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Abstract

In this article, a new computational approach is proposed to estimate the Weibull’s distribution parameters. The method is dependent on
the Maximum Likelihood (MLM) using the even and odd classes of wind speed’s distribution. This new approach is referred to either as
Maximum Likelihood with Odd Bins time series Method (MLOBM) or Maximum Likelihood with Even Bins time series Method
(MLEBM). It comprises the data size reduction, which in turns may lead to a fast processing time. This method was evaluated in a com-
parative analysis of MLOBM and MLEBM against the proposed theoretical model. The obtained results on the mean wind speed, standard
deviation, and power density on monthly and annual scales for different geographical locations may indicate that the MLOBM or MLEBM

may give a better estimate of the Weibull parameters with a low error.
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1. Introduction

Renewable energy sources such as wind and solar are naturally en-
vironmental clean; and can provide a sustainable solution to the
world energy demands [1]. The electrical energy from wind is gen-
erated from the kinetic energy of the wind due to the wind speed
that is a random variable. The knowledge of wind’s distribution is
critical for many applications of wind energy [2-5]. Various statis-
tical distribution models, including the log-normal model, bivariate
Gaussian distribution, Rayleigh distribution were used in the litera-
ture to characterize the probability distribution of the mean wind
speed [6-8]. However, Weibull distribution model is the most
widely used and designated as appropriate in representing the sta-
tistical properties of wind [9, 10]. Weibull distribution, a particular
case of the generalized gamma distribution law, is characterized by
the shape parameter K and the scale parameter C. The two Weibull
parameters help to determine wind characteristics and wind power
potential. Detailed knowledge of wind characteristics and distribu-
tion is crucial to selecting the optimal wind energy conversion sys-
tem that maximizes energy output and minimizes electricity gener-
ation costs [11]. Thus the correct estimation of parameters (K and
C) is very important in evaluating the wind power density of a pro-
spective wind farm location and assessing the economic viability of
a wind project [12]. Several methods have been proposed to esti-
mate the Weibull parameters namely the graphical method, the
Maximum Likelihood Method (MLM), the method of moments
(MOM), the empirical methods (EM), the modified maximum like-
lihood method (MMLM), the equivalent energy method (EEM) and
the energy pattern factor method (EPFM) [6], [13-24].

Akdag and Dinler [14] have compared the performance of the en-
ergy’s pattern factor method with some other methods such as
graphical method and Maximum Likelihood Method (MLM) based
on measured wind data of different locations in Turkey. Their re-
sults indicated that the energy’s pattern factor method is more suit-
able in comparing the mean wind speed and wind power. Jowder et
al., [15] used graphical and empirical methods to determine the
Weibull parameters using the wind speed distribution, mean wind
speed and wind power in kingdom of Bahrain at three heights of 10,
30 and 60 m. It was found that the empirical method was more ef-
ficient. Bonfils Safari in his study [6], has compared the least square
and maximum likelihood methods for the determination of the best
method in estimation of the Weibull’s parameters. The results
showed that the maximum likelihood method (MLM) outperformed
the least square method. Chang [16] compared the performance of
six different methods by computing the shape and scale parameters
for wind speed’s distribution. The probability density and cumula-
tive distribution functions were compared against the measured
data. According to the attained results, the maximum likelihood
method (MLM) have indicated that the modified maximum likeli-
hood method achieved the highest performances while the graph-
ical methods had the lowest performance. Rocha et al. [17] evalu-
ated the performance of seven different methods for the assessment
of the effectiveness the Weibull’s distribution parameters, using
some wind speed data collected in Camocim and Paracuru cities,
State of Ceard, in the northeast region of Brazil. The results showed
that:

i)  The equivalent energy method is an effective method to de-

termine the parameters (K and C).
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ii) The graphical and energy pattern factor methods are less ef-
fective to adjust distribution of wind speeds.

iii) The numerical iterative methods such as Maximum Likeli-
hood Method (MLM) and the method of modified maximum
likelihood are recommended where better accuracy is de-
sired.

