

Copyright © 2018 Manju Kaushal, Satheesh Abimannan. This is an open access article distributed under the Creative Commons Attribution

License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4) (2018) 5266-5271

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET
doi: 10.14419/ijet.v7i4.28037

Research paper

Automated slicing scheme for test case

prioritization in regression testing

Manju Kaushal 1 *, Satheesh Abimannan 2

1 P.G Student, VIT, Vellore, Tamil Nadu, India

2 School of Computer Science and Engineering, VIT, Vellore, Tamil Nadu, India

*Corresponding author E-mail: satheesh.abimannan@vit.ac.in

Abstract

Motivation: The testing approach which ensures that the software does not have any adverse affects due to the changes made in the exist-

ing features or addition of some new features is called regression testing. For testing the changes made in the previous versions of soft-

ware, this type of testing is performed. To ensure that the numbers of test cases available in the software is not too large, it is important to

select the regression tests and to do so, several techniques have been designed. To detect the individual functions from the software, the

existing work applied the slicing technique. The parameters which are used in this approach are calculated manually to analyze im-

portance of individual functions. The number of times the function is encountered and the number of functions relevant to the specific

function are the two different parameters calculated here. A list of changes in the source code and the execution traces generated from the

test cases which are run on previous versions are used to combine the modification, minimization and prioritization-based selection

which thus generates a hybrid technique.

Problem Statement: In the existing system, the manual slicing technique is applied to perform test case prioritization. In manual slicing,

the total number of times a function is triggered and the total numbers of functions attached are calculated manually to generate final

function importance. This approach is very time consuming and inaccurate.

Method: In this paper, we studied that to prioritize the test cases based on the changes, a type of regression testing is used which is test

case prioritization. The test cases of the functions which have higher priority are executed first and so on. Based on the changes made,

the test cases are prioritized. For identifying maximum number of faults from the modified software, manual slicing and automated slic-

ing are applied in this work. The proposed method will be the enhancement of manual slicing technique. The automated slicing technique

will automatically calculate the functional importance based on number of attached functions and number of times function triggered.

The proposed method has low execution time and detects more number of defects from the software. The dataset of ten different projects

is used to test the performances of proposed and existing algorithms in MATLAB. Each project has seven functions and four numbers of

changes are defined for the regression testing.

Results: The simulation results achieved at the end show that in comparison to manual methods, the implementation of automated test

case prioritization has provided improvement in the fault detection rate and reduction in the execution time.

Keywords: Automated Slicing; Regression Testing; Test Case Prioritization.

1. Introduction

The mechanism, through which the various technical and non-

technical regions within software can be tested such that various

kinds of problems can be avoided at the time of its execution, is

known as software testing [1]. The software is assessed for deter-

mining its quality using this mechanism. Within software engi-

neering, testing is considered to be important since almost half of

the development efforts and efforts of the systems that need relia-

bility are included in testing [2].

During the changes of program under test or the external scenario

in which it is being executed, it is important to maintain the activi-

ties of software which is done through regression testing mecha-

nism [3]. It can be ensured that any kinds of changes made in a

program do not impact the overall performance of the software

negatively by executing a regression test suite when any new

changes are made in the software [4]. Any kinds of tests that cover

the test requirements redundantly are discarded by the regression

test suite reduction techniques which are implied with the objec-

tive of controlling the size and execution time of a test suite. The

test cases are reordered on the basis of an established priority met-

ric by the test suite prioritization for enhancing the effectiveness

of testing [5]. For example, to ensure that the test requirements are

covered at higher speed in comparison to the original ordering, the

tests can be rearranged by the prioritizer.

The challenge of running a test suite within a constrained scenario,

a test prioritization technique can be provided as an alternative [6].

The test cases which are more likely to ensure that it is possible

for a modified program to operate correctly are run such that the

cost of testing can be minimized within test suite selection tech-

niques [7]. To make sure that maximum advantage is given to the

tested even when the testing is paused at any time duration, the

best ordering of test cases is recognized by test case prioritization

for testing [8]. To maximize some objective function, the test cas-

es are prioritized and scheduled through test case prioritization

techniques. For instance, achieving the code coverage at the high-

est speed, exercising the subsystems as per the order of their re-

flection of historical failure propensity or use the expected fre-

quency of use to exercise features are some of the criteria which

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

International Journal of Engineering & Technology 5267

can be used by the software test engineers for scheduling the test

cases [9]. The test case prioritization approach might not be cost

effective in case when the time needed to execute all test cases

within a test suite is short [10]. Thus, test cases can be scheduled

in any order here. The significance of merits provided through test

case prioritization techniques is increased when there is sufficient

time provided for running all the test cases [11]. For detecting the

faults in shorter time, the tests cases with highest priority are

scheduled and run earlier through the test case prioritization tech-

niques [12]. The techniques through which the test cases are prior-

itized on the basis of costs are known as the cost-based techniques.

