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Abstract 
 

In this article, a new computational approach is proposed to estimate the Weibull’s distribution parameters. The method is dependent on 

the Maximum Likelihood (MLM) using the even and odd classes of wind speed’s distribution. This new approach is referred to either as 

Maximum Likelihood with Odd Bins time series Method (MLOBM) or Maximum Likelihood with Even Bins time series Method 

(MLEBM). It comprises the data size reduction, which in turns may lead to a fast processing time. This method was evaluated in a com-

parative analysis of MLOBM and MLEBM against the proposed theoretical model. The obtained results on the mean wind speed, standard 

deviation, and power density on monthly and annual scales for different geographical locations may indicate that the MLOBM or MLEBM 

may give a better estimate of the Weibull parameters with a low error. 
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1. Introduction 

Renewable energy sources such as wind and solar are naturally en-

vironmental clean; and can provide a sustainable solution to the 

world energy demands [1]. The electrical energy from wind is gen-

erated from the kinetic energy of the wind due to the wind speed 

that is a random variable. The knowledge of wind’s distribution is 

critical for many applications of wind energy [2-5]. Various statis-

tical distribution models, including the log-normal model, bivariate 

Gaussian distribution, Rayleigh distribution were used in the litera-

ture to characterize the probability distribution of the mean wind 

speed [6-8]. However, Weibull distribution model is the most 

widely used and designated as appropriate in representing the sta-

tistical properties of wind [9, 10]. Weibull distribution, a particular 

case of the generalized gamma distribution law, is characterized by 

the shape parameter K and the scale parameter C. The two Weibull 

parameters help to determine wind characteristics and wind power 

potential. Detailed knowledge of wind characteristics and distribu-

tion is crucial to selecting the optimal wind energy conversion sys-

tem that maximizes energy output and minimizes electricity gener-

ation costs [11]. Thus the correct estimation of parameters (K and 

C) is very important in evaluating the wind power density of a pro-

spective wind farm location and assessing the economic viability of 

a wind project [12]. Several methods have been proposed to esti-

mate the Weibull parameters namely the graphical method, the 

Maximum Likelihood Method (MLM), the method of moments 

(MOM), the empirical methods (EM), the modified maximum like-

lihood method (MMLM), the equivalent energy method (EEM) and 

the energy pattern factor method (EPFM) [6], [13-24]. 

Akdag and Dinler [14] have compared the performance of the en-

ergy’s pattern factor method with some other methods such as 

graphical method and Maximum Likelihood Method (MLM) based 

on measured wind data of different locations in Turkey. Their re-

sults indicated that the energy’s pattern factor method is more suit-

able in comparing the mean wind speed and wind power. Jowder et 

al., [15] used graphical and empirical methods to determine the 

Weibull parameters using the wind speed distribution, mean wind 

speed and wind power in kingdom of Bahrain at three heights of 10, 

30 and 60 m. It was found that the empirical method was more ef-

ficient. Bonfils Safari in his study [6], has compared the least square 

and maximum likelihood methods for the determination of the best 

method in estimation of the Weibull’s parameters. The results 

showed that the maximum likelihood method (MLM) outperformed 

the least square method. Chang [16] compared the performance of 

six different methods by computing the shape and scale parameters 

for wind speed’s distribution. The probability density and cumula-

tive distribution functions were compared against the measured 

data. According to the attained results, the maximum likelihood 

method (MLM) have indicated that the modified maximum likeli-

hood method achieved the highest performances while the graph-

ical methods had the lowest performance. Rocha et al. [17] evalu-

ated the performance of seven different methods for the assessment 

of the effectiveness the Weibull’s distribution parameters, using 

some wind speed data collected in Camocim and Paracuru cities, 

State of Ceará, in the northeast region of Brazil. The results showed 

that: 

i) The equivalent energy method is an effective method to de-

termine the parameters (K and C).  

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET


6632 International Journal of Engineering & Technology 

 
ii) The graphical and energy pattern factor methods are less ef-

fective to adjust distribution of wind speeds. 

iii) The numerical iterative methods such as Maximum Likeli-

hood Method (MLM) and the method of modified maximum 

likelihood are recommended where better accuracy is de-

sired.  

In [18], Ahmed et al., evaluated the performance of four parameter 

estimation methods of Weibull function for modeling monthly wind 

speed distribution in Halabja, Pakistan. The results showed that 

more accuracy can be achieved by empirical method. Along the 

same lines, Azad et al. [19] used the seven methods applied by Ro-

cha et al. [17] to estimate Weibull parameters and used six statistical 

tools to rank the methods precisely. They found that MOM and 

MLM are the most efficient methods for estimating parameters of 

Weibull distribution. Arslan et al. [20] compared MOM, ML and 

the LMOM (L-moment method) for estimation of wind speed pa-

rameters relevant to Weibull distribution. They also found that 

when the sample size is greater than 100, MLM is preferable in 

comparison to other methods for the estimation of shape parameter 

in terms of the MSE (mean square error) criteria. George [21] com-

pared the performance of five methods to calculate the shape and 

scale parameters of Weibull function for determining the wind 

speed distribution. The results indicated that the maximum likeli-

hood method (MLM) outperforms other methods in terms of repre-

senting the distribution of wind speed. Kidmo et al., [22] assessed 

the ability of six methods to calculate Weibull parameters for rep-

resenting the distribution of wind speed in Garoua, Nigeria. Their 

results demonstrated that the wind energy’s pattern factor method 

had more suitability over other examined methods. Moreover, the 

graphical method may not be adequate in determining the wind 

speed’s distribution. Ilhan Usta [23] proposed an innovative esti-

mation method regarding Weibull parameters for wind energy ap-

plications. This innovative method, namely the probability 

weighted moments based on the power (PWMBP) density method 

is compared to six other commonly-used methods such as the max-

imum likelihood (MLM), modified maximum likelihood (MMLM), 

graphical, moment, power density and probability weighted mo-

ments methods for actual wind data, based on different time periods 

and regions according to various goodness of fit criteria. The ob-

tained results have indicated that PWMBP, MLM, EPM and MOM 

may provide more accurate and efficient estimation than other 

methods in the estimation of the parameters of Weibull distribution. 

Mohammadi et al., [24] evaluated the effectiveness of six numerical 

methods to determine the shape (k) and scale (c) parameters of 

Weibull distribution functions for calculating the wind power den-

sity in four stations distributed in Alberta province of Canada. The 

selected methods are graphical method (GP), empirical method of 

Justus (EMJ), empirical method of Lysen (EML), energy’s pattern 

factor method (EPFM), maximum likelihood method (MLM) and 

modified maximum likelihood method (MMLM). The results indi-

cate that the precision of computed wind power density values 

change when different parameters estimation methods are used to 

determine the K and C parameters. EMJ, EML, EPFM and MLM 

present very favorable efficiency while the GP method shows weak 

ability for all stations. 

