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Abstract 
 

Segmentation is the process of extracting structures within the images. The purpose is to simplify the representation of the image into 

something meaningful and easier to analyse.  A magnetic resonance (MR) brain image can be represented as three main tissues, e.g. cer-

ebrospinal fluid (CSF), grey matter and white matter. Although various segmentation methods have been developed, such images are 

generally segmented by modelling the intensity histogram by using a Gaussian Mixture Model (GMM). However, the standard use of 1D 

histogram sometimes fails to find the mean for Gaussians. We hence solved this by including gradient information in the 2D intensity 

and intensity gradient histogram. We applied our methods on real data of 2D MR brain images. We then compared the methods with the 

previous published method of Petrovic et al. on their dataset, as well as on our larger datasets extracted from the same database of 3D 

MR brain mages, where the ground-truth annotations are available. This shows that our method performs better than the previous method. 
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1. Introduction 

Segmentation is the process of identifying structures in the imag-

es. The purpose is to simplify the representation of the image into 

something meaningful and easier to analyze [Shapiro and Stock-

man, 2001]. One simple segmentation method uses a closed con-

tour, which divides the image region into inside and outside [Chan 

and Vese, 2001]. The initial standard ACM on edges/lines was 

introduced by Kass et al. [Kass et al., 1988]. 

Unal and Slabaugh used a region-based, pairwise Active Contour 

approach [Unal G and Slabaugh, 2005]. This allows segmentation 

of one image to help guide the segmentation of another, and pro-

ceeds without an initial segmentation, so that the segmenting con-

tour evolves in both images. However, the registration and result-

ant image correspondence is only defined within a narrow band 

surrounding each segmenting contour/surface. 

 According to Ashburner and Friston [Ashburner and Friston, 

2005], segmentation of brain images generally uses either a tissue 

classification approach or registration to a template. They combine 

both processes, and use an initial tissue probability atlas in order 

to perform registration, intensity correction, and segmentation of 

brain images. However, this was only shown on BrainWeb simu-

lated images and used 'anecdotal validation.  

Furthermore, in [Pohl et al., 2006] they combined atlas registration 

with segmentation of MR brain images to produce segmentations 

of brain tissues, as well as their substructures. The method uses 

labelmaps information and known intensity histograms to create 

an artificial intensity reference to better fit the training image. 

However, the atlas needs manual and semi-automatic segmenta-

tions of up to 80 different brains, and the method was only applied 

to 22 brain images.  

This survey of segmentation methods shows that the earlier edge-

based methods of segmentation [Kass et al., 1988], tended to be 

replaced by region-based methods, and most methods are unsu-

pervised. For unsupervised segmentation, many methods require 

registration to an atlas [Unal G and Slabaugh, 2005: Ashburner 

and Friston, 2005: Pohl et al., 2006: Chegini and Ghassemian, 

2011: Ahmadvand and Kabiri, 2014]. However, if prior 

knowledge in terms of an atlas is not available, then a method that 

does not require training data for segmentation is necessary 

If we consider the classes of segmentation algorithm described in 

[Pham et al., 2000], then in terms of automated methods that do 

not require training, the only candidate is clustering-type methods. 

For dense data, clustering becomes in effect a Gaussian mixture 

model, hence we come to the Gaussian mixture model methods as 

used by Petrovic et al. [Petrovi¢ et al., 2007]. These methods are 

more sophisticated than the simple Gaussian mixture models, 

since they also consider partial-voluming effects. We used our 

methods to segment MR brain images discussed in the following 

section. 

2. Segmentation Methods 

Given a slice of brain image, we model the intensity histogram as 

a set of Gaussians (plus possible partial-volume effects). We as-

sume that the brain image has 3 main tissues (CSF, grey matter 

and white matter), and mixtures between two pure tissues. In [Pe-

trovi¢ et al., 2007], the 1D GMM fitting procedure used a Greedy 

algorithm to find three main peaks. These peaks give the means 

for the three Gaussians. However, when the GMM and fitting 

methods were applied to the larger dataset, the model failed to fit 

to many images (see e.g., Figure 1(a), where the model (black 

line) failed to locate the pure grey matter Gaussian). 
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(A) 1D histogram method. 

 

 

 
(B) 2D histogram method. 

 
Figure 1. The standard intensity 1D histogram (Left) and the new intensi-

ty-gradient 2D histogram (Right). (a) The red line is the image histogram, 
and the black line is the failed GMM fit, which consists of a sum over 3 

pure tissue Gaussians, plus 3 mixtures (coloured lines); (b) The yellow/red 

regions at the feet of the yellow arcs give the new estimates of the pure-
tissue means (shown by the vertical grey lines and the black circles). The 

boxes are the excluded zones. 