In [18], Ahmed et al., evaluated the performance of four parameter
estimation methods of Weibull function for modeling monthly wind
speed distribution in Halabja, Pakistan. The results showed that
more accuracy can be achieved by empirical method. Along the
same lines, Azad et al. [19] used the seven methods applied by Ro-
chaetal. [17] to estimate Weibull parameters and used six statistical
tools to rank the methods precisely. They found that MOM and
MLM are the most efficient methods for estimating parameters of
Weibull distribution. Arslan et al. [20] compared MOM, ML and
the LMOM (L-moment method) for estimation of wind speed pa-
rameters relevant to Weibull distribution. They also found that
when the sample size is greater than 100, MLM is preferable in
comparison to other methods for the estimation of shape parameter
in terms of the MSE (mean square error) criteria. George [21] com-
pared the performance of five methods to calculate the shape and
scale parameters of Weibull function for determining the wind
speed distribution. The results indicated that the maximum likeli-
hood method (MLM) outperforms other methods in terms of repre-
senting the distribution of wind speed. Kidmo et al., [22] assessed
the ability of six methods to calculate Weibull parameters for rep-
resenting the distribution of wind speed in Garoua, Nigeria. Their
results demonstrated that the wind energy’s pattern factor method
had more suitability over other examined methods. Moreover, the
graphical method may not be adequate in determining the wind
speed’s distribution. Ilhan Usta [23] proposed an innovative esti-
mation method regarding Weibull parameters for wind energy ap-
plications. This innovative method, namely the probability
weighted moments based on the power (PWMBP) density method
is compared to six other commonly-used methods such as the max-
imum likelihood (MLM), modified maximum likelihood (MMLM),
graphical, moment, power density and probability weighted mo-
ments methods for actual wind data, based on different time periods
and regions according to various goodness of fit criteria. The ob-
tained results have indicated that PWMBP, MLM, EPM and MOM
may provide more accurate and efficient estimation than other
methods in the estimation of the parameters of Weibull distribution.
Mohammadi et al., [24] evaluated the effectiveness of six numerical
methods to determine the shape (k) and scale (c) parameters of
Weibull distribution functions for calculating the wind power den-
sity in four stations distributed in Alberta province of Canada. The
selected methods are graphical method (GP), empirical method of
Justus (EMJ), empirical method of Lysen (EML), energy’s pattern
factor method (EPFM), maximum likelihood method (MLM) and
modified maximum likelihood method (MMLM). The results indi-
cate that the precision of computed wind power density values
change when different parameters estimation methods are used to
determine the K and C parameters. EMJ, EML, EPFM and MLM
present very favorable efficiency while the GP method shows weak
ability for all stations.

From the above survey, it is clear that the rich existing body of re-
search agrees that the choice of the parameter estimation method is
critical in achieving a trustworthy evaluation of wind energy poten-
tial of a prospective wind farm. In addition, the Maximum Likeli-
hood Method (MLM) has proven to be a decent choice throughout
the literature especially when higher accuracy is preferred. How-
ever, in [25] and [26], the authors pointed out that the Maximum
Likelihood Method (MLM) is an iterative method. Consequently,
the MLM is expensive in processing time especially when the data
size is large. The study has shown that accuracy is then achieved at
the cost of computational efficiency. Thus, there is a need to devise
an estimation method that allies acceptable accuracy with compu-
tational efficiency. A study conducted by Yuan et al. [27] aimed at
comparing the performance of the maximum parameter estimation
method (MLE) and the moment parameter method. The results have
shown that for the extreme likelihood small data size outperformed

over the moment method. The likelihood had advantage for the
middle and large data size. Conclusively, for life data analysis, it
suggested the use of the maximum likelihood parameter method for
the two-parameter Weibull’s distribution.

A reduction in the data size will lead to a high computational effi-
ciency in time. The key parametersfor the estimation of Weibull
function are the average speed, standard deviation and power den-
sity. The main challenge is about the data filtering process and the
sampling size for acceptable estimation accuracy. According the
best of our knowledge, there is no existing work that proposes a
filtering MLM-based method that allies accuracy and efficiency for
Weibull parameter estimation in wind energy applications.

In order to reduce the data size and therefore the parameter estima-
tion time, while maintaining a high accuracy of wind power density,
mean wind speed and standard deviation, a new ML-based ap-
proach is proposed. Indeed, the series of wind speed is grouped in
classes (or bins), each class being represented by a bin in the distri-
bution histogram. The set of classes is divided into two subsets:
even and odd order speed classes. In this paper. The paper aims at
adequately determining the overall Weibull parameters (K and C)
using the subsets of odd and even speed classes. For each subset,
the Weibull parameters are estimated using the Maximum Likeli-
hood (ML) Method. The accuracy of the proposed methods was as-
sessed against some performance metrics such as the root mean
squared error (RMSE), and the correlation coefficient R2. Further-
more, the power density, the mean wind speed and the wind speed
standard deviation estimation capabilities are compared for some
selected cities alike Lome, Accra and Cotonou sites in the Gulf of
Guinea.

