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Abstract 
 

The Road extraction from aerial image, stands as a quintessential node for the development of rudimentary layers in innumerable fields. 

From GIS, to Unmanned Aerial vehicles, road maps pave the foundation for data accumulation. This significant process is a result of 

number of mechanisms devised over the years through iterative experiments and research.  However, the glut of methods available often 

pose as a hurdle in the selection process. In this project we implement a novel approach to solve the extraction problem, by incorporating 

generative algorithm using conditional adversarial networks. We investigate conditional adversarial networks as a general-purpose solu-

tion to image-to-image translation problems. These networks not only learn the mapping from input image to output image, but also learn 

a loss function to train this mapping. This makes it possible to apply the same generic approach to problems that traditionally would re-

quire very different loss formulations. The U-Network incorporated essentially convolves and de-convolves over the generative model, 

thus producing a pixel to pixel image translation, the result of which is the vector road map of its corresponding aerial image. The entire 

model is trained on a 990 MS GPU for computational ease.   
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1. Introduction 

Image processing and Computer vision have evolved over the 

years to account for nuances in the pragmatic world, and extend a 

visual cortex to technology. This development has been a boon to 

aerial images. With advances such as segmentation, pruning, Prin-

cipal Component Analysis (PCA), and self- learning artificial 

intelligence implementations such as Artificial Neural Networks 

(ANN), Support Vector Machine (SVM), and classification, quali-

ty of image data sets have surged immensely. However, the para-

mount notion that these advancements are based on unique cir-

cumstances and that their efficiency relates to the appropriate 

usage [11], has now vaporized into the obsolete. In order to dis-

cern the perfect extraction mechanism, it is essential that the de-

tails of road features, their singularity, and the context of their 

application is understood as a base. 

Road Features: Image characteristics of road features are con-

tingent on sensor type, weather and light fluctuations, spatial and 

spectral resolution, and ground characteristics. Such dependencies 

pose a hurdle in road extraction from RS data. Intuitively, a modi-

cum of difference in these elements propagates into large varia-

tions making is difficult tofix upon environmental variables. 

Hence, it is essential to analyze and fixate upon the number and 

type of road features, for accurate road extraction. 

In general, image enhancements play a vital role in the extraction 

process. A road in an RS image appears as elongated geometric 

features with slowly changed grey values. For ease of understand-

ing, the road features in an image are summarized from four dif-

ferent aspects [20]. Based on their description, they can be con-

cluded as follows: 

Geometric Features: A stripe featured road is the one which 

possesses a near consistent width accompanied by elongated 

lengths. Essentially the ratio between length and width is very 

large. 

Photometric Features: Photometric features emphasize on the 

distinction between road and non-road edges. The two obvious 

road edge lines provide a large edge gradient [7]. Meanwhile, the 

grey values or colours of roads remain relatively consistent, but 

vary from those of the neighbouring non-road areas such as trees 

and buildings, etc. 

Topological Features: Generally, a road has intersections. The 

road network is not suddenly interrupted. 

Functional Features: A road has specific functions in the real 

world. The cycle lane, truck lane, poses as functional units. In 

order to realize those functions, it must have some constraints or 

conditions. 

Texture Features: Every feature in an image represents the 

phenomenon of uniformity which is the texture or visual feature of 

the image. Interestingly, they are independent of colour and inten-

sity information. The crux of these features is to highlight the 

geographical distribution of the pixel grey in the adjoining region 

[21]. 

Different road features in an image have different properties for 

road extraction. Geometric features are directly linked to the road 

shapes. Photometric features manufacture and produce the grey 

levels or colours. Topological features and functional features are 

comparatively intuitive but complex for real-life application. In 

practice, several road extraction methods use a combination of 

road features over a single entity. However, due to the influence of 

illumination, shadow, and occlusion, the above-mentioned fea-

tures contribute in erratic amounts, making it difficult to extract 

road from an RS image. 

This project proposes road extraction from remotely sensed data 

using a novel generative approach with a Generative Adversarial 

http://creativecommons.org/licenses/by/3.0/


1080 International Journal of Engineering & Technology 

 
Network (GAN) model. The form of learning differs from dis-

criminative/ predictive algorithm by aiming for image- image 

translation. Usually the learning algorithms try to find a label for 

the given set of features whereas GANs try to find out the features 

from the given label.  

2. Generative Adversarial Networks  

Generative Adversarial Networks (GANs) consists of two deep 

neural networks called the generator and the discriminators which 

are working exactly in opposite way. The idea of GANs were first 

given by Ian Good fellow. 

Generative algorithm tries to generate features for a given class 

whereas the discriminative algorithm tries to predict the class for 

the given feature set. 

For example, given all the features of an image, a discriminative 

algorithm will find out whether the image is a car or not a car. 