From the above survey, it is clear that the rich existing body of re-

search agrees that the choice of the parameter estimation method is 

critical in achieving a trustworthy evaluation of wind energy poten-

tial of a prospective wind farm. In addition, the Maximum Likeli-

hood Method (MLM) has proven to be a decent choice throughout 

the literature especially when higher accuracy is preferred. How-

ever, in [25] and [26], the authors pointed out that the Maximum 

Likelihood Method (MLM) is an iterative method. Consequently, 

the MLM is expensive in processing time especially when the data 

size is large. The study has shown that accuracy is then achieved at 

the cost of computational efficiency. Thus, there is a need to devise 

an estimation method that allies acceptable accuracy with compu-

tational efficiency. A study conducted by Yuan et al. [27] aimed at 

comparing the performance of the maximum parameter estimation 

method (MLE) and the moment parameter method. The results have 

shown that for the extreme likelihood small data size outperformed 

over the moment method. The likelihood had advantage for the 

middle and large data size. Conclusively, for life data analysis, it 

suggested the use of the maximum likelihood parameter method for 

the two-parameter Weibull’s distribution.  

A reduction in the data size will lead to a high computational effi-

ciency in time. The key parametersfor the estimation of Weibull 

function are the average speed, standard deviation and power den-

sity. The main challenge is about the data filtering process and the 

sampling size for acceptable estimation accuracy. According the 

best of our knowledge, there is no existing work that proposes a 

filtering MLM-based method that allies accuracy and efficiency for 

Weibull parameter estimation in wind energy applications.  

In order to reduce the data size and therefore the parameter estima-

tion time, while maintaining a high accuracy of wind power density, 

mean wind speed and standard deviation, a new ML-based ap-

proach is proposed. Indeed, the series of wind speed is grouped in 

classes (or bins), each class being represented by a bin in the distri-

bution histogram. The set of classes is divided into two subsets: 

even and odd order speed classes. In this paper. The paper aims at 

adequately determining the overall Weibull parameters (K and C) 

using the subsets of odd and even speed classes. For each subset, 

the Weibull parameters are estimated using the Maximum Likeli-

hood (ML) Method. The accuracy of the proposed methods was as-

sessed against some performance metrics such as the root mean 

squared error (RMSE), and the correlation coefficient R2. Further-

more, the power density, the mean wind speed and the wind speed 

standard deviation estimation capabilities are compared for some 

selected cities alike Lome, Accra and Cotonou sites in the Gulf of 

Guinea. 

The rest of this paper is structured as follows. Section 2 describes 

the applications of the Weibull distribution function in wind energy. 

In Section 3, the estimation process of Weibull parameters using 

the Maximum Likelihood Method (MLM) is described. Section 4 

presents in detail the proposed approach to estimate Weibull param-

eters. In Section 5, statistical indicators for performance evaluation 

are illustrated. The results and discussions along with the underly-

ing case study are given in Section 6. Finally, conclusions are drawn 

in Section 7. 

2. The weibull’s distribution function in some 

wind energy applications 

The wind speed data on a site are often vague to provide a clear 

vision of the wind power potential available on it. Hence, there is a 

need to compute key parameters that allow a quick assessment of 

power characteristics hidden in the measured wind speed data [28]. 

Since wind is a stochastic valued event, it is better to describe the 

variation of wind speeds by a statistical function. The probability 

distribution function (pdf) of the two-parameter Weibull distribu-

tion (Equation (1)) is often used in characterizing the distribution 

of wind speeds measured frequently over a period of a month, a 

year, or several years [29-32]. 
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Equation (2) gives the cumulative distribution function (cdf) of the 

wind speed, 
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The mean and standard deviation of the wind speed series are given 

by equations (3) and (4): 
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Knowing the Weibull parameters (K and C), the mean and stand-

ard deviation can be quickly calculated using equations (5) and (6) 

[33]: 
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The wind power density is an important indicator to determine the 

potential of wind resources and to describe the amount of wind en-

ergy at various wind speed values in a particular location. The 

knowledge of wind power density is also useful to evaluate the 

performance of wind turbines and nominate the optimum wind 

turbines. Wind power density resembles the level of accessible en-

ergy at the site, which can be converted to electricity by using 

wind turbines. The mean kinetic energy, available on a site per 

unit time and per unit area is expressed in [34] as: 
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Where:  is the density of air (kg m-3), V is the wind 

speed and ( )f V  is the probability distribution function (pdf) 

of Weibull (1) and 3V  is the cubic mean wind speeds. 

If the parameters (K and C) are estimated for a wind farm, mean 

wind power density (7) are calculated in [33], [35] and given by. 
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Where:   represents the gamma function defined by the Euler in-

tegral of the second kind. 

In short, the estimated Weibull parameters (K and C) are very im-

portant for applications in the field of wind energy. Many methods 

were developed to estimate the parameters of the Weibull’s proba-

bility distribution function (pdf), namely method of moments, the 

Maximum Likelihood Method (MLM), the least square method 

and Chi-square method. Among these methods, the Maximum 

Likelihood Method (MLM) is considered as one of the most relia-

ble [6, 36]. 

3. The weibull’s parameters using the maxi-

mum likelihood method 

The Maximum Likelihood (ML) technique, with many required 

features, is the most widely used technique among parameter esti-

mation techniques. The MLM has many large sample properties 

that make it attractive for use; it is asymptotically consistent, 

which means that as the sample size gets larger, the estimate con-

verges to the true values.  

Let 
1 2 3
, , , ,

n
V V V V  be a random sample size n  drawn from a prob-

ability density function ( , )f V 

 

where 

 

is an unknown parame-

ter. The likelihood function of this random sample is the joint den-

sity of the n  random variables and is a function of the unknown 

parameter. Thus, according to [37], [38], 
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The Maximum Likelihood (ML) estimator of   say 


 

is the value 

of L  that maximizes L  or, equivalent, the logarithm of L . Often 

but not always, the MLM of 

 

is a solution of equation (10) 
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Now, we apply the MLM to estimate the Weibull parameters, K 

and C. Consider the Weibull probability density function given in 

equation (1), the likelihood function will be (11): 
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                (11) 

Taking the logarithms of equation (11), differentiating with re-

spect to K and C, and equating to zero, one can obtain the estimat-

ing equations (12) and (13), 
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After eliminating C, equations (12) and (13) become (14), 
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The estimated value of K, is found by the use of standard iterative 

procedures, which can be written as 

 

1

( )

'( )

n

n n

n

g X
X X

g X
+
= +                                                                       (15) 

 

Where 

 

1

1

1

( ) 1
( ) ( )

( )

n
K

ni i
i

n i
i

i
i

V Ln V n
g K Ln V

K nLn V

=

=

=


= − − 


                                          (16) 

 

And 
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The shape parameter K is derived using equations (16) and (17) 

with equation (15) as: 
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Once K is determined, C can be estimated using equation (19) as 

follows: 
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4. The proposed method to estimate the 

weibull’s parameters 

The information contained in the wind measurements at a given 

site can be represented as a histogram. Given 
1 2 3
, , , ,

r
V V V V , r  

wind speeds measured on a site, this sequence can be grouped into 
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m  ( m r ) classes (

0 1 2 1
, , , ,

m
Bin Bin Bin Bin

−
); let 

,j
f be the rela-

tive frequency of class 
j

Bin , the graph 
,

( )
j j

Bin f represents the 

histogram of the distribution of relative frequencies of wind speed 

on this site. It may represent the variation of the relative frequency 

of wind speeds. If the speed intervals are dwindling, the limit of 

the histogram is a probability density function (pdf). In practice, 

the probability density function (pdf) of the wind speed is obtained 

by fitting the histogram with a function. In the case of wind 

speeds, a log-normal, gaussian or Rayleigh distribution function is 

not always appropriate [39]. According to [40, 41], a better solu-

tion is to use the Weibull distribution [42]. The probability density 

function (pdf) of the wind speed of a site can be approximated by 

a Weibull pdf for measurements averaged over periods of 1 to 30 

min [43]. [44] is the first atlas to use the Weibull distribution. The 

use of Weibull distribution has become a standard for representing 

the climatology of a wind site, especially thanks to [45]. This rep-

resentation has the advantage of allowing a quick assessment of 

the mean power density, the standard deviation and mean wind 

speed, for e.g., knowing the Weibull K and C parameters of the 

site, as detailed in [45] and [46]. 