 

Therefore, we need a more robust GMM fitting procedure than the 

simple 1D one. We obtain this by using the 2D intensity value-

and-gradient histogram (see Figure 1(b)). The gradient, which 

describes intensity changes within images, is highest at the bound-

ary between tissues. Hence, it can separate partial-volume bounda-

ry pixels from the pure-tissue pixels (see [Thacker et al., 2015: 

Williamson et al., 2002] for further details). As can be seen in 

Figure 1(b), the pure tissue peaks are located at the feet of the 

yellow arcs that correspond to partial-volume mixtures of tissues 

(for similar arcs, see Figure 2 in [Williamson et al., 2002] and 

Figure 5 in [Thacker et al., 2015]).  

The intensity values for these peaks are used as the mean positions 

for the three Gaussians which are kept fixed during the optimiza-

tion of the fit of the 1D histogram. We optimize all the other pa-

rameters such as variance and weights by using Sum of Squared 

Differences. It was found that this procedure works on all images 

in the larger dataset without fail, and gives a good fit for all the 1D 

histograms. Having a robust GMM fitting procedure, we then use 

the model to create an intensity-to-fraction-values mapping. This 

gives fraction images discussed in the following section.  

3. Fraction Images 

The intensity distribution of each tissue is then used to estimate 

the tissue fraction in each pixel. Between the two pure-tissue 

means, this computes a fraction value  thus: 

 

 

Alternatively, as the value of  at a particular intensity  can be 

chosen to maximize the mixture-Gaussian probability  

over the whole range of  [Petrovi¢ et al., 2007]: 

 

 
 

With three tissues, and with the three means for the pure tissue 

Gaussians, we first compute the following functions: 

 

 
 

where  is the intensity, and  are the three 

ordered pure-tissue mean intensities for CSF, grey matter and 

white matter. The three tissue fractions are then given by: 

 

 

 
 

This gives a continuous piecewise-linear mapping which can pre-

serve the pure tissue pixels (see e.g. a resultant fraction image 

from the continuous piecewise-linear mapping, bottom row in 

Figure 2). 

 
Figure 2. Tissue fractions of a single image given by Petrovic's maximum 

responsibility method (1) (Top), and the linear mapping (3) (Bottom), for 
(Left to Right) CSF, grey matter and white matter. 

 

Evaluation Segmentation Methods 

We have ground-truth manual annotations (grouped label images) 

available with our datasets. We also have tissue fraction images 

for each image across the sets from the segmentation. This allows 

us to perform evaluation of the segmentation methods by using 

Tanimoto overlap values [Crum et al., 2006].This measures the 

amount of overlap between grouped-label images   (see e.g. Figure 

3) and tissue fraction images   (see e.g. Figure 2), with the calcula-

tion for image   and tissue   is as follows, 

Where   and   run over all pixels in the image. 

 
Figure 3. Left to right three main ground-truth labels; white matter, grey 
matter and CSF from the 37-dataset (Top) and 52-dataset (Bottom), re-

spectively. Those are for different slices of MR brain images. 

 

The fraction images from the 2D histogram method are then com-

pared to those from the 1D histogram method [Petrovi¢ et al., 
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2007], by using Tanimoto overlap values with ground-truth [Crum 

et al., 2006] of each image on the 37-dataset. 
 

Table 1. Means and standard deviations of Tanimoto value distributions 

by using the 1D and 2D methods on the 37-dataset. 

Tissues 
1D 2D 

Mean Std. Mean Std. 

White matter 0.66 0.08 0.68 0.08 

Grey matter 0.38 0.13 0.48 0.06 

CSF 0.83 0.04 0.84 0.03 

This table shows the 2D method has higher mean values than the 

1D method for all tissue fractions, as well as smaller standard 

deviation for grey matter and CSF (see e.g. a resultant fraction 

image from 2D method, bottom row in Figure 2). The same results 

are also observed on the other datasets,  

4. Conclusions and Future Work 

Including gradient information in the 2D histogram, shows two 

strong arches, with three feet which correspond to the three means 

of the pure tissue Gaussians (see Figure 1(b), and see also in 

[Thacker et al., 2015: Williamson et al., 2002]). This produces a 

robust model fit which can fit histograms of all the images in the 

set including the ones where Petrovic's method fails. The model 

and means are then used to create mappings for segmentation. 

Table 1 shows the 2D method has higher mean values than the 1D 

method for all tissue fractions, as well as smaller standard devia-

tion for grey matter and CSF. This shows 2D method has better 

fraction images than the 1D method. This result also applies for 

the other larger datasets. 

With better segmentation of each and every image, we can then 

use tissue fraction images as parts of registration stage. This sup-

ports our aim of integrating segmentation and registration to im-

prove the results. 
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