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Abstract

By means of Riccati transformation techniques, authors establish some new oscillation criteria for generalized second order nonlinear
a -difference equation A, ,(p(kC+j)(A,,,(u(ké+j))) )+ a(ké+j) U’ ((k—c )l +j)=0, when 0 <pB <1 and y are

quotient of odd positive integers.
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1. Introduction

Difference equations represent a fascinating mathematical area on
its own as well as a rich field of the applications in such diverse
disciplines. For general background as difference equations with
many examples from diverse fields, one can refer to [1].

The theory of difference equations is based on the operator A
defined as Au(k)=u(k+1)—u(k), keN ={0,1,2,--- }.
Even though some authors [1] have suggested the definition of A
as
Au(k)=u(k+¢)—uk), ¢e(0,0), (E)
no significant progress took place on this line. Jerzy Popenda,
etal., [16] defined A, as A, u(k)= u(k+1)- au(k). Au-
thors in [14], considering the operator A defined by (E) as A,
many interesting results in number theory were obtained [14]. In
[15], they generalized the definition of A, by A, defined as
A yuk)=u(k +¢)— au(k) for the real valued function

u(k) and ¢e(0,0) and also obtained the solutions of certain
types of generalized « -difference equations.

In recent years, the asymptotic behaviour of second order differ-
ence equations has been the subject of investigations by many
authors [2-12,17-19,21-22].

In this paper, we will be concerned with a class of generalized
second order sublinear delay difference equations of the form

ALy (PCKE+ J)( AL (u(ke +1))7)

. i )
+qke +j)u?((k —o ) +j)=0,

where A denotes the forward difference operator for any real

u(kf+j) , ke(0o0), 0e(0,0),

a(l)

valued function

j= k—[t—}é, y is quotient of odd positive integers,

0 <pB <1 is quotient of odd positive integers, o is a fixed
nonnegative integer, p(k¢+ j)>0, and q(k¢+j)=>0 are real
valued functions, and for some k, >0,

] = oo, (2)

By a solution of (1) we mean a nontrivial real valued function
u(k) defined for k>-o, and satisfies equation (1) for

k € (0,00). Clearly, if

& 1
%[p(kéﬂ')

u(kl+j)=A(kl+j)for ke[-o,0] 3)

are given, then equation (1) has a unique solution satisfying the
initial condition (3).

2. Main Results

Theorem 1 Assume that (2) holds. Furthermore, assume that
there exist a positive real valued functions o(k¢+ j) such that

for every >1 and positive number M.

limsupd [p(re+j)a(re+j)— a(p((r-o)t+j)) *

k> Y=o

(4)

A (r-o+1)0+ )P (A, p(re+ )
4BM) D7 p(re+ )

Then every solution of equation (1) oscillates.
Proof. Suppose to the contrary that u(k¢+ j) is an eventually

nonoscillatory solution of (1) such that u((k—o)¢+j)>0 for
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all k>k, >0. We shall consider only this case, since the substi-
tution v(k¢+ j)=—u(k¢+ j) transforms equation (1) into an
equation of the same form. From equation (1) we have for k >k,

Ay (PCKE+ T YAy uCKE+])))

. . (5)
=—q(kl+j)u’ (k-oc) +j)<0,

andso p(ke+ j)(A,,,u(ké+j)) isan eventually nonincreas-

ing sequence. We first show that
P(KE+j)(Ayyu(kE+])) =20 for k>k,. In fact, if there
exists an real k, =k, such that

P(K, L+ XA, u(k +j)) = c<0, then (5) implies that
P(Ke+ YA, u(ké+])) <c for k>k  that is
Auy UCkC+ )< (el p(ke+))" henceas k— oo
u(ké+j)< au(k l+j)

K-

+rZ[(a—l)u(r€+j)+(p(r;}+j)] y}—)—oo (©)

which contradicts the fact that u(ke¢+j)>0 for k>k,, then
P(Ke+ ] )A,,u(ke+]))y =0.
A%, u(ke+j)<0. If not there exists k >k, such that
A, u(ki+j)>0 for k>k and this implies that
Ay U(K+1)+j)>A, u(ke+j), so  that
Ay PCKE+ )20, pI(K+1)0+ ] )(A, ) u(k+1)0+ )Y
> pk+1)0+ )(A, ) uCke+ )Y