Several studies have shown that estimating Weibull parameters us-

ing the Maximum Likelihood Method (MLM) is reliable, how-

ever, this method according to Section 4, is an iterative method, 

that is to say time consuming compared to other methods (graphic, 

moment, empirical, modified maximum likelihood, equivalent en-

ergy and power density) especially for large numbers of wind 

measurements. 

Thus for all n  samples of wind measurements (
1 2 3
, , , ,

n
V V V V ) 

such that 
i

V  is non-zero, obtained during a period of time on a 

given site, the application of the Maximum Likelihood Method 

(MLM) (equations (18) and (19)) gives the shape and scale param-

eters 
all

K  and 
all

C  respectively according to equations (20) and 

(21). 
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In order to reduce the estimation time of Weibull parameters (
all

K
 

and
all

C ) using the Maximum Likelihood Method (MLM) for its 

desired high acuracy, we propose to reduce the number of data to 

be processed while maintaining accurate power density, standard 

deviation and mean wind speed. Indeed all samples of n  wind 

measurements (
1 2 3
, , , ,

n
V V V V ) obtained during a period of time on 

a given site are grouped into classes and represented as a histo-

gram (the graph
,

( )
j j

Bin f ). The obtained wind speed classes can 

be divided into two groups: the even speed classes (
2k

Bin ) and the 

odd classes (
2 1k

Bin
+

). 

Samples of p  wind speed measurements (
1 2 3
, , , ,

p
X X X X ) of 

the group of even classes group (
2k

Bin ), subsets of (
1 2 3
, , , ,

n
V V V V

), are used to estimate the shape parameter (
even

K ) and scale pa-

rameter (
even

C ) given in (22) and (23). 
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This new approach is referred to as Maximum Likelihood with 

Even Bins time series Method (MLEBM). 

In case 
even

K  and 
even

C  allow a quick and accurate estimation of the 

mean power density using (7) and (8). The mean wind speed is 

given in (3) and (5); and the standard deviation in (4) and (6) for 

the set (
1 2 3
, , , ,

n
V V V v ) of the obtained wind measurements during 

a period of time on a given site, is used for the estimation. The 

time is reduced, since the size of the dataset (
1 2 3
, , , ,

p
X X X X ) 

used to estimate these parameters is less than 100% of the size of 

the full set (
1 2 3
, , , ,

n
V V V V ) as expressed in (24). 
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Likewise, samples of q  wind measurements (
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, , , ,
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Y Y Y Y ) of 

the group of odd classes (
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+

), subsets of (
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, , , ,
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used to estimate 
odd

K  and 
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C  (shape and scale parameters) ac-

cording to equations (25) and (26) 
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This new approach is referred to as Maximum Likelihood with 

Odd Bins time series Method (MLOBM). 

The use of 
odd

K  and 
odd

C  may allow a quick and reasonably accu-

rate estimation of the mean power density. The equations that are 

used for the computaions equations (7) and (8), the mean wind 

speed (equations (3) and (5)) and the standard deviation (equations 

(4) and (6)) for the set (
1 2 3
, , , ,

n
V V V V ) of wind measurements ob-

tained during a period on a given site. It is clear that the estimation 

time is reduced, since the size of the dataset (
1 2 3
, , , ,

q
Y Y Y Y ) used 

to estimate these parameters is less than 100% of the size of the 

full set (
1 2 3
, , , ,

n
V V V V ) as expressed by the equation (27). 

 

( )% 100
odd

q
td

n
=                                                                       (27) 

 

Thus, this study aims to verify if, from each speed class group 

(even or odd) taken individually, it is possible to estimate the pa-

rameters (K and C) suitable for a fast and accurate estimation of 

the mean power density, the mean wind speed and standard devia-

tion on the Lome, Accra and Cotonou sites in the Gulf of Guinea. 

 

Some performance metrics are used to evaluate each method 

namely the root mean squared error (RMSE), the correlation coef-

ficient R2 and the absolute value of the relative error. 

The RMSE parameter, whose ideal value is zero (0), gives the dif-

ference between the predicted or expected value
i

vp and observed 

value 
i

vo  for 
e

n  data samples [16], [24], [47]. It is given by equa-

tion (28) 

 

( )
2

1

1 en

i i
i

e

RMSE vo vp
n =

= −         (28) 
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The correlation coefficient whose ideal value is one (1) gives the 

correlation between the predicted or expected and observed values 

[16], [24], [47]. It is given by the relationship (29) 

 

( ) ( )

( ) ( )
2 1

2 2

1 1

e

e e

n

i i i i
i

n n

i i i i
i i

vp vp vo vo
R

vp vp vo vo

=

= =

−  −
=

−  − 

                                             (29) 

 

The absolute value of the relative error between the predicted 

value and the observed value is given by equation (30), it is con-

sidered acceptable if less or equal to 10% [24]. 

 

(%) 100 i i

i

vo vp
Error

vo

−
=                                                            (30) 

5. The methodology 

5.1. The data collection 

The hourly mean wind data used for the sites Lomé, Accra and Co-

tonou were obtained through the meteorological database at 

'http://weather.uwyo.edu/area/meteorogram/' [48]. The coordinates 

of the three sites are given in Table 1. The data is recorded every 

day at one hour interval (this is the mean over the 10 minutes before 

the hour) at a height of 10 m above the ground. 

The provided data sheet in [48] includes, respectively, for each rec-

ord: the site name (STN), the date and recording time (TIME), at-

mospheric pressure (ALTM), room temperature (TMP) the dew 

temperature (DEW), relative humidity (RH), wind direction (DIR), 

wind speed (SPD), visibility (VIS) and the nature of clouds 

(CLOUDS). 

Data collected for the three stations cover the period from January 

2000 to December 2012, a record length of approximately thirteen 

(13) years. In our current work, we are interested only in the col-

umns TIME (recording date and time) and SPD (wind speed). Fig. 

1 shows the geographical location of the three (03) sites. 

 
Table 1: Coordinates of the Case Study Sites [48] 

Sites Coordinates 

Accra (Kotoka) 5.60N, 0.17W, 69 meters 
Cotonou (Cadjehoun) 6.35N, 2.38E, 9 meters 

Lomé (Tokoin) 6.17N, 1.25E, 25 meters 

5.2. The data sampling and filtering 

The mean wind speed data, the standard deviation data and mean 

power density data observed on the three sites for even, odd and all 

classes wind speed data subset of all data collected are shown in 

Table 2. The average wind speed, standard deviation and power 

density are similar for all three data classes considered. This is a 

preliminary indication that Weibull parameters estimated from ei-

ther even or odd class speed data subset might yield similar average 

wind speed, standard deviation and mean power density as the en-

tire dataset (all data). 