The rest of this paper is structured as follows. Section 2 describes
the applications of the Weibull distribution function in wind energy.
In Section 3, the estimation process of Weibull parameters using
the Maximum Likelihood Method (MLM) is described. Section 4
presents in detail the proposed approach to estimate Weibull param-
eters. In Section 5, statistical indicators for performance evaluation
are illustrated. The results and discussions along with the underly-
ing case study are given in Section 6. Finally, conclusions are drawn
in Section 7.

2. The weibull’s distribution function in some
wind energy applications

The wind speed data on a site are often vague to provide a clear
vision of the wind power potential available on it. Hence, there is a
need to compute key parameters that allow a quick assessment of
power characteristics hidden in the measured wind speed data [28].
Since wind is a stochastic valued event, it is better to describe the
variation of wind speeds by a statistical function. The probability
distribution function (pdf) of the two-parameter Weibull distribu-
tion (Equation (1)) is often used in characterizing the distribution
of wind speeds measured frequently over a period of a month, a
year, or several years [29-32].

o )]

Equation (2) gives the cumulative distribution function (cdf) of the
wind speed,

or{emf ]

The mean and standard deviation of the wind speed series are given
by equations (3) and (4):

— 1a
V=22 3

i=1
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Knowing the Weibull parameters (K and C), the mean and stand-
ard deviation can be quickly calculated using equations (5) and (6)
[33]:

- 1
V.=C T+ ) ®)

o, =C ~[F(1+£)—F2(l+i)r (6)
¢ K K

The wind power density is an important indicator to determine the
potential of wind resources and to describe the amount of wind en-
ergy at various wind speed values in a particular location. The
knowledge of wind power density is also useful to evaluate the
performance of wind turbines and nominate the optimum wind
turbines. Wind power density resembles the level of accessible en-
ergy at the site, which can be converted to electricity by using
wind turbines. The mean kinetic energy, available on a site per
unit time and per unit area is expressed in [34] as:

1 =, 1.
P=2p[ViH U =2 (7)
Where: p is the density of air (kg m-), V is the wind

speed and f V) is the probability distribution function (pdf)

of Weibull (1) and v * is the cubic mean wind speeds.
If the parameters (K and C) are estimated for a wind farm, mean
wind power density (7) are calculated in [33], [35] and given by.

1. 3
P =1ic r(1+?j ®)

Where: T represents the gamma function defined by the Euler in-
tegral of the second kind.

In short, the estimated Weibull parameters (K and C) are very im-
portant for applications in the field of wind energy. Many methods
were developed to estimate the parameters of the Weibull’s proba-
bility distribution function (pdf), namely method of moments, the
Maximum Likelihood Method (MLM), the least square method
and Chi-square method. Among these methods, the Maximum
Likelihood Method (MLM) is considered as one of the most relia-
ble [6, 36].

3. The weibull’s parameters using the maxi-
mum likelihood method

The Maximum Likelihood (ML) technique, with many required
features, is the most widely used technique among parameter esti-
mation techniques. The MLM has many large sample properties
that make it attractive for use; it is asymptotically consistent,
which means that as the sample size gets larger, the estimate con-
verges to the true values.

LetVv,V,V,, -V, bearandom sample size n drawn from a prob-

ability density function f ¢/ ,8) where ¢ is an unknown parame-

ter. The likelihood function of this random sample is the joint den-
sity of the n random variables and is a function of the unknown
parameter. Thus, according to [37], [38],

L =11t ¥,.6) )

The Maximum Likelihood (ML) estimator of ¢ say 0 is the value
of L that maximizes L or, equivalent, the logarithm of L . Often
but not always, the MLM of ¢ is a solution of equation (10)

dlog(L) -0 (10)

de
Now, we apply the MLM to estimate the Weibull parameters, K
and C. Consider the Weibull probability density function given in
equation (1), the likelihood function will be (11):

LV, V,V,-V,,K,C) =q(gj(\éjm -exp{—(\éy} (112)

Taking the logarithms of equation (11), differentiating with re-
spect to K and C, and equating to zero, one can obtain the estimat-
ing equations (12) and (13),

an)_n ¢ 14y )
K —K+§Ln(\/,)+C zlv Ln{,)=0 (12)
anL)_ n 1o,

< - K+C2§V' =0 (13)

After eliminating C, equations (12) and (13) become (14),

.
M,i,lim“)zo (14)
xiny,) K nis

The estimated value of K, is found by the use of standard iterative
procedures, which can be written as

X —x +9%, (15)

3V, “LnW,) .
e L T (16)

And

9'(K) =5V, LW,y — -3V L )-) .