Several research studies have been presented related to these tech-

niques. Different kinds of costs for each kind of testing are evalu-

ated [13]. The test cases include certain validation costs, the test

selection includes the analysis cost and regression testing includes

different costs which need to be studied in these techniques. Rela-

tive effectiveness can be calculated by comparing the test cases

through these approaches [14]. Any regression test selection ap-

proaches in which all the test cases present within the existing test

suite that identify the faults, are chosen by using these methods

[15]. However, due to the discarding of tests, the costs of over-

looking the faults are not included here. The test case prioritiza-

tion methods that are based on the test execution history are called

the chronographic history-based techniques. The statistical quality

control and statistical forecasting are the two bases used to devel-

op such approaches. A set of test cases is prioritized by applying

the requirements-based test case prioritization techniques [16].

The current test case prioritization techniques were used as base to

develop these techniques and the test cases were ranked here using

certain factors. Further, to perform measurements, values are as-

signed for each factor by the authors [17]. The importance of test-

ing a requirement earlier is measured using the weight prioritiza-

tion [18]. The coverage based and fault-based techniques are com-

bined by the maximize coverage for Early Fault Detection

(MCEFD) technique. A metric which is used frequently as priori-

tization criterion is called structural coverage. The probability of

quick maximization of fault detection is increased by quick maxi-

mization of structural coverage [19]. Maximizing the early cover-

age is the major objective of prioritization technique even though

the test case prioritization aims to achieve a higher fault detection

rate. The chance of revealing faults at high speed by maximizing

the coverage in testing process is the major objective of this tech-

nique.

In this existing method, the function importance is calculated on

the basis of two parameters which number is of times function

encounter and number of functions attached with particular func-

tion [20]. The value of the functional importance depends on de-

fined factors but function encounter and number of functions at-

tached are calculated manually which increase execution time and

also detect less number of faults from the software.

The automated slicing technique is proposed in this research work

which is enhancement of manual slicing. In the proposed method,

the function encounter and number of functions attached are cal-

culated automatically which define functional importance. The

proposed approach leads to reduce execution time for test case

prioritization and also detect more number of defects.

In this paper, the test case prioritization is proposed for the soft-

ware defect detection. In the section number 1, introduction is

given about the regression testing and test case prioritization. The

related work is described in the section 2. The proposed method-

ology is highlighted in the section 3. The implementation, case

study and results are described in detail in section 4, 5, and 6 re-

spectively.

2. Related work

Dipesh Pradhan, et.al (2018) proposed a novel technique called

REMAP, which applied rule mining and multi-objective search for

designing a black-box dynamic TP. The static priortizer, rule min-

er and dynamic executor and prioritizer are the three key compo-

nents used in REMAP [21]. From the historical execution data, the

relations are mined through rule miner. The test cases are priori-

tized statically by applying multi-objective search by the static

prioritizer. The statically prioritized test cases are executed and the

runtime test case execution results are used to update the test case

order dynamically through dynamic executor and prioritizer. The

evaluations are performed and results are achieved which show

that an average of 18% higher Average Percentage of Faults De-

tected (APFD) was achieved by applying this new proposed tech-

nique.

Paruchuri Ramya, et.al (2018) studied that the updated product

can be retested and any additional faults entering the existing

software can be checked through regression testing [22]. The pro-

gramming quality is checked and kept in better state through this

approach. This study also highlighted that the faults and errors

were identified easily by incorporating the requirements in testing

phase. The effectiveness is not sufficient without using the source

code information even though there are several prioritization tech-

niques. The requirements information when used in test case prior-

itization, around 80% of increment is achieved in the productivity.