Using the earlier described methods, we processed the 10-minutes 

averaged hourly wind speed data collected on the sites Lomé, Accra 

and Cotonou for 13 years. The data are sampled in monthly size 

such that each month (the entire 13-years data set is grouped 

monthly into 12 study periods: January, February, March, April, 

May, June, July, August, September, October, November, Decem-

ber), each year from 2000 to 2012 (13 periods) and the 13-years 

aggregate period amounting to 26 periods total. For each period of 

the three sites considered, the wind speeds data are classified as fol-

lows. 

• The adjustment of even class (
2k

Bin ), odd class (
2 1k

Bin
+

) and 

all classes (
k

Bin ) histograms with their corresponding 

Weibull distribution functions; 

• The estimation time of the Weibull parameters by consider-

ing the even class (
2k

Bin ), odd class (
2 1k

Bin
+

) and all classed 

(
k

Bin ) wind speed data; 

• Details on fitting even class (
2k

Bin ), odd class (
2 1k

Bin
+

) and 

all classes (
k

Bin ) histograms with three Weibull distribution 

functions; 

• The comparison of the mean power densities calculated using 

Weibull parameters estimated from even class (
2k

Bin ), odd 

class (
2 1k

Bin
+

) and all classes (
k

Bin ) wind speed data against 

the observed power density; 

• The comparison of the mean wind speed calculated using 

Weibull parameters estimated from even class (
2k

Bin ), odd 

class (
2 1k

Bin
+

) and all classes (
k

Bin ) wind speed data against 

the observed mean wind speed; 

• The comparison of the standard deviations calculated using 

Weibull parameters estimated from even class (
2k

Bin ), odd 

class (
2 1k

Bin
+

) and all classes (
k

Bin ) wind speed data against 

the observed standard deviation. 

This classification is further given in Table 3. 

6. Results and discussion 

6.1. Histograms of the weibull functions: fitting the even, 

odd and all classes 

Fig. 2, Fig. 3 and Fig. 4 show the Weibull probability density fun-

tions respectively for Lomé, Accra and Cotonou that are adjusted to 

the even class ( ), odd class ( ) and all classes ( ) histograms corre-

sponding to the 13 years aggregated wind speed data. From these 

three figures it may be concluded that each histogram is well fitted 

since largest RMSE value is about 0.09573; and the lowest R2 value 

is 0.92421. 

For each period and each site of the study, the Weibull parameters 

are estimated for series of wind speeds belonging to even (
2k

Bin ), 

odd (
2 1k

Bin
+

) and all (
k

Bin ) classes. The performance indicators R2 

and RMSE used to assess the estimated Weibull parameters in 

Lomé, Accra and Cotonou are recorded in Table 4. 

The results in Table 4 may indicate that a good adjustment was 

achieved for each histogram. 

 

 
Fig. 1: Geograpgical Locations of the Study Sites. 

 
Table 2: Mean Wind Speed, Wind Speed Standard Deviation and Mean 
Wind Power Densty According for the Group of Data Series for the Three 

Stations 

  
Mean wind speed 
(m/s) 

  
Standard deviation 
(m/s) 

  
Mean power den-
sity (W/m2) 

Site 

All 

Bin
s 

Even 

Bins 

Odd 

Bins 
  

All 

Bin
s 

Even 

Bins 

Odd 

Bins 
  

All 

Bins 

Even 

Bins 

Odd 

Bins 
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Lo

me 

3.5

201
3 

3.49

066 

3.54

807 
  

2.0

475
5 

2.05

346 

2.04

156 
  

55.4

539
2 

54.5

5148 

56.3

090
0 

Ac-

cra 

4.1

603
2 

4.00

684 

4.30

235 
  

2.2

159
1 

2.46

834 

1.94

271 
  

82.2

276
1 

84.8

7287 

79.7

796
1 

Co-

to-
nou 

3.9

934
0 

3.97

250 

4.01

390 
  

1.8

122
0 

1.80

910 

1.81

510 
  

62.7

038
0 

61.7

9640 

63.5

971
0 

 
Table 3: Wind Speed Classes Adopted for the Three Sites. 

Wind speed (m/s) Bins Type 

]0, 1[ Bin0 Even bin 

[1, 2[ Bin1 Odd bin 
[2, 3[ Bin2 Even bin 

[3, 4[ Bin3 Odd bin 

[4, 5[ Bin4 Even bin 
[5, 6[ Bin5 Odd bin 

[6, 7[ Bin6 Even bin 

… … … 
… … … 

… … … 

[21], [22] Bin21 Odd bin 

 

 
Fig. 2: Wind Speed Probability Density Function of Lomé Site for Whole 

Years 2000 to 2012. 

 

 
Fig. 3: Wind Speed Probability Density Function of Accra Site for Whole 

Years 2000 to 2012. 

 

 
Fig. 4: Wind Speed Probability Density Function of Cotonou Site for 

Whole Years 2000 to 2012. 

 

The tuned parameters in the Weibull distribution function for each 

period and site are tabulated. On the site of (Lomé, Accra, Cotonou) 

the highest RMSE value is 0.1469. For the march’s data March, 

Cotonou site recorded a correlation coefficient of R2 = 0.9151; and 

the lowest R2 value is 0.6022 obtained for the same period in 2005 

on the Lome’s site (with RMSE = 0.1302). 

6.2. Weibull parameter estimation time 

The estimation time of Weibull parameters (K and C) was per-

formed by using the Maximum Likelihood Method (MLM). A com-

parison was conducted on the derived times of Weibull parameters 

(K and C) for even (
2k

Bin ), odd (
2 1k

Bin
+

) and all (
k

Bin ) classes of 

wind speed data. The proposed approach is implemented in Matlab 

on a computer processor (Intel® Celeron® B840 CPU @ 1.90 GHz 

1.90 GHz) with a 4 GB RAM. The Table 5, Table 6 and Table 7 

illustrate the processing times of the Weibull parameters estimation 

for the three configurations of speed data (
2k

Bin , 
2 1k

Bin
+

and 
k

Bin ) 

in Lomé , Accra and Cotonou respectively. The results in Tables 5, 

6 and 7, may point out that the processing time of all (100%) speed 

wind data (
k

Bin -class) in respect to a given period is approximately 

twice that of the even (
2k

Bin ) and odd (
2 1k

Bin
+

) class data. For ex-

ample, it can be noted in the Table 4, for the period of January in 

Lomé, 
all

K  and 
all

C  (all class data shape and scale Weibull param-

eters) are estimated in 9 ms; while 
odd

K  and 
odd

C  (odd class data 

shape and scale Weibull parameters) in 5.5 ms, and 
even

K  and 
even

C  

(even class data shape and scale Weibull parameters) in 4.8 ms. 