SV )EY L)

The shape parameter K is derived using equations (16) and (17)
with equation (15) as:

[l
Ve "

Once K is determined, C can be estimated using equation (19) as
follows:

o TR
2V
H @)

4. The proposed method to estimate the
weibull’s parameters

The information contained in the wind measurements at a given
site can be represented as a histogram. Given V,,V, .V .-V, r

wind speeds measured on a site, this sequence can be grouped into
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m (m <r ) classes (Bin,, Bin, Bin,,---, Bin ,); let f, be the rela-
tive frequency of class Bin,, the graph (Bin, xf ) represents the

histogram of the distribution of relative frequencies of wind speed
on this site. It may represent the variation of the relative frequency
of wind speeds. If the speed intervals are dwindling, the limit of
the histogram is a probability density function (pdf). In practice,
the probability density function (pdf) of the wind speed is obtained
by fitting the histogram with a function. In the case of wind
speeds, a log-normal, gaussian or Rayleigh distribution function is
not always appropriate [39]. According to [40, 41], a better solu-
tion is to use the Weibull distribution [42]. The probability density
function (pdf) of the wind speed of a site can be approximated by
a Weibull pdf for measurements averaged over periods of 1 to 30
min [43]. [44] is the first atlas to use the Weibull distribution. The
use of Weibull distribution has become a standard for representing
the climatology of a wind site, especially thanks to [45]. This rep-
resentation has the advantage of allowing a quick assessment of
the mean power density, the standard deviation and mean wind
speed, for e.g., knowing the Weibull K and C parameters of the
site, as detailed in [45] and [46].

Several studies have shown that estimating Weibull parameters us-
ing the Maximum Likelihood Method (MLM) is reliable, how-
ever, this method according to Section 4, is an iterative method,
that is to say time consuming compared to other methods (graphic,
moment, empirical, modified maximum likelihood, equivalent en-
ergy and power density) especially for large numbers of wind
measurements.

Thus for all n samples of wind measurements (V,,V,\V,,---V,)

such that Vv, is non-zero, obtained during a period of time on a

given site, the application of the Maximum Likelihood Method
(MLM) (equations (18) and (19)) gives the shape and scale param-
eters K, and C,, respectively according to equations (20) and

(21).

SV o "’
KaJI = |:;Vln nN)‘||:IZ£ r1(\/I)\| (20)
SV n
Cau _|:I1n:| (21)

In order to reduce the estimation time of Weibull parameters ( K,
andC,, ) using the Maximum Likelihood Method (MLM) for its

desired high acuracy, we propose to reduce the number of data to
be processed while maintaining accurate power density, standard
deviation and mean wind speed. Indeed all samples of n wind
measurements (V,,V,,V,,---V, ) obtained during a period of time on

a given site are grouped into classes and represented as a histo-
gram (the graph (Bin, xf, ) ). The obtained wind speed classes can

be divided into two groups: the even speed classes ( Bin,, ) and the
odd classes ( Bin,,.,).

Samples of p wind speed measurements ( X,,X,, X ,---, X ) of
the group of even classes group (Bin,, ), subsets of (V,,V,V,,---V,
), are used to estimate the shape parameter ( K
rameter (C__ ) given in (22) and (23).

even

) and scale pa-

even

KoL = 22)

g e T
Co=|E— (23)

This new approach is referred to as Maximum Likelihood with
Even Bins time series Method (MLEBM).
Incase K, and C, allow a quick and accurate estimation of the

mean power density using (7) and (8). The mean wind speed is
given in (3) and (5); and the standard deviation in (4) and (6) for
the set (V,,V,,V,,---v, ) of the obtained wind measurements during

a period of time on a given site, is used for the estimation. The
time is reduced, since the size of the dataset (X, X, X,,---,X )

used to estimate these parameters is less than 100% of the size of
the full set (V,\V,,V,,---V, ) as expressed in (24).

.. (%) :100% (24)

Likewise, samples of g wind measurements (Y,,Y,.Y,,---Y, ) of
), subsets of (V,,\V,V,,
used to estimate K_, and C_, (shape and scale parameters) ac-
cording to equations (25) and (26)

the group of odd classes ( Bin -V ), are

2k 41

SY % In S In )
Kodd = |:§ :: (YI)]_|:§ (YI)] (25)
S g
iYIK"““ Koag

This new approach is referred to as Maximum Likelihood with
Odd Bins time series Method (MLOBM).