> p(ke+j)Au,,u(ke+j)) and this contradicts the fact that

N

Also we claim that

since

a(l

pP(Ke+j)A,,,u(ké+])) is nonincreasing sequence, then

A%, u(kl+j)<0, and therefore we have for k >k,
u(kf+j)>0,A,,,u(kl+j)and A%, u(ke+j)<O. )
Define the sequence z(k¢+ j) by

1 ke ) POKE )@, uCkE+ )

2(kl+j)=«a (ko) 1)

®)

then z(k¢+j)>0, and

aHp( KC+j) A (p(KE+])( Ay u(kE+]))")

A, z(kl+j)=
w2 KE 1) W (K-0) +])

o gk i)

+P((K+1)0+ J)(A ) U((K+1) 0+ §)A, () W (k—0) +])

9)

From (1) and (9), we have

Az(ke+])=—pke+ j)ake+ j )+Arﬂ(k5+ $)z((k+1) + )

p((k+1)f+7])

_OCHP( KC+ ) p((k+1)2+j)(A,,,ul(k+1)+j))
u ((k—o+1)+1j) (10)
AU((k=oc)l+1])
U (k=a)+])

From (5) and (7), we get

p((k—c )t +])A, u((k—0a) l+]))
Z p((k+1)¢ +j)(A, u((k+1)¢ +j))
and u((k+1 —c)/l+j)>u((k—c)l+j) (11)

and then from (10) and (11), we have

Ay t(ke+ j)<—p(ke+j)a(ke+j)
LA p(kes ) 2((k+1)e + )
p((k+1)0+ j)
_ p(kE+J)p((K+1)E + ] )(Ag) uCk+1)E +))
(v (k-o+1)t +)))

12)

XA, )aHfl W (k=c) +])

Now, by using the inequality in [2], for all u= v>0 and for
0<pB <1, v —v/ > pu’t(u—-v). Then, we have

A )aH_l W (k=) +])

a(f

k

=p(u((k—oc+1) L+ j)*t A aH_l ul(k—o )t +j).(13)
Substitute from (13) in (12), we have

Ayyz(kl+j)s—p(ke+j)a(ke+j)
+A, p(ki+j)z((k+1)i+j)
p((k+1)l+j)
| p(ke+j)p((k+1)0 +j) p(u((k+1 —c ) +j))°™
(v (k-0 +1)¢ +]))
XA iy UK = )0+ )(Ay u((k+1)C +j)) (14)

From (11) and (14), we have

Ayy2(ke+j)<—p(ki+j)a(ke+j)
LA, p(ke+ i) 2((k+2)0 + )
p((k+1)0 + )
~ Bp(ke+§)(p(k +1)0 + )M p(tk +1)¢ + )
(p((k= ) +iN" (u((k- o+ 1) +j))"”
X(Aa(,) u((k+1)¢ +j)y
(u/((k-o+1)t +]))
Aa(,)z(k(+j)S—p(kf+j)q(k£+j)
+A, p(ki+j)z((k+1)e+j)
p(k+1)0 +j)
_[ Bo(ke+ )Pk +1)0+ ] )Y (p((k+1)+ j))?
(p(tk +2)0+ j)2(p((k — o)+ )" (u(tk — o +1) 0+ j))
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(p((K+1)C + DA, ulk +1)¢ + ) (15)
(U (k=0 +1)0+ 1)) (A, U k+1) + )

From (7), we conclude that

u(ke+j)<auk, €+ )+ A, ukel + K=Ky )+ j),k =k,

and consequently there exists a k, >k, and appropriate constant
n=1 such that u(ké+j)< n(ke¢+j) for k=k and this
implies that u((k —ov+1v)v+ j)< n((k —o +1)¢ +j) for
k>k,=k +oc -1 and, hence

1 1
(u((k=o +1)¢ +j )" - (n((k=o +1)0 +j )"

(16)

Since p(kl+ )AL,
function, there exists a k, >

u(k¢+j)) is a positive and increasing
k, sufficiently large such that

POKE+ YAy U(KE+])) Sl\l/li for some positive constant

M and k>=k,, and hence by (5) we have

PU(k+1) +j)A,, ulk +1)¢ +j)) sl\lﬂ—, so that

a(l)