6.3. Adjustment of the distribution histograms with 

weibull distribution functions 

The work evaluates the time for computing the Weibull parameters 

based on the proposed sampling. It is observed that a less computa-

tion time was achieved based on the proposed Maximum Likeli-

hood Method (MLM) to estimate the Weibull parameters with ac-

ceptable accuracy on the various sites located in the Gulf of Guinea 

Lome, Accra and Cotonou. For each site; and for a given period, 

the wind speeds series are divided into two groups of classes (even 

and odd classes). The parameters of three Weibull functions are es-

timated for even class (
even

K  and 
even

C ), odd class (
odd

K  and 
odd

C ) 

and for all class (
all

K  and 
all

C ) data. Performance indicators RMSE 

and R2 of the Weibull adjustment distribution functions of all the 

wind measurement data are calculated and presented in Tables 8, 9 

and 10. Figures 5, 6 and 7 present (a) the three Weibull probality 

density functions and (b) the three Weibull cumulative distribution 

functions respectively for Lomé, Accra and Cotonou over 13-year 

time period (2000 -2012). For this study period and for all locations, 

figures 5, 6 and 7 show: 

• A quasi-perfect fitting of the distribution histograms by the 

pdf and cdf curves obtained using the entire dataset (

2.0148
all

K = and 4.1785 /
all

C m s=  for Lomé, 2.3825
all

K =

and 5.0172 /
all

C m s=  for Accra, and 2.5800
all

K =  and 

4.6061 /
all

C m s=  for Cotonou), with minimum correlation 

coefficient R2 of 0.97149 and maximum RMSE of 0.018973; 

• An acceptable fitting of the distribution histograms by the pdf 

and cdf curves obtained using the even class dataset (

2.3270
even

K = and 4.3842 /
even

C m s=  for Lomé, 2.4526
even

K =

and 5.2311 /
even

C m s=  for Accra, and 2.8490
even

K = and 

4.6961 /
even

C m s=  for Cotonou), with minimum correlation 

coefficient R2 of 0.9382 and maximum RMSE of 0.02716; 

• An acceptable fitting of the distribution histograms by the pdf 

and cdf curves obtained using the odd class dataset (

1.7960
odd

K = and 3.9940 /
odd

C m s=  for Lomé, 2.3461
odd

K =

and 4.8468 /
odd

C m s=  for Accra, and 2.360
odd

K = and 

4.5197 /
odd

C m s=  for Cotonou), with minimum correlation 

coefficient R2 of 0.9520 and maximum RMSE of 0.02075. 

• Tables 8, 9 and 10 show the Weibull parameters estimated by 

the Maximum Likelihood Method (MLM) for three sets of 

speed data (
2k

Bin , 
2 1k

Bin
+

 and 
k

Bin ) and the results of statis-

tical tests respectively for Lome, Accra and Cotonou. 
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• Analysis of the results of Tables 7, 8 and 9 for all three sites, 

may indicate that: 

• the fitting curves with Weibull parameters 
all

K  and 
all

C  ac-

curately adjust the distribution histograms of all wind meas-

urement data for each period, since the minimum R2 value is 

0.8797 and the maximum RMSE value is 0.0350; 

• The curves with Weibull parameters 
even

K  and 
even

C  adjust 

with an acceptable accuracy the distribution histograms of all 

wind measurement data for each period, since the minimum 

R2 value is 0.7820 and the maximum RMSE value is 0.0583; 

• The curves with Weibull parameters 
odd

K  and 
odd

C  adjust 

with an acceptable accuracy the distribution histograms of all 

wind measurement data for each period, since the minimum 

R2 value is 0.7793 and the maximum RMSE value is 0.0519. 

 
Table 4: Statistical Analysis 
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Table 5: Time Calculating Weibull Parameters for Lomé Site 

  Lomé 
 All data  Even bins data   Odd bins data 

Period Time (s)   td (%) Time (s)   td (%) Time (s) 

Jan. 0.0090  49.7089 0.0048  50.2911 0.0055 
Feb. 0.0091  49.6086 0.0048  50.3914 0.0049 

Mar. 0.0070  49.7258 0.0052  50.2742 0.0056 

Apr. 0.0093  48.9074 0.0053  51.0926 0.0051 
May 0.0109  48.3258 0.005  51.6742 0.0058 

Jun. 0.0080  48.4074 0.0051  51.5926 0.0060 
Jul. 0.0082  49.0373 0.0056  50.9627 0.0057 

Aug. 0.0075  48.2338 0.0053  51.7662 0.0065 

Sep. 0.0084  49.5426 0.0057  50.4574 0.0053 
Oct. 0.0118  46.6527 0.0051  53.3473 0.0069 

Nov. 0.0105  47.6500 0.0046  52.3500 0.0055 

Dec. 0.0105  48.1620 0.0046  51.8380 0.0059 
Whole years 0.0948  48.6527 0.0309  51.3473 0.0495 

2000 0.0062  49.1760 0.0039  50.824 0.0049 

2001 0.0067  49.1602 0.0043  50.8398 0.0059 
2002 0.0043  49.9612 0.0030  50.0388 0.0027 

2003 0.0050  47.0345 0.0034  52.9655 0.0034 

2004 0.0064  51.4947 0.0038  48.5053 0.0039 
2005 0.0063  52.9999 0.0033  47.0001 0.00400 

2006 0.0055  48.8818 0.0035  51.1182 0.0036 

2007 0.0075  52.9132 0.0042  47.0868 0.0046 
2008 0.0100  46.9015 0.0061  53.0985 0.0076 

2009 0.0101  47.2186 0.0071  52.7814 0.0076 

2010 0.0087  47.1710 0.0070  52.829 0.0076 
2011 0.0100  47.3443 0.0069  52.6557 0.0080 

2012 0.0073   48.7763 0.0064   51.2237 0.0062 

 
Table 6: Time Calculating Weibull Parameters for Accra Site 

  Accra 
 All data  Even bins data   Odd bins data 
Period Time (s)  td (%) Time (s)  td (%) Time (s) 

Jan. 0.0069  47.8993 0.0037  52.1007 0.0039 

Feb. 0.0053  47.7375 0.0033  52.2625 0.0037 
Mar. 0.0058  49.2586 0.0036  50.7414 0.0045 

Apr. 0.0053  49.1022 0.0033  50.8978 0.0039 

May 0.0062  51.1736 0.0034  48.8264 0.0043 
Jun. 0.0057  48.3131 0.0034  51.6869 0.0037 

Jul. 0.0070  44.8792 0.0034  55.1208 0.0046 

Aug. 0.0067  46.0611 0.0039  53.9389 0.0047 
Sep. 0.0058  48.0346 0.0034  51.9654 0.0039 

Oct. 0.0057  48.4899 0.0032  51.5101 0.0035 

Nov. 0.0066  48.5719 0.0034  51.4281 0.0041 
Dec. 0.0077  47.8538 0.0036  52.1462 0.0039 

Whole years 0.0381  48.0635 0.0154  51.9365 0.0207 

2000 0.0032  51.0446 0.0027  48.9554 0.0025 
2001 0.0035  53.4393 0.0025  46.5607 0.0025 

2002 0.0035  53.8105 0.0029  46.1895 0.0025 

2003 0.0076  48.4461 0.0037  51.5539 0.0039 

  Accra 
 All data  Even bins data   Odd bins data 
Period Time (s)  td (%) Time (s)  td (%) Time (s) 

2004 0.0058  48.241 0.0035  51.759 0.0037 

2005 0.0052  46.8777 0.0032  53.1223 0.0035 
2006 0.0054  45.9614 0.0031  54.0386 0.0036 

2007 0.0038  46.8401 0.0025  53.1599 0.0031 

2008 0.0046  42.7759 0.0025  57.2241 0.0033 
2009 0.0069  43.0155 0.0032  56.9845 0.0048 