Yijie Ren, et.al (2018) proposed a two-layer model through which

test case prioritization is assisted on the basis of GUI software

features [23]. Here, the function call graph (FCG) is known to be

the inner layer and the event handler tree (EHT) is called the outer

layer. On the basis of two-layer model for prioritization, higher

level of source code information is utilized here in comparison to

the traditional techniques. The importance of modified functions

for particular TCP version is highlighted using the centrality

measure which is a complex network viewpoint. The proposed

model is evaluated and it is seen through the results that the effec-

tiveness of this proposed approach is better.

TomášPospíšil, et.al (2018) proposed a similarity function which

was used for TCP techniques. The test cases that are created by

different approaches can work with this designed function in uni-

versal manner [24]. The Hint-based Adaptive Random prioritiza-

tion technique is used in this proposed technique. A similarity

good effect of hint guidance is achieved through the comparative

analysis of results. It shows that HARP can apply the function

successfully. The accuracy of proposed approach is also known to

be better in comparison to the traditional HARP technique.

Qi Luo, et.al (2018) presented a comparative study in which the

TCP techniques are applied to mutation faults and real-world

faults. The eight common TCP approaches, 357 real-world faults

and around 35k mutation faults were studied here by including the

Defects4J dataset collected [25]. As per the attributes of subject

programs, the performances on real faults are not correlated with

the TCP techniques on mutants as shown in the results. However,

when the technique that provides best results on a set of mutants is

applied of real faults, the results achieved might not be efficient

enough. Thus, the mutation operators generated for particular

program domains are generated here.

Maral Azizi, et.al (2018) proposed a novel graph-based prioritiza-

tion technique through which the effectiveness is improved and

two objectives are achieved collectively [26]. Four different open-

source applications are utilized along with three widely used tech-

niques to perform evaluations. Thus, the effectiveness and effi-

ciency of prioritization were seen to be improved as per the

achieved results. During the presence of limited time budget, the

performance of proposed approach was known to be the best.

3. Regression testing with automated test case

prioritization

The testing approach which checks that the software does not face

any adverse affects due to some changes or additions made in an

existing version is called regression testing. To prioritize the test

cases based on the modifications made in developed software, the

test case prioritization technique of regression testing is applied.

Both, automated and manual test case prioritization techniques are

applied in this work. To detect the faults from project, only manu-

5268 International Journal of Engineering & Technology

al test case prioritization was applied in the existing technique.

Number of functions related to a specific function and number of

times function is encountered are the two parameters used in man-

ual test case prioritization. The calculation of importance of each

function is done based on these two parameters which used the

function traverse value (FTV) value to perform calculation. Based

on the modifications defined in the designed software, the calcula-

tion of FTV value is done. This work implements the automated

test case prioritization for increasing the fault detection rate. Based

on the total number of times a function is encountered and the

total functions relevant to a specific function, the population val-

ues are given as input in the initial step. The population values are

traversed and error is calculated at each iteration in the second

step of the algorithm. The best mutation value of a function is

calculated from the iteration at which the error is the highest for

the mutation value. The function importance at which the test

cases are prioritized based on the defined changes is called the

function mutation value. Based on the defined changes, the func-

tion importance values are accessed in the final step. The total

percentage of faults identified in a project after any change is giv-

en by calculating the best fitness value.

Fig. 1: Proposed Architecture.

As shown in figure 1, the architecture of the proposed model is

shown. In the proposed architecture the dataset is taken as input.

The functional importance is calculated with the equation number

1. The test cases are arranged according to functional importance

means functions which have high importance is prioritized first

and then so on

Function importance=
Number of time function encountered

Number of attached functions
 (1)

The proposed automated test case prioritization algorithm follows

certain steps which are mentioned below:

Step 1: Depending upon the number of relevant functions, the

important for function is calculated within the enhanced multi-

objective algorithm. The most important function is considered to

be the one which has the maximum association.

Step 2: The automated slicing technique is applied for calculating

the number of functions relevant which results in traversing the

DFD and creating the final results.

Step 3: An iterative approach is followed for automated slicing

and to detect the maximum number of errors from the project, the

best value of test case is searched.