! (r-Dly
U((k+ 1)(+J))71—(Mp((k+1)€ +j))

17
(A 40

Then from (8), (15), (16) and (17) we have

Ay 2(KE+ )<= p(kE+])a(ke+])
LA p(KE+ ) 2(k+ D)+ )
p(k+1) +])
Bo(ke+ MU (7((k+1)0+))°
(p(k+1)e+ () (p((k=0)+ )7 ' (k=0 +1)+ )

1/;()

ApyZ(KC+j)<—p(ke+])a(ke+j)+

k=0 )+ i) P (k=0 +1)L+ )7 (A, plke +]))
4 p(kE+ )

- BT p(ke+ ) z((k+1)E + )

p(k +1)¢ + W n(k —o +1)¢ + )7 p(k —a ) +])
Jﬁﬁ«k—aal)e+n”%p«k—aw+j»wA4xu+j)T
2 B p(ke+ )

<[ p(ke+j)acke+j)

Pk =)+ )N P (K=o +1) 0+ ) (A, p(kE+ )
4 M) p(ke+ )

2lotreviya(re+j)

(p(r =)+ N (r o +1) 0+ )7 (Ap(re+ 1) | _
4B o1+ ) -
for all large k, and this is contrary to (4). The proof is complete.

Theorem 2 Assume that (2) holds. Let p(k¢+ j) be areal val-
ued function. Furthermore, we assume that there exists a double

function H(m,k¢ +j);m >k >0 suchthat (i) H(m,m)=0
for m>0, (i) H(m, k¢+j)>0 for m> k¢+j = 0,

(i) Ay HMKE+ j) = H(m,(k +1){ + j)—aH(mk(+ j) <0
for m> ké+j >0. If

m-1

limsup O)Z[H(m,k€+j)p(k€+j)q(k€+j)

mow  H (m ,

_(p((k +1)¢ +j))?
pkl +j)

x(h(m,kz +j)-

W,:H(m,km)”:

plk+1)0 +)

Ay H(m kE + )

JH(m k¢ +j)
Bo(ki+jym D

(p((k=c )+ N ™" (k- o+ D)l +j)

where h(m k¢ +j)=

p(kl+])=

Then every solution of equation (1) oscillates.
Proof. We proceed as in Theorem 1, we assume that equation (1)
has a nonoscillatory solution, say u((k—o )¢ +j)>0 for all

k> k,. From (18) we have for k> k,,

pKe +j)ake +j)<-A,,,z(ke +])

A, p(ki+j)z((k+1)¢ +j) p(ki+j)
p((k+1)t +]) C(p((k+1)e+ )

iH (m,ke+j) p(ke+j)ake +j)<HmMKL+ j)z(ke+ j)

WP (k+70).

-1
+ D 2k +1)0 +j)A,, , H(m, ké+j)
k=n
m-1

+> H(m k¢ F A pke +j)z(k +1)¢ +j)

p((k+1)C +])
3 H(m ke +j) pke +j)z> ((k +1)¢ +j)
= (p((k+1)C +]))°
= H(m, k€+j)z(k€+j)—n§[z((k +1) +j)

p(k+1) +])
2JH(m, ke+j) p(ki+])

x( h(m , k¢ + j)H(mke+ ) -

$(p(k +1)0 + )
4kz p(kE+])

(h(m ke + ) p(ke +j)HmM K + ] J

p((k+1)C +])

k=

m—

+

A, p(ke + J)H (m, ke + j)ﬂ2
p((k+1)C +j)

|msup Z[H(m ke +j) pkke +j)ake +j)

( 0)&
_(p(k +1)0 +j))°
p(kL+])
o h(m, ke+j)- A, p(k[+]),/H(m ki+j)
Pk +1)0 + )

which contradicts to our assumption. Hence the proof.

References

[1] Agarwal RP, Difference Equations and Inequalities, Marcel

Dekker, New York (2000).



International Journal of Engineering & Technology 1049

[2] Benevatho Jaison A, Khadar Babu Sk (2016), Oscillation for gener-
alized first order nonlinear difference equations. Global Journal of
Pure and Applied Mathematics 12(1), 51-54.

