 

28 8604.909235 7560.618167 6834.144597 

29 4595.713531 57578.34953 8049.657217 
30 19464.09273 27855.13969 19708.47701 

 
Table 6: Wilcoxon signed rank test based on the result in Table 5. 

 R+ R- 

10 agents vs 50 agents 207 258 

10 agents vs 100 agents 274 191 
50 agents vs 100 agents 442 23 

 
Table 7: The mean fitness based on 50-dimension test functions 

No. P = 1 P = 10 P = 100 P = 10000 

1 4767397 4543595 4667601 4702013 
2 1725833 5617675 12082776 1764059 

3 17351 16283 18639 18937 

4 537 521 529 529 
5 520 520 520 520 

6 636 638 632 632 

7 700 700 700 700 
8 804 804 803 804 

9 1067 1056 1059 1061 

10 1213 1179 1171 1218 
11 6011 6063 6288 5938 

12 1200 1200 1200 1200 

13 1300 1300 1300 1300 
14 1400 1400 1400 1400 

15 1549 1548 1546 1551 

16 1618 1619 1619 1619 
17 921673 881715 792874 942630 

18 7279155 6879170 7985422 3360283 

19 1942 1946 1946 1949 
20 31074 34361 31820 31710 

21 1072313 1246738 1280575 1215168 

22 3447 3392 3358 3348 
23 2645 2645 2646 2645 

24 2663 2661 2665 2662 

25 2730 2730 2730 2730 
26 2778 2778 2788 2784 

27 3890 3858 3889 3892 

28 6907 7199 7095 6920 
29 12651 12599 5492 6212 

30 19032 19734 19928 18915 

 
Table 8: Wilcoxon signed rank test based on the result in Table 7. 

 R+ R- 

1 vs 10 275 190 

1 vs 100 194 271 

1 vs 1000 216 249 

10 vs 100 178 287 

10 vs 1000 237 228 
100 vs 1000 262 203 

 
Table 9: The mean fitness based on 10, 100, and 1000 agents. The number 

of iterations is 100 and the number of dimensions is 50. 
No. 10 agents 100 agents 1000 agents 

1 1338145210 327605271 116205335 

2 79184268726 24854725947 8938780098 

3 235022.9 101045.4 43799.9 
4 17994.29 4197.986 1711.866 

5 521.2865 521.1728 521.0734 

6 667.432 658.1857 642.7808 
7 1587.334 2781.969 725.332 

8 1315.766 1161.581 1090.504 

9 1526.552 1359.62 1267.708 
10 12887.08 10302.09 8891.271 

11 14446.95 12404.72 11200.69 

12 1204.309 1202.841 1202.375 
13 1305.891 1303.342 1300.934 

14 1589.182 1461.033 1420.469 

15 1403735 24170.85 2578.101 

16 1623.134 1622.352 1621.448 

17 225197269 35122256 7038724 

18 6262617231 268449390 9439867 
19 2652.459 2054.65 1994.275 

20 373457.8 42918.45 14015.08 

21 58530680 8650934 4298820 
22 44469.24 3944.376 3346.909 

23 3411.079 2813.781 2702.812 

24 2813.254 2734.035 2708.263 
25 2813.406 2757.566 2741.351 

26 2847.602 2787.787 2754.411 

27 4932.037 4404.915 4089.907 
28 16155.92 11652.09 8520.319 

29 907086143 96761146 7618629 

30 11357918 1580825 339916.2 

 
Table 10: Wilcoxon signed rank test based on the result in Table 9. 

 R+ R- 

10 vs 100 450 15 

10 vs 1000 465 0 

100 vs 1000 465 0 
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