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Abstract

Authors present sufficient conditions for the oscillation solutions of the generalized perturbed quasilinear difference equation
A (a(k=1)¢ + DA, vtk =20 + D) T AV(k=1)¢ + )]+ F(ke+§, v(ke+§)= GkE+, v(ke+),A,v(ke+ )

where 0 <y <1, k €[ 0,00 ). Examples are illustrates the importance of our results are also included.
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1. Introduction

Difference equations represent a captivating mathematical field,
has rich field of the applications in such diverse disciplines as
population dynamics, operations research, ecology, economics,
biology etc. For the background of difference equations and its
application in diverse fields with examples, see [1,13,20,27],
based on assumption Au(k)= u(k+1)— u(k), ke[ 0,00).
Though some authors [1],[19] have recommended the definition of
A as

A, uk)=u(k+¢)—uk), ¢ e(0,0), (iE)

no notable progress have been taken on this line. But in [14] the
authors took up the definition of A as given in (E), and given
many important results and applications. They labelled the opera-
tor A defined by (E) as A, and its inverse by A;* , many inter-
esting results in number theory were obtained. Qualitative proper-
ties like rotator, expanding, shrinking, spiral and web like were
established by extending theory of A, to complex function, for

the solutions of difference equations involving A, in [2-12,14-

18,21-26].
In the sequel, in this paper we consider the generalized perturbed
quasilinear difference equation

A, (alCk=2)0 + DA VCk=1)¢ + )7 A vk ~1)¢ + )

+F(ke+j,v(ke+]j)= G(ke+j,v(ke+])A, v(ki+]))
ke[0,00)

1)
where 0<y <1 , a(kf+j) is an eventually positive real
valued function, and A, is the generalized forward difference
operator defined as

AV(ke+j)=v(k +1)¢ +j)—v(ké+j).

By a solution of (1), we mean a nontrivial real valued function
v(ke+ j) satisfying (1) for k e[ 0,00) . A solution v(ké¢+ j)
is said to be oscillatory if it is neither eventually positive nor nega-

tive, and nonoscillatory otherwise.

2. Main Results

Throughout this paper we assume that there exist real valued func-

tions q(k¢+j), p(kf+j) and a function f: R—R such

that

(i). xf(x)>0 forall x=0 ;

@i). f(x)—f(y)=9g(xy)x-y) for x,y =0 , where g is

a nonnegative function; and

(i) F(ke+j, x.€+j )
f(xt+j)

G(kl+j,xt+j,yl+7])

f(xt+j)

The conditions used in the main results are listed as follows:

> q(ke+j),

< p(ke+j) for x,y =0 .

! =0
za“’((k -10e+j) @

> (a(ke+ )= p(ke+ )=, ©
> (ake+ 1) plke+j) <o, @

lim i {a(rjﬂ)i (q(s€+J)—p(s€+j))} =, (5

KHDCr=L<0 =r+l
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- du
w,J‘79W<ooforall 0>0 ©)

J‘w du
<
¢ fu)'’” u

Kk
liminf z (q(re+j)—p(re+j))=0 foralllarge k,, (7)

k—wo 2
r=kg

¢ du -0 du _
I°W<w’fo W<00 foriall >0, ®)

Theorem 2.1: Suppose (2) and (3) hold. The all solutions of (1)
are oscillatory.
Proof. Let v(k¢+ j) be a nonoscillatory solution of (1), say,

v(k¢+j)>0 for k>k, =1 . We shall consider only this case
because the proof for the case v(k¢+j)<0 for k>k, =1 is
similar. We begin with the identity

A a((k =12 + ) A VK =1 + )P AV((k=1)0+ )
‘ f(v(ke+j))

_ GO+ V(ke+ ) AF(v(ke+]))  Fke+j,v(ke+j))

B f(v(ke+j)) f(v(ke+ )

_a(ke+j) g(v(k+1)¢ + ), v(ke+j))A, vk +))?
f(v(ke+ ) )

A, (ke )17
f(v((k+1)! +1]))

which in view of (1)-(3) provides

A | 3K+ DAV -+ I A V(k-1)¢ +])
' f(v(ke+j))

<(p(klf+j)—a(ke+j)) (10)

k >k, . Summing (10) from (k, +1) to k gives

a(ke+j)1A, v(ke+ )™ A, v(ke+j)
f(v((k+1)¢ +j))

Ak )N, V(K E+ ) A V(K £+ )