Algorithm 1: Automated Test Case Prioritization

Input: Set of Test case ={P1, P2,…..,Pn},Set of clicks of each func-

tion={F1,F2,…..Fn}

Output: Prioritized Test Cases

Begin

1. I←Consider value of F(i) for the each test case

2. Test case F(i) value ← i

3. while (fault value of each test case is calculated)

4. a=F(i)

5. calculate number of links L(i)=F(i)’/F(i)
6. if(L(i)>L(i+1) then

b=L(i)

else
b=L(i+1)

7. end

8. Calculate fault value Fault (i+1) =fault(i)/L(i)
if Fault(i) > Fault(i+1)

best_so_far<-Fault(i) then

i<- generate an individual randomly
End

Fig. 2: Proposed Methodology.

4. Implementation

In this paper, MATLAB tool is used for the implementation of

proposed methodology. In the MATLAB c is used as program-

ming language. The guide tool box is used to drive interfaces for

the execution. The experiments are performed on the online shop-

ping website. The online shopping website is considered which

have seven functions. The function names are show products,

show category, check availability, request order, shipping, pay-

ment accept and cancel order. Every function of online shopping

has its function execution value, number of attached function val-

ue. The function importance is calculated on the basis of defined

two factors. The test cases of online shopping website are consid-

ered which will be prioritized.

5. Result and discussion

The results of the proposed model are tested in terms of accuracy,

fault detection and execution time. The Table 1, describe the

online shopping project details. In the project, the four changes are

considered correspond to test case prioritization. The seven func-

tions are considered and of every function execution value, at-

tached functions, function importance. In the last column the fault

detected with the automated approach is described.

Input Project

with all func-

tions and test

cases

Calculate

number of

time function

triggered

Calculate

number of

attached func-

tions

Generate func-

tion im-

portance

Arrange functions ac-

cording to importance

International Journal of Engineering & Technology 5269

Table 1: Fault Detected by Automated Slicing

Functions FE AF FI FV FDA

Show Prod-

ucts
3 6 0.5

Acc to

Change

1:

3.309524

Acc to

Change

1:

5.913

Show

Category
8 7 1.1429

Check

Availability
1 6 0.16667

Acc to

Change

2:
3.166667

Acc to

Change

2:
5.4046

Request Order
Shipping

6 4 1.5

9 3 3 Acc to
Change

3:

3.292857

Acc to
Change

3:

6.0006

Payment
Accept

2 5 0.4

Cancel Order 7 4 1.75

Acc to

Change

4:
8.459524

Acc to

Change

4:
17.8968

FE – Function Execution Value; AF – Attached Functions;

FI – Function Importance; FV – Fitness Value;

FDA – Fault Detected by Automated slicing approach

Fig. 3: Designed Interface.

In this figure 3, to implement the proposed technique interface is

designed in MATLAB with four types of changes. In the interface,

the fault detection rate is shown correspond to particular change.

Fig. 4: Accuracy Comparison.

As shown in figure 4, the accuracy of the manual slicing and au-

tomated slicing is compared for the performance analysis. The

accuracy of the manual slicing is less as compared to automated

slicing due to do not use of optimization algorithm.

Fig. 5: Fault Detection Rate.

As shown in figure 5, the fault detection of the manual slicing and

automated slicing is compared for the performance analysis. The

fault detection of the manual slicing is less as compared to auto-

mated slicing due to do not use of optimization algorithm

Fig. 6: Execution Time.

As shown in figure 6, the execution time of the manual slicing and

automated slicing is compared for the performance analysis. The

execution time of the manual slicing is high as compared to auto-

mate slicing due to do not use of optimization algorithm.

Fig. 7: Precision Comparison.

As shown in figure 7, comparative analysis of proposed and exist-

ing approaches is shown with respect of precision. The precision

value for automated slicing is higher as per this analysis.

5270 International Journal of Engineering & Technology

Fig. 8: Recall Comparison.

As shown in figure 8, the performance of both proposed and exist-

ing techniques are evaluated in terms of recall. Since the optimiza-

tion algorithm is applied in automated slicing, the recall value

achieved here is higher.

6. Conclusion and future work

The testing approach which ensures that the software does not

have any adverse affects due to the changes made in the existing

features or addition of some new features is called regression test-

ing. For testing the changes made in the previous versions of

software, this type of testing is performed. In the existing system,

the manual slicing technique is applied to perform test case priori-

tization. In manual slicing, the total number of times a function is

triggered and the total numbers of functions attached are calculat-

ed manually to generate final function importance. This approach

is very time consuming and inaccurate. Thus, to perform test case

prioritization automatically, the multi-objective algorithm is ap-

plied which includes three steps. Based on the total number of

times a function is encountered and the total functions relevant to

a specific function, the population values are given as input in the

initial step. The population values are traversed and error is calcu-

lated at each iteration in the second step of the algorithm. The best

mutation value of a function is calculated from the iteration at

which the error is the highest for the mutation value. The function

importance at which the test cases are prioritized based on the

defined changes is called the function mutation value. Based on

the defined changes, the function importance values are accessed

in the final step. The total percentage of faults identified in a pro-

ject after any change is given by calculating the best fitness value.