2010 0.0065  49.4031 0.0046  50.5969 0.0045 

2011 0.0059  51.1494 0.0036  48.8506 0.0036 
2012 0.0064   49.4571 0.0037   50.5429 0.0042 

 
Table 7: Time Calculating Weibull Parameters for Cotonou Site 

  Cotonou 
 All data  Even bins data   Odd bins data 

Period Time (s)  td (%) Time (s)  td (%) Time (s) 

Jan. 0.0076  49.3485 0.0030  50.6515 0.0035 

Feb. 0.0090  49.6431 0.0052  50.3569 0.0059 

Mar. 0.0087  49.9471 0.0049  50.0529 0.0054 
Apr. 0.0087  49.9408 0.0058  50.0592 0.0062 

May 0.0082  49.1730 0.0046  50.8270 0.0055 

Jun. 0.0079  50.8499 0.0048  49.1501 0.0041 
Jul. 0.0084  49.2415 0.0043  50.7585 0.0053 

Aug. 0.0088  48.5408 0.0056  51.4592 0.0059 

Sep. 0.0114  48.4371 0.0048  51.5629 0.0058 
Oct. 0.0078  48.8112 0.0046  51.1888 0.0048 

Nov. 0.0083  50.7937 0.0047  49.2063 0.0051 

Dec. 0.0084  50.4787 0.0050  49.5213 0.0052 
Whole years 0.0935  49.6065 0.0342  50.3935 0.0455 

2000 0.0042  51.3073 0.0030  48.6927 0.0027 

2001 0.0071  52.0724 0.0043  47.9276 0.0041 
2002 0.0073  51.1300 0.0046  48.8700 0.0042 

2003 0.0070  51.2827 0.0041  48.7173 0.0043 

2004 0.0070  48.9999 0.0041  51.0001 0.0045 
2005 0.0069  47.7298 0.0040  52.2702 0.0044 

2006 0.0059  48.0932 0.0036  51.9068 0.0039 

2007 0.0081  49.6683 0.0048  50.3317 0.0053 
2008 0.0087  48.6081 0.0053  51.3919 0.0058 

2009 0.0092  49.8892 0.0061  50.1108 0.0065 

2010 0.0087  49.6608 0.0056  50.3392 0.0060 

2011 0.0096  49.0356 0.0042  50.9644 0.0052 

2012 0.0117   49.3521 0.0073   50.6479 0.0078 

 

 
Fig. 5: Suitability of Weibull Distributions for Lomé Site for Whole Years 

2000 to 2012. 
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Fig. 6: Suitability of Weibull Distributions for Accra Site for Whole Years 

2000 to 2012. 

 

 
Fig. 7: Suitability of Weibull Distributions for Cotonou Site for Whole 

Years 2000 to 2012. 
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Table 9: Weibull Analysis and Estimation Parameters for Accra Site 
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Fig. 8: Wind Power Density Obtained from the Measured Data (Eq. (7)) 

Versus Those Obtained From the Weibull Models (Eq. (8)), on A Monthly 
Basis for Lomé Site. 

 

 
Fig. 9: Wind Power Density Obtained from the Measured Data (Eq. (7)) 

Versus Those Obtained from the Weibull Models (Eq. (8)), on A Yearly 
Basis for Lomé Site. 

 

 
Fig. 10: Wind Power Density Obtained from the Measured Data (Eq. (7)) 

Versus Those Obtained from the Weibull Models (Eq. (8)), on A Monthly 

Basis for Accra Site. 
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Fig. 11: Wind Power Density Obtained from the Measured Data (Eq. (7)) 

Versus Those Obtained from the Weibull Models (Eq. (8)), on A Yearly 

Basis for Accra Site. 

 

 
Fig. 12: Wind Power Density Obtained from the Measured Data (Eq. (7)) 

Versus Those Obtained from the Weibull Models (Eq. (8)), on A Monthly 

Basis for Cotonou Site. 

 

 
Fig. 13: Wind Power Density Obtained from the Measured Data (Eq. (7)) 
Versus Those Obtained from the Weibull Models (Eq. (8)), on A Yearly 

Basis for Cotonou Site.  

6.4. Comparison of estimates of wind power density 

One of the objectives of this work is to determine adequate Weibull 

parameters (K and C) among 
even

K  and 
even

C , 
odd

K  and 
odd

C , and 

all
K  and 

all
C  of each speed class group (even, odd or all) for a quick 

computation of the mean wind power density on the sites (Lomé, 

Accra and Cotonou in the Gulf of Guinea). As exposed in section 

3, obtaining the appropriate Weibull parameters (K and C) of a wind 

site should lead to an accurate estimate of the mean power density. 

In this study, Weibull parameters from even class data (
even

K  and 

even
C ), odd class data (

odd
K  and 

odd
C ) and all class data (

all
K  and 

all
C ) are estimated by the MLM. These parameters estimated for 

each period (26 periods total) are used to calculate the mean wind 

power density on each site (Lomé, Accra and Cotonou) according 

to equation (8). Figures 8, 9, 10, 11, 12 and 13 compare the mean 

power densities calculated (equation 8) and observed (equation 7) 

respectively on a monthly scale and on an annual basis in Lomé 

(Figures 8 and 9), Accra (Figures 10 and 11) and Cotonou (Figures 

12 and 13). 

The absolute value of the relative errors on the mean wind power 

densities estimated over 26 periods for the three study sites are cal-

culated and presented in Table 11. 

In the case of Lomé: 

• The parameters 
all

K  and 
all

C  were used to calculate the 

mean wind power density with the lowest relative error for 8 

periods out of 26; 

• The parameters 
even

K  and 
even

C  were used to calculate the 

mean wind power density with the lowest relative error for 3 

periods out of 26; 

• The parameters 
odd

K  and 
odd

C  were used to calculate the 

mean wind power density with the lowest relative error for 

15 times out of 26. 

• Thus the estimated parameters 
odd

K  and 
odd

C  enabled a fast 

and accurate computation of the mean wind power density 

compared to others on the Lomé site. This is confirmed by 

the fact that the least mean relative error of 5.9091% commit-

ted in the calculation of mean wind power densities over 26 

periods is obtained using 
odd

K  and 
odd

C . 

• In the case of Accra: 

• The parameters 
all

K  and 
all

C  were used to calculate the 

mean wind power density with the lowest relative error for 7 

periods out of 26; 

• The parameters 
even

K  and 
even

C  were used to calculate the 

mean wind power density with the lowest relative error for 1 

period out of 26; 

• The parameters odd
K

 and odd
C

 were used to calculate the 

mean wind power density with the lowest relative error for 

18 times out of 26. 

Thus the estimated parameters 
odd

K  and 
odd

C  enabled a fast and ac-

curate computation of the mean wind power density compared to 

others on the Accra site. This is confirmed by the fact that the least 

mean relative error of 4.5101% committed in the calculation of 

mean wind power densities over 26 periods is obtained using 
odd

K  

and 
odd

C . 

In the case of Cotonou: 

• The parameters all
K

 and all
C

 were used to calculate the 

mean wind power density with the lowest relative error for 

11 periods out of 26; 

• The parameters even
K

 and even
C

 were used to calculate the 

mean wind power density with the lowest relative error for 5 

periods out of 26; 

• The parameters odd
K

 and odd
C

 were used to calculate the 

mean wind power density with the lowest relative error for 

10 times out of 26. 