[3] Benevatho Jaison A, Khadar Babu Sk (2016), Kamenev-type oscil-
lation criteria for second order generalized delay difference equa-
tions. International Journal of Control Theory and Applications
9(28), 463-469.

[4] Benevatho Jaison A, Khadar Babu Sk (2016), Oscillation for gener-
alized first order nonlinear a-difference equations. International
Journal of Pure and Applied Mathematics 109(7), 67-74.

[5] Benevatho Jaison A, Khadar Babu Sk (2017), Oscillation theorems
for generalized second-order nonlinear delay difference equations.
International Journal of Pure and Applied Mathematics 113(9), 84-
92.

[6] Benevatho Jaison A, Khadar Babu Sk (2017), Oscillation theorems
for generalized second kind nonlinear delay difference equations.
International Journal of Pure and Applied Mathematics 115(9), 25-
36.

[7] Benevatho Jaison A, Khadar Babu Sk (2017), Oscillatory behavior
of generalized nonlinear difference equations. Global Journal of
Pure and Applied Mathematics 13(1), 205-209.

[8] Benevatho Jaison A, Khadar Babu Sk (2017), Oscillatory behavior
of generalized Nonlinear difference equations. Global Journal of
Pure and Applied Mathematics 13(2), 415-423.

[9] Benevatho Jaison A, Khadar Babu Sk (2018), Kamenev-type oscil-
lation criteria for generalized sublinear delay difference equations.
International Journal of Pure and Applied Mathematics 118(10),
135-145.

[10] Benevatho Jaison A, Khadar Babu Sk (2018), Oscillation for gener-
alized second kind nonlinear delay a-difference equations. Interna-
tional Journal of Pure and Applied Mathematics 118(23), 507-515.

[11] Chandrasekar V, Srimanju V (2016), Oscillation for generalized
second order sublinear neutral delay alpha difference equations.
Global Journal of Pure and Applied Mathematics 12(1), 55-59.

[12] Chandrasekar V, Srimanju V (2016), Qualitative properties of dis-
crete version of generalized kneser’s and arzela-ascoli’s theorems.
International Journal of Control Theory and Applications 9(28),
549-554.

[13] Hardy GH, Littlewood JE, Polya G, Inequalities, 2nd edn.,
Cambridge University Press, Cambridge (1952).

[14] Maria Susai Manuel M, Britto Antony Xavier G, Thandapani E
(2006), Theory of generalized difference operator and its
applications. Far East Journal of Mathematical Science 20(2), 163-
171.

[15] Maria Susai Manuel M, Chandrasekar V, Britto Antony Xavier G
(2011), Solutions and applications of certain class of « -difference
equations. International Journal of Applied Mathematics 4(6), 943-
954.

[16] Popenda J, Szmanda B (1984), On the oscillation of solutions of
certain difference equations. Demonstratio Mathematica 14(1),
153-164.

[17] Srimanju V, Khadar Babu Sk (2017), Oscillatory criteria for gener-
alized second-order quasilinear neutral delay difference equations.
International Journal of Pure and Applied Mathematics 113(9), 75-
83.

[18] Srimanju V, Khadar Babu Sk (2017), Oscillation of generalized
quasilinear difference equations. International Journal of Pure and
Applied Mathematics 115(9), 37-45.

[19] Srimanju V, Khadar Babu Sk (2017), Oscillation criteria for gener-
alized quasi-linear difference equations. Global Journal of Pure
and Applied Mathematics 13(1), 210-216.

[20] Srimanju V, Khadar Babu Sk (2017), Oscillation criteria for gener-
alized second kind quasi-linear neutral a-difference equations.
Global Journal of Pure and Applied Mathematics 13(2), 544-551.

[21] Srimanju V, Khadar Babu Sk (2018), Oscillatory properties of
third-order quasilinear generalized difference equations. Interna-
tional Journal of Pure and Applied Mathematics 118(10), 155-165.

[22] Srimanju V, Khadar Babu Sk (2018), Oscillation of generalized
quasilinear a-difference equations. International Journal of Pure
and Applied Mathematics 118(23), 497-505.