Ten different projects that include four changes are used here to

analyze the performances of proposed and existing algorithms in

MATLAB. The simulation results achieved at the end show that in

comparison to manual methods, the implementation of automated

test case prioritization has provided improvement in the fault de-

tection rate and reduction in the execution time. For automated

test case prioritization, the greedy technique which is based on

multi-objective algorithm is applied in the proposed algorithm.

Several other greedy algorithms can be applied in regression test-

ing for improving the performance of proposed algorithm. Com-

parative analysis of existing test case prioritization techniques and

proposed algorithm can be done to test the reliability of proposed

algorithm.

References

[1] Zheng Li, Mark Harman, and Robert M. Hierons, “Search algo-
rithm for Regression Test Case Prioritization,” IEEE Transactions

on Software Engineering, Vol. 33, No.4, April 2007.

https://doi.org/10.1109/TSE.2007.38.
[2] Dennis Jeffrey and Neelam Gupta, “Improving Fault Detection Ca-

pability by Selectively Retaining Test Cases during Test Suite Re-

duction,” IEEE Transactions on software Engineering, VOL. 33

NO.2, February 2007.
[3] Jennifer Black, Emanuel Melachrinoudis and David Kaeli, “Bi Cri-

teria Models for All uses Test Suite-Reduction,” 26th International

Conference on Software Engineering (ICSE’04).
[4] Wes Masri, Andy Podgurski and David Leon, “An EmpricalStudey

of Test Case Filtering Techniques Based on Exercising Information

Flows,” IEEE Transactions on software Engineering, VOL. 33,
NO.7, February 2007.

[5] Scott McMaster, Atif M. Memon, “Call Stack Coverage for GUI
Test Suite Rdduction,” IEEE Transactions on software Engineering,

VOL. 34 NO.1, January/February 2008.

[6] Maruan Khoury, “Cost Effective Regression Testing,” October 5,
2006.

[7] Alexey G. Malishevsy, Gregg Rothermel, Sebastian El-

baum,”Modeling the Cost-Benefits Tradeoffs for Regression Test-
ing Techniques,” Proceedings of the International Conference on

Software Maintenance ICSM’02), 2002 IEEE.

[8] Sebastian Elbaum, Alexey G. Malishevsky and Gregg Rothermel,
“Test Case Prioritization: A Family of Emprical Studies,” IEEE

Transactions on software Engineering, VOL. 28, NO.2, February

2002.

[9] Gregg Rothermel, Roland H. Untch, Chentun Chu and Mary Jean

Harrold, “Prioritizing Test Cases for Regression Testing,” IEEE

Transactions on software Engineering, VOL. 27 NO.10, October
2001.

[10] Hema Srikanth, Laurie Williams and Jason Osborne, “System Test

Case Prioritization of New and Regression Test Cases”, In Proceed-
ings of the 4th International Symposium on Empirical Software

Engineering (ISESE), pages 62–71. IEEE Computer Society, 2005.

https://doi.org/10.1109/ISESE.2005.1541815.
[11] Hyunsook Do and Gregg Rothermel, “On the Use of Mutation

Faults in Empirical Assessments of Test Case Prioritization Tech-

niques”, IEEE Transactions on Software Engineering, V. 32, No. 9,
pages 733- 752, 2006. https://doi.org/10.1109/TSE.2006.92.

[12] K. Onoma, W.-T. Tsai, M. Poonawala, and H. Suganuma, “Regres-

sion testing in an industrial environment”, Comm. Of the ACM,
41(5):81–86, 1988.

[13] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer and R. S. Roos,

“Time-Aware Test Suite Prioritization”, In Proceedings of the In-
ternational Symposium on Software testing and Analysis, pages 1-

12, 2006

[14] Londesbrough, I., “Test Process for all Lifecycles”, IEEE Interna-
tional Conference on Software Testing Verification and Validation

Workshop, ICSTW’08, 2008.

https://doi.org/10.1109/ICSTW.2008.4.
[15] Lu Luo, “Software Testing Techniques: Technology Maturation

and Research Strategies”, Carnegie Mellon University, USA, 1999.