- fOv((ko+1)0+17))

k

= >, (a(re+j)=p(re+j)). (1)

r=ky +1

By (3), the right side of (11) tends to —o as k —oo . This im-
plies that there exists an integer k >k, such that
A, v(ké+j)<0 for k=k, . Condition (3) also implies that
there exists an integer k, >k, such that

k

> (a(re+j)=p(re+j)=0, k=k, +1 (12)

r=k +1

Using (3) and summing (1) from (k, +1) to k, and then using
Abel’s transformation [1], we get

a(ke+j)|A, v(ke+j)I"" A, v(ke+j)

<a(k, C+j)A, vk, C+ )17 A, vk, 0+ )

k

- 2 f(vre+i)(aCre+j)=p(re+j))

s=ky +1

= a(k, 0+ ) 1A, vk £+ )"0 A, vk, £+ )

k

=f(v((k+1)¢ +§)) X (a(re+j)—p(re+j))

s=ky +1

Kk r
+ A,f(ré’ﬂ'){ > (Q(S€+j)—p(84+1))}
r:k2+1 s:k2+1
= a(k, + ) A, vk, L+ )7 A, vk, £+ )

k

—f(v((k+1)¢ +§)) >, (a(re+j)— p(re+jv)

r=ky +1
k

+ Z g(v((r+1) +j), v(re+jnA, v(rei+j)

r=k, +1

{ S (a(st+j)- p(sm»}

s=ky +1
<alk, 0+ j)|A, VK, + )7 A, vk, 0+ ), k=k, +1 (13)

where we have also used (12) in the last inequality. Since
A, v(ké+j)<o0 for k=k, , it follows from (13) that

a(kl+j)|A, v(ke+ ) "> alk, 0+ j)|A, vk, (+j)7

xA, vk, 0+, k2K, +1

. . . 1

AVKE+ ) <—alk, £+ D)7 A VK L+ )| —————,
(ke+ ) (ko £+ )7 (A, V(K £+ )| aki+ )" (14)

k>k, +1.
Summing (14) from (k, +1) to k provides

VI(k+1)l +j)< vk, +1)¢ +j)
£ 1

—alk C+ i) 1A V(K L+ )] D

_ 15
L ar e ©

By (2), the right side of (15) tends to —o as k — o . This con-
tradicts the assumption that v(k¢+ j ) is eventually positive.

Example 2.2: Consider the generalized difference equation

A (KC+T)A, V((k=1)0 + )" A, v((k =1)¢ +)
+V(kl+ j)b(ke+j,v(ké+j)+2" +27(2(ké+j)+2¢)]
=b(kl+j,v(ké+j))v(ke+j) (16)

where y>1 and b(ké+j,v(ke¢+j)) is any function of
k¢+j and v(k¢+j) . Clearly, (2) holds. By taking
f(v(ké+j)) = v(ke+j),wehave
F(k£+j,v(k€+j)):
f(v(ke+1j))
= q(ké+j),
G(kl+j, V(k[+]),-A, v(ki+])) = b(ke+ ] v(ke+])
f(v(ke+1j))
= p(kl+j)
and so (3) holds. Hence, by Theorem 1 all solutions of (16) are
oscillatory. One such solution is given by v(kZ+j)=(-1)".

bke+j, v(kC+j))+2 (kE+j)+0)

Theorem 2.3: Suppose (2) and (4)-(7) hold. Then all solutions of
(1) are oscillatory.
Proof. Suppose that v( k¢+ j) is a nonoscillatory solution of (1),

say, v(k¢+j)>0 for k>k, =1 .
Case 1. Suppose that A,v(k¢+j)=0 for k=k, >k, .Wesum
(10) from (k, +1) to k to get
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catke+j)(A, v(ke+j))

T f(v((k+1) )
_atkl +J)(A, vk £+ )Y
T f(v((k +1) )

CS (a(res i) - p(res ),
r:k1+1

an

In view of (3), it follow from (11) that

alk (+ DAV ))& N _
- fOv((k, +1)0 +) > (qre+j)-pre+j))

r=k +1
and therefore for k >k,

a(kl +j)(A, v(ke+j))
F(v((K+1)C +]))

S (q(re+ ) - p(re+ )<

r=k+1

{a(kﬂ-l)rél(q(r“—”_ p(r€+J))}

A, v(ki+j)
TOf(v((k+1)2 + )Y

(18)