Thus the estimated parameters 
odd

K  and 
odd

C  enabled a fast and ac-

curate computation of the mean wind power density compared to 

others on the Cotonou site. This is confirmed by the fact that the 

least mean relative error of 2.9566% incurred in the calculation of 

mean wind power densities over 26 periods is obtained using 
odd

K  

and 
odd

C . 

6.5. The estimated mean wind speed  

The quick assessment of the mean wind speed at a prospective wind 

farm location with a small error is important. It is crucial to identify 

adequate Weibull parameters (K and C) among 
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even

C , 
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K  and 

odd
C  , and 

all
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all
C  of each speed class group (even, 

odd or all) for a quick computation of the mean wind speed on the 
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sites (Lomé, Accra and Cotonou in the Gulf of Guinea). As exposed 

in Section 3, obtaining the appropriate Weibull parameters (K and 

C) of a wind site should lead to an accurate estimate of the mean 

wind speed. In this study, Weibull parameters from even class data 

(
even

K  and 
even

C ), odd class data (
odd

K  and 
odd

C ) and all class data (

all
K  and 

all
C ) are estimated by the MLM. These parameters esti-

mated for each period (26 periods total) are used to calculate the 

mean wind speed on each site (Lomé, Accra and Cotonou) accord-

ing to equation (5). Figures 14, 15, 16, 17, 18 and 19 compare the 

mean wind speed calculated (Equation (5)) and observed (equation 

3) respectively on a monthly scale and on an annual basis in Lome 

(Figures 14 and 15), Accra (Figures 16 and 17) and Cotonou (Fig-

ures 18 and 19). 

The absolute value of the relative errors on the mean wind speed 

estimated over 26 periods for the three study sites are computed and 

presented in Table 12. 

In the case of Lomé: 

• The parameters all
K

 and all
C

 were utilized to calculate the 

mean wind speed with the lowest relative error for 1 periods 

out of 26; 

• The parameters even
K

 and even
C

 helped in calculating the 

mean wind speed with the lowest relative error for 3 periods 

out of 26; 

• The parameters odd
K

 and odd
C

 were used to calculate the 

mean wind speed with the lowest relative error for 22 periods 

out of 26. 

Thus the estimated parameters 
odd

K  and 
odd

C  enabled a fast and ac-

curate computation of the mean wind speed compared to others on 

the Lomé site. This is confirmed by the fact that the least mean rel-

ative error of 2.8488% committed in the calculation of mean wind 

speed over 26 periods is obtained using 
odd

K  and 
odd

C . 

In the case of Accra: 

• Only odd
K

 and odd
C

 led to the mean wind speed with the low-

est relative error for 26 priods out of 26. 

Thus the estimated parameters 
odd

K  and 
odd

C  enabled a fast and ac-

curate computation of the mean wind speed compared to others on 

the Accra site. This is confirmed by the fact that the least mean rel-

ative error of 3.7579% committed in the calculation of mean wind 

speed over 26 periods is obtained using 
odd

K  and 
odd

C . 

In the case of Cotonou: 

• The parameters all
K

 and all
C

 were used to calculate the 

mean wind speed with the lowest relative error for 1 periods 

out of 26; 

• The parameters even
K

 and even
C

 were used to calculate the 

mean wind speed with the lowest relative error for 3 periods 

out of 26; 

• The parameters odd
K

 and odd
C

 were used to calculate the 

mean wind speed with the lowest relative error for 22 periods 

out of 26. 

Thus the estimated parameters 
odd

K  and 
odd

C  enabled a fast and ac-

curate computation of the mean wind speed compared to others on 

the Cotonou site. This is confirmed by the fact that the least mean 

relative error of 1.2126% committed in the calculation of mean 

wind speed over 26 periods is obtained using 
odd

K  and 
odd

C  

6.6. Comparison of the estimateds tandard deviations 

As exposed in Section 3, obtaining the appropriate Weibull param-

eters (K and C) of a wind site should lead to an accurate estimate of 

the standard deviation of wind speeds.  

In this study, Weibull parameters from even class data (
even

K  and 

even
C ), odd class data (

odd
K  and 

odd
C ) and all class data (

all
K  and 

all
C ) are estimated by the MLM. These parameters are estimated 

for each period (26 periods total) are used to calculate the standard 

deviation on each site (Lome, Accra and Cotonou) according to 

equation (6). Figures 20, 21, 22, 23, 24 and 25 compare the standard 

deviations calculated (equation 6) and observed (equation 4) re-

spectively on a monthly scale and on an annual basis in Lome (Fig-

ures 20 and 21), Accra (Figures 22 and 23) and Cotonou (Figures 

24 and 25). 

The absolute value of the relative errors on the standard deviation 

estimated over 26 periods for the three study sites are computed and 

presented in Table 13. 

In the case of Lomé: 

• odd
K

 and odd
C

 are the only ones who led to a standard devia-

tion with the lowest relative error for 26 priods out of 26. 

Thus the estimated parameters 
odd

K  and 
odd

C  enabled a fast and ac-

curate computation of the mean wind speed compared to others on 

the Lome site. This is confirmed by the fact that the least mean rel-

ative error of 2.3424% committed in the calculation of mean wind 

speed over 26 periods is obtained using 
odd

K  and 
odd

C . 

In the case of Accra: 

• The parameters all
K

 and all
C

 were used to calculate the 

standard deviation with the lowest relative error for 1 periods 

out of 26; 

• The parameters even
K

 and even
C

 were used to calculate the 

standard deviation with the lowest relative error for 17 peri-

ods out of 26; 

• The parameters odd
K

 and odd
C

 were used to calculate the 

standard deviation with the lowest relative error for 7 periods 

out of 26. 

Thus the estimated parameters 
even

K  and 
even

C  enabled a fast and ac-

curate computation of the standard deviation compared to others on 

the Accra site. This is confirmed by the fact that the least mean rel-

ative error of 9.6215%% committed in the calculation of the stand-

ard deviation over 26 periods is obtained using 
even

K  and 
even

C . 

In the case of Cotonou: 

• The parameters all
K

 and all
C

 were used to calculate the 

mean wind speed with the lowest relative error for 1 periods 

out of 26; 

• The parameters even
K

 and even
C

 were used to calculate the 

mean wind speed with the lowest relative error for 3 periods 

out of 26; 

• The parameters odd
K

 and odd
C

 were used to calculate the 

mean wind speed with the lowest relative error for 22 periods 

out of 26. 

Thus the estimated parameters 
odd

K  et 
odd

C  enabled a fast and ac-

curate computation of the mean wind speed compared to others on 

the Cotonou site. This is confirmed by the fact that the least mean 

relative error of 1.2126% committed in the calculation of mean 

wind speed over 26 periods is obtained using 
odd

K  and 
odd

C . 

The case studies conducted in this paper on three sites (Lomé, Accra 

and Cotonou) located in the Gulf of Guinea reveals that: 

• The estimation time of the Weibull parameters odd
K

 and odd
C

 

or even
K

 and even
C

, using our approach, is reduced compared to 

the time required to estimate all
K

 and all
C

 for each period 

and site.  