This problem can be expressed mathematically asp(y|x) where y is 

the class label and x is the feature set. This means that “the proba-

bility of y given x”, which in turn means “the probability that an 

image is a car given the features it contains.” 

On the other hand generative algorithm will find the feature set for 

the given class that is in order to say an image to be a car what are 

all the features it should have or to say an image to be not a car 

what are all features it should have.  

One another way to distinguish discriminative algorithm from 

generative algorithm is: Discriminative algorithm learns the 

boundary of classes whereas generative algorithm frames the dis-

tribution of individual classes. 

 

 
Fig. 2.1: A typical generative adversarial model 

 

Working: The two deep neural networks called the generator 

and discriminator work in the opposite way. The discriminator 

network is actually a Convolutional Neural Network which takes 

as input an image and then down samples it to their features and 

finally predicts whether the input is real image or a fake image.  

 

 
Fig.2.2: A typical GAN working 

 

The generator is an Inverse Convolutional Neural Network so it 

takes as input a vector of noise and then up samples and produce a 

fake image. Thus both the networks become stronger by learning 

continuously. Thus the job of generator is to generate new fake 

images, whereas the job of discriminator is to decide whether the 

images belong to training dataset or not. 

 

 

3. Conditional Adversarial Network 

When the noise input to the generator is replaced with a complete-

ly different image, requesting for a generation of its mapped out-

put, the model is named as conditional adversarialnetwork.[30] 

The entirety of working remains the same, however, Pz(z) now 

represents a whole new image, and G(z) is now its vector road 

map. 

Formulation: Conditional Adversarial Network (CGAN) typi-

cally utilizes the probability distributions where the following are 

regarded as the standards.  

Pdata(x) : Distribution of data (vector road maps)  

X : A sample from the distribution of data  

Pz(z) :A new image, given to a generator( Aerial images)  

Z : A sample from the distribution new images  

G(z) :Generator Network  

D(x) :Discriminator Network 

The training occurs as a one on one match against the two net-

works. The generator tries to minimize, whereas the discriminator 

tries to maximize the function V.The first term forms the entropy 

of data for the discriminator, Pdata(x).It aims to maximise the 

value of output to 1. 

 
The second term forms the entropy of aerial images Pz(z) that the 

generator generates. Here, the discriminator aims to maximise the 

value of output to 0. In other words, the generator tries to generate 

output such that the log probability of its generated outputs 

deemed as fake, is 0. 

Thus, they train over an iterative approach, pitting against each 

other, where G tries to minimize, and D tries to maximize. 

 

3.1. Advantages of conditional AN 

 
1. CGANs learn a structured loss. Structured losses penalize 

the joint configuration of the output. Our conditional GAN 

is different in that the loss is learned, and can, in theory, 

penalize any possible structure that differs between output 

and target. 

2. Our framework differs in that nothing is application-

specific. This makes our setup considerably simpler than 

most others. 

3. Significantly faster, and computationally convenient 

4. Larger, meaningful goal for easier implementation 

5. Reduced computational complexity 

6. Can utilize full efficiency of batch- normalization 

7. Can extract features which are microscopic in the image, 

i.e invisible to the naked eye in an aerial image. 

8. No blur images are generated 

4. Conditional Adversarial Network Architec-

ture 

4.1. Generator Architecture 

 
The generator architecture typically follows a U- Network. U- 

Network consists of convolutions followed by de-convolutions.  

The number of layers involved in the U-net is 28 including the 

input and output as seen in Fig 4.1. 
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Fig. 4.1: U-Network architecture used for the generator 

 

4.2. Discriminator Architecture 

 
Termed as a Patch-GAN module, the discriminator is created a 

patch identifier. [31]The discriminator is made up of an inbuilt 

convolutional network, which classifies if each patch of N*N pix-

els in an image belongs to the fake class or real. Averaging the 

output finally produces the output of the discriminator. The small-

er size of the filer helps increase computational time, while pro-

ducing better quality images 

 

4.3. Entity Relationship Diagram 

 
Fig 4.2 depicts the ER diagram of the project module 

 

 
Fig. 4.2: E-R diagram for the model 

5. Dataset Specifications  

1. The dataset was obtained from University of Toronto's 

website. 

2. Named: Road and Building dataset 

3. The dataset contains aerial images of Massachusetts road 

4. The entire dataset contains aerial images and their corre-

sponding target vector road maps. 

5. Aerial images were originally of 1500* 1500 *3 pixels of 

the format TIFF as shown in Fig 5.1. 

6. Corresponding road maps of 1500*1500*1 of the format 

TIF is shown in Fig 5.2. 