[16] Sreedevi Sampath, Sara Sprenkle, Emily Gibson and Lori Pollock,
“Web Application Testing with Customized Test Requirements –

An Experimental Comparison Study”, 17th International Symposi-

um on Software Reliability Engineering (ISSRE’06), 2006.
[17] Xiaofang Zhang, Baowen Xu, ChanghaiNie and Liang Shi, “An

Approach for Optimizing Test Suite Based on Testing Requirement

Reduction”, Journal of Software (in Chinese), 18(4): 821-831, 2007.
https://doi.org/10.1360/jos180821.

[18] Jennifer Black, Emanuel Melachrinoudis and David Kaeli, “Bi-

Criteria Models for All-Uses Test Suite Reduction”, Proceedings of
the 26th International Conference on Software Engineering

(ICSE’04), 2004. https://doi.org/10.1109/ICSE.2004.1317433.

[19] Jung-Min Kim, Adam Porter and Gregg Rothermel, “An Empirical

Study of Regression Test Application Frequency”, ICSE2000, 2000.

[20] Jung-Min Kim and Adam Porter, “A History-Based Test Prioritiza-
tion Technique for Regression Testing in Resource Constrained

Environments”, In Proceedings of the International Conference on

Software Engineering (ICSE), pages 119–129. ACM Press, 2002.
[21] Dipesh Pradhan, Shuai Wang, Shaukat Ali, Tao Yue, Marius Li-

aaen, “REMAP: Using Rule Mining and Multi-Objective Search for

Dynamic Test Case Prioritization”, 2018 IEEE 11th International
Conference on Software Testing, Verification and Validation.

[22] Paruchuri Ramya, VemuriSindhura, Dr. P. Vidya Sagar, “CLUS-

TERING BASED PRIORITIZATION OF TEST CASES”, Pro-
ceedings of the 2nd International Conference on Inventive Commu-

nication and Computational Technologies (ICICCT 2018).

[23] Yijie Ren, Bei-Bei Yin, Bin Wang, “Test Case Prioritization for
GUI Regression Testing based on Centrality Measures”, 2018 42nd

IEEE International Conference on Computer Software & Applica-

tions. https://doi.org/10.1109/COMPSAC.2018.10275.

https://doi.org/10.1109/TSE.2007.38
https://doi.org/10.1109/TSE.2007.38
https://doi.org/10.1109/ISESE.2005.1541815
https://doi.org/10.1109/ISESE.2005.1541815
https://doi.org/10.1109/TSE.2006.92
https://doi.org/10.1109/TSE.2006.92
https://doi.org/10.1109/ICSTW.2008.4
https://doi.org/10.1109/ICSTW.2008.4
https://doi.org/10.1360/jos180821
https://doi.org/10.1360/jos180821
https://doi.org/10.1109/ICSE.2004.1317433
https://doi.org/10.1109/ICSE.2004.1317433
https://doi.org/10.1109/COMPSAC.2018.10275
https://doi.org/10.1109/COMPSAC.2018.10275

International Journal of Engineering & Technology 5271

[24] TomášPospíšil, JiíNovák, “New Similarity Function for Test Case

Prioritization in Model-Based Context”, 2018 16th Biennial Baltic
Electronics Conference (BEC).

[25] Qi Luo, Kevin Moran, Denys Poshyvanyk, Massimiliano Di Penta,

“Assessing Test Case Prioritization on Real Faults and Mutants”,
2018 IEEE International Conference on Software Maintenance and

Evolution. https://doi.org/10.1109/ICSME.2018.00033.

[26] Maral Azizi, Hyunsook Do, “Graphite: A Greedy Graph-Based
Technique for Regression Test Case Prioritization”, 2018 IEEE In-

ternational Symposium on Software Reliability Engineering Work-
shops. https://doi.org/10.1109/ISSREW.2018.00014.

https://doi.org/10.1109/ICSME.2018.00033
https://doi.org/10.1109/ICSME.2018.00033
https://doi.org/10.1109/ISSREW.2018.00014
https://doi.org/10.1109/ISSREW.2018.00014