• The parameters odd
K

 and odd
C

 estimated from series of odd 

classes for a given period are adequate for a quick and a fairly 

accurate calculation of the mean wind power density, mean 

wind speed and the standard deviation of wind speeds on the 

Lomé site. 
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• For Accra, the parameters odd
K

 and odd
C

 estimated from se-

ries of odd classes for a given period are adequate for a quick 

and a fairly accurate calculation of the mean wind power den-

sity and mean wind speed, while even
K

 and even
C

 estimated 

from series of even classes give a better estimate of the stand-

ard deviation of wind speeds. 

• The parameters odd
K

 and odd
C

 estimated from series of odd 

classes for a given period are adequate for a quick and a fairly 

accurate calculation of the mean wind speed and the standard 

deviation of wind speeds, while all
K

 and all
C

 estimated from 

series of even classes give a better estimate of the mean wind 

power density on the Cotonou site. 

 
Table 11: Error Values in Calculating the Wind Power Density Obtained 

from the Weibull Models in Reference to the Wind Power Density Obtained 
from the All Measured Data, on Monthly and Yearly Basis 
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Fig. 14: Mean Wind Speed Obtained from the Measured Data (Eq. (3)) Ver-

sus Those Obtained from the Weibull Models (Eq. (5)), on A Monthly Basis 
for Lomé Site. 

 

 
Fig. 15: Mean Wind Speed Obtained from the Measured Data (Eq. (3)) Ver-

sus Those Obtained from the Weibull Models (Eq. (5)), on A Yearly Basis 

for Lomé Site. 
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Fig. 16: Mean Wind Speed Obtained from the Measured Data (Eq. (3)) Ver-

sus Those Obtained from the Weibull Models (Eq. (5)), on A Monthly Basis 

for Accra Site. 

 
Fig. 17: Mean Wind Speed Obtained from the Measured Data (Eq. (3)) Ver-

sus Those Obtained from the Weibull Models (Eq. (5)), on A Yearly Basis 

for Accra Site. 

 

 
Fig. 18: Mean Wind Speed Obtained from the Measured Data (Eq. (3)) Ver-

sus Those Obtained from the Weibull Models (Eq. (5)), on A Monthly Basis 
for Cotonou Site. 

 

 
Fig. 19: Mean Wind Speed Obtained from the Measured Data (Eq. (3)) Ver-

sus Those Obtained from the Weibull Models (Eq. (5)), on A Yearly Basis 

for Cotonou Site. 

 

 
Fig. 20: Wind Speed Standard Deviation Obtained from the Measured Data 

(Eq. (4)) Versus Those Obtained from the Weibull Models (Eq. (6)), on A 
Monthly Basis for Lomé Site. 

 

 
Fig. 21: Wind Speed Standard Deviation Obtained from the Measured Data 

(Eq. (4)) Versus Those Obtained from the Weibull Models (Eq. (6)), on A 

Yearly Basis for Lomé Site. 

 

 
Fig. 22: Wind Speed Standard Deviation Obtained from the Measured Data 

(Eq. (4)) Versus Those Obtained from the Weibull Models (Eq. (6)), on A 
Monthly Basis for Accra Site. 

 

 
Fig. 23: Wind Speed Standard Deviation Obtained from the Measured Data 

(Eq. (4)) Versus Those Obtained from the Weibull Models (Eq. (6)), on A 

Yearly Basis for Accra Site. 

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.
3

3.5

4

4.5

5

5.5

Period of years

M
ea

n 
W

in
d 

sp
ee

d 
(m

/s
)

Comparision of monthly mean wind speeds  (Accra site)

 

 
All data; (3)

All data; (5)

Even bins data; (5)

Odd bins data; (5)

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
2.5

3

3.5

4

4.5

5

5.5

Years

M
ea

n 
W

in
d 

sp
ee

d 
(m

/s
)

Comparision of yearly mean wind speeds  (Accra site)

 

 
All data; (3)

All data; (5)

Even bins data; (5)

Odd bins data; (5)

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.
3

3.5

4

4.5

5

5.5

Period of years

M
ea

n 
W

in
d 

sp
ee

d 
(m

/s
)

Comparision of monthly mean wind speeds  (Cotonou site)

 

 
All data; (3)

All data; (5)

Even bins data; (5)

Odd bins data; (5)

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

4.5

4.6

Years

M
ea

n 
W

in
d 

sp
ee

d 
(m

/s
)

Comparision of yearly mean wind speeds  (Cotonou site)

 

 
All data; (3)

All data; (5)

Even bins data; (5)

Odd bins data; (5)

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.
1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

Period of years

 S
ta

nd
ar

d 
de

vi
at

io
n(

m
/s

)

Comparision of monthly standard deviation  (Lome site)

 

 
All data; (4)

All data; (6)

Even bins data; (6)

Odd bins data; (6)

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

Years

 S
ta

nd
ar

d 
de

vi
at

io
n(

m
/s

)

Comparision of yearly standard deviation  (Lome site)

 

 

All data; (4)

All data; (6)

Even bins data; (6)

Odd bins data; (6)

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.
1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

Period of years

 S
ta

nd
ar

d 
de

vi
at

io
n(

m
/s

)

Comparision of monthly standard deviation  (Accra site)

 

 
All data; (4)

All data; (6)

Even bins data; (6)

Odd bins data; (6)

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

Years

 S
ta

nd
ar

d 
de

vi
at

io
n(

m
/s

)

Comparision of yearly standard deviation  (Accra site)

 

 

All data; (4)

All data; (6)

Even bins data; (6)

Odd bins data; (6)



6646 International Journal of Engineering & Technology 

 
 

 
Fig. 24: Wind Speed Standard Deviation Obtained from the Measured Data 

(Eq. (4)) Versus Those Obtained from the Weibull Models (Eq. (6)), on A 
Monthly Basis for Cotonou Site. 

 

 
Fig. 25: Wind Speed Standard Deviation Obtained from the Measured Data 

(Eq. (4)) Versus Those Obtained from the Weibull Models (Eq. (6)), on A 

Yearly Basis for Cotonou Site. 

 
Table 12: Error Values in Calculating the Mean Wind Speed Obtained from 
the Weibull Models in Reference to the Mean Wind Speed Obtained from 

the All Measured Data, on Monthly and Yearly Basis 
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7. Conclusion 

In this study, a new ML-based approach is proposed to estimate the 

Weibull’s distribution parameters with time efficient assessment. 

These parameters are namely the mean wind power density, mean 

wind speed and wind speed standard deviation. This new approach 

consists in applying the classic MLM to either even or odd class 

wind speed data subset with the objective of reducing the prediction 

error and gain in the computational time. This new approach is ei-

ther referred to as Maximum Likelihood with Odd Bins time series 

Method (MLOBM) or Maximum Likelihood with Even Bins time 

series Method (MLEBM). MLOBM and MLEBM are compared 

with the Maximum Likelihood Method (MLM) considering power 

density, standard deviation and mean wind speed estimation capa-

bility for different geographical locations. It is worth to indicate that 

superiority of MLOBM or MLEBM over MLM can be obviously 

seen with estimation capability of power density, mean wind speed 

and wind speed standard deviation. Then it is concluded that 

MLOBM or MLEBM is very suitable and efficient in order to esti-

mate Weibull parameters for wind energy applications with time 

efficiency. 
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