Summing (18) fromk, to k , we get

Z{wms,zﬂ(q(s“”‘ p(sm»}

k A, v(rl+j)
<X .
i F(v((r+1)2 +j))
v(k+1) du
sj —
vig)  f(u)

(19)

By (5), the left side of (19) tends to oo as k — oo . However, the
right side of (19) is finite by (6).
Case 2. Suppose that A, v(k¢+ j) is oscillatory. Hence, there

exists a real valued function (k,¢ +j)-—>o0 such that
A,V (k,¢+j)<0 . We choose k so large that (7) holds. Then,
summing (10) from (k, +1) to k followed by taking limit
supremum provides

limsup a(ke+j)IA, v(ke+j)[" A, v(ki+])
ko f(v((k+1)0 +]))

< a(kné +J)|A¢ V(kné "‘j)lyi1 A( V(kné +J)

- f(v(k, +1) +))

+limsup| - Zk: (a(re+j)—p(re+j)) (<0

koo | ks

(20)

where we have used (7) in the last inequality. It follows from (20)
that Ikim A, v(k¢+j)<0 . This contradicts the assumption that

A,v(ke¢+ j) oscillates.

Case 3. Suppose that A, v(k¢+j)<O0 for k>k =k, .We
note that condition (7) implies the existence of an integer k, >k;

such that (12) holds. The rest of the proof is similar to that of The-
orem 1.

Corollary 2.4: Suppose (2), (4), (5) and (7) hold. Then, al bound-
ed solutions of (1) are oscillatory.

Proof. The condition (6) is used only in Case 1 of the proof of
Theorem 3iSuppose v( kZ+ j) is a bounded nonoscillatory solu-

tion of (1). In Case 1 we have v(ké+j)>0 and
A,v(ké+j)=0 for k>k . Hence, in view of (2), we have
f(v(ke+j))=f(v(ke+j)) for k=k . It follows from (19)

that
;ia(r“”szﬂ(q(%ﬂ)— D(SZ+J))}
k A, v(rl+j)
S LT+ )
1
<—f(v(k€+j))1” ZA v(rli+j)

(v((k+l)€ +j)- v(r€+1))

f(v(k e+j)Y” (1)

By (5), the left side of (21) tends to « as k —>oo whereas the
right side is finite.

Example 2.5: Consider the generalized difference equation

—[A, v((k —1)0 + )17 A, v((k-1)¢ +J’)]

AL
[kzé +]

+v(ki+j)

b(ke+j,v(ki+j))

o (k20 + j)+((2k +1)0 +j)+1
K20+ j)(k+1)2%¢ +j)

= b(ke+j, v(ke+j)v(ke+j), k>1

(22)

where >0 and b(k¢+ j, v(ké+j)) is any function of k

and v(ke+j) Clearly, ) holds. Tak-
ing f(v(ke+j))=v(ké+j),gives
Fke +j, v(kC+J))_
FO(ki+]) b(ke+j,v(ki+j))
o (220 + j)+((2k +1)0 +j)+1 (ks )

K2 +i)(k+1)* 2 +])
and
G(kl+j,v(ke+j),A, v(kf+j))_ b(kf+j, v(ke+]))
f(v(keé+j))
= p(ki+j)
and hence (7) is satisfied. Next, we find that

i L o s @KP 0+ )+ ((@k+1) 0+ j)+1
Z;,(Q(k“r]) p(ki+j)) =2 (K7 (K1)l 1)

, 1 1
=27 + <
Z{(kzé i) (k)P e +j)} *
and so (4) holds. To see that (5) satisfied, we note that

_ 22[(#4 i) i ((2s )€+j)+((25+1)€+j)+1}

=t Sho ST+ )(s+1) e+ )

I N 1
22 {“ ! “)[s;l(s%j)*s;l «s+1)ze+j)ﬂ
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222[“ C+j) Y]

Uy
r=kq sr+1(S€+J):|

v

Zi‘[(r €+J)i1_2}

r=kq s=r+l (( 2[')@ + J )

. © (( re+j )j —
r=ky

Hence, the conclusion of Corollary 4 follows and all bounded
solutions of (22) are oscillatory. One such solution is given by

v(ke+j)=(-1)*.

M

Remark 2.6: In equation (22) if we let 0< y<1 , then
f(v(keé+j))= v(ke+j) also satisfies (6). Hence, it follows

from Theorem 2.2 that all solutions of (22) are oscillatory when
0< y<1.
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