7. Train images: 1108 input and target, Test images: 29 input 

and target, Validation images: 14 input and target 

8. Dataset modified for experiment: 105 * 105 * 3 for aerial 

images in JPEG format, 105 *105*1 for road maps in 

JPEG format. 

 

 
Fig.5.1: Sample Aerial Image 

 

 
Fig. 5.2: Corresponding Vector Road Map 

6. Training 

Fig 6.1, 6.2, 6.3, 6.4, 6.5 represent screenshots of training instanc-

es spread across 25000 iterations. 
 

 
Fig. 6.1: Training snapshot of epochs 0 to 18 

 

 
Fig.6.2: Training snapshot of epochs 388 to 407 

 

 
Fig.6.3: Training snapshot of epochs 12763 to 12782 
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Fig.6.4: Training snapshot of epochs 19577 to 19596 

 

 
Fig.6.5: Training snapshot of epochs 24981 to 24999 

7. Outputs 

The training of generator and discriminator occur side by side. By 

iterating for 25000 epochs, the model improves with each epoch. 

Fig 7.1, 7.2, 7.3, 7.4, 7.5, 7.6 and 7.7 are the generated outputs for 

random images from the test file for specific epochs. Each of the 

images contains three random aerial images from the test data set 

named as condition, their corresponding generated output road 

map under the name generated, and their original road map under 

the name original. 

 
Fig. 7.1: Three aerial images, their generated output from the model, and 

their corresponding manual vector map outline for epoch 0 

 
Fig. 7.2: Three aerial images, their generated output from the model, and 
their corresponding manual vector map outline for epoch 3000 

 

 
Fig. 7.3: Three aerial images, their generated output from the model, and 

their corresponding manual vector map outline for epoch 6000 
 

 
Fig. 7.4: Three aerial images, their generated output from the model, and 

their corresponding manual vector map outline for epoch 9000 

 

 
Fig. 7.5: Three aerial images, their generated output from the model, and 
their corresponding manual vector map outline for epoch 12000 

 

 
Figure 7.6: Three aerial images, their generated output from the model, 

and their corresponding manual vector map outline for epoch 18000 



International Journal of Engineering & Technology 1083 

 

 
Figure 7.7: Three aerial images, their generated output from the model, 

and their corresponding manual vector map outline for epoch 24999 

8. Performance metrics and outcomes 

The model efficiently generates vector road maps for a new aerial 

image. Fig 8.1 and 8.2 represent the aerial image and its corre-

sponding vector road map. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.1: Aerial Image 

 

 
 

Figure 8.2: Vector Road Map 

 
Two accuracy measures are used to estimate image-image pixel 

similarities for the generated vector road maps. Table 1, represents 

modelled accuracy in terms of SSIM metric, and inverse fakeness 

percentage, for 7 novel random aerial images and their corre-

sponding road map generated. 

 
SSIM is a traditional similarity metric used for comparing one 

image with another. On the other hand, the discriminator of the 

network generates a a fakeness percentage to qualify as a road 

map. The inverse of fakeness translates to accuracy of the generat-

ed image, with respect to its road map. This is the second metric 

used to measure the performance of the model. 

 
Table 1: Accuracy measures for the model over predicted aerial road maps 

from real time data. 

 
 

Analysis of the performance for seven random sampling from the 

real time image dataset, for the saved model indicates an average 

of 96 % as similarity percentage among the generated and manual-

ly outlined road maps. On the other hand, percentage of trueness, 

translated to accuracy states that an average of 95.8 % is the accu-

racy of the model 's fakeness identifying capability. 

 

Table 1 's data states that, the model has a positive implementation 

advantage of rendering no less than 93.7 % as similarity measure, 

thus proving that the bigger goal of a GAN to generate maps that 

are as similar as possible to the manual vector road map, proved to 

be successful.  

9. Conclusion and Future Enhancements 

The novel approach implemented surpassed the previous solutions 

in that, it reduced the possibility of blur images in entirety. The 

bigger goal proved to be a huge boon, in terms of generating clear 

as well as visibly similar images. 

 

However, apart from the quality of the image as such, image pro-

duction as a whole, provided generalization for varied applica-

tions. The model can be reused, and trained with different set of 

data, to extract varied edges and features. The model can also be 

turned inside out, to learn to generate an aerial image given a vec-

tor road map. Such generalizations increase its application list 

without much modifications required. 

 

As a result computational complexity is also reduced. The genera-

tive algorithm solved all the problems with a panacea-tic solution. 

Hence, the method can be regarded as an affordable user-friendly 

approach for commercializing road extraction. 

 

Future enhancements can include a post-processing step for 

smoothening the output vector maps. Although the model is gen-

eral in purpose, and accounts for any kind of aerial image, with an 

advanced softening method, the vector maps can be mastered for 

tailoring needs. 
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