The use of K, and C,, may allow a quick and reasonably accu-
rate estimation of the mean power density. The equations that are
used for the computaions equations (7) and (8), the mean wind
speed (equations (3) and (5)) and the standard deviation (equations
(4) and (6)) for the set (V,,V,.V,,---V ) of wind measurements ob-
tained during a period on a given site. It is clear that the estimation
time is reduced, since the size of the dataset (Y,,Y,,Y,,---Y ) used
to estimate these parameters is less than 100% of the size of the
full set (V,\V,,V,,---V, ) as expressed by the equation (27).

d,, (%) :100% @7)

Thus, this study aims to verify if, from each speed class group
(even or odd) taken individually, it is possible to estimate the pa-
rameters (K and C) suitable for a fast and accurate estimation of
the mean power density, the mean wind speed and standard devia-
tion on the Lome, Accra and Cotonou sites in the Gulf of Guinea.

Some performance metrics are used to evaluate each method
namely the root mean squared error (RMSE), the correlation coef-
ficient R? and the absolute value of the relative error.

The RMSE parameter, whose ideal value is zero (0), gives the dif-
ference between the predicted or expected valuevp, and observed

value vo, for n, data samples [16], [24], [47]. It is given by equa-
tion (28)

RMSE = nii(vo‘ -vp, Y (28)

i=1
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The correlation coefficient whose ideal value is one (1) gives the
correlation between the predicted or expected and observed values
[16], [24], [47]. It is given by the relationship (29)

o e i) o i5)
Elw 0) S0, w0 )

(29)

The absolute value of the relative error between the predicted
value and the observed value is given by equation (30), it is con-
sidered acceptable if less or equal to 10% [24].

Error (%) =100

VO, —=Vp,
o ‘ (30)

5. The methodology

5.1. The data collection

The hourly mean wind data used for the sites Lomé, Accra and Co-
tonou were obtained through the meteorological database at
‘http://weather.uwyo.edu/area/meteorogram/' [48]. The coordinates
of the three sites are given in Table 1. The data is recorded every
day at one hour interval (this is the mean over the 10 minutes before
the hour) at a height of 10 m above the ground.

The provided data sheet in [48] includes, respectively, for each rec-
ord: the site name (STN), the date and recording time (TIME), at-
mospheric pressure (ALTM), room temperature (TMP) the dew
temperature (DEW), relative humidity (RH), wind direction (DIR),
wind speed (SPD), visibility (VIS) and the nature of clouds
(CLOUDS).

Data collected for the three stations cover the period from January
2000 to December 2012, a record length of approximately thirteen
(13) years. In our current work, we are interested only in the col-
umns TIME (recording date and time) and SPD (wind speed). Fig.
1 shows the geographical location of the three (03) sites.

Table 1: Coordinates of the Case Study Sites [48]
Coordinates

5.60N, 0.17W, 69 meters
6.35N, 2.38E, 9 meters
6.17N, 1.25E, 25 meters

Sites

Accra (Kotoka)
Cotonou (Cadjehoun)
Lomé (Tokain)

5.2. The data sampling and filtering

The mean wind speed data, the standard deviation data and mean
power density data observed on the three sites for even, odd and all
classes wind speed data subset of all data collected are shown in
Table 2. The average wind speed, standard deviation and power
density are similar for all three data classes considered. This is a
preliminary indication that Weibull parameters estimated from ei-
ther even or odd class speed data subset might yield similar average
wind speed, standard deviation and mean power density as the en-
tire dataset (all data).
Using the earlier described methods, we processed the 10-minutes
averaged hourly wind speed data collected on the sites Lomé, Accra
and Cotonou for 13 years. The data are sampled in monthly size
such that each month (the entire 13-years data set is grouped
monthly into 12 study periods: January, February, March, April,
May, June, July, August, September, October, November, Decem-
ber), each year from 2000 to 2012 (13 periods) and the 13-years
aggregate period amounting to 26 periods total. For each period of
the three sites considered, the wind speeds data are classified as fol-
lows.

e  The adjustment of even class ( Bin,, ), odd class ( Bin,, ,) and

all classes ( Bin, ) histograms with their corresponding
Weibull distribution functions;

The estimation time of the Weibull parameters by consider-
ing the even class ( Bin,, ), odd class (Bin,, ) and all classed

a0
(Bin, ) wind speed data;

e Details on fitting even class (Bin,, ), odd class (Bin,, ) and
all classes (Bin, ) histograms with three Weibull distribution
functions;

e  The comparison of the mean power densities calculated using
Weibull parameters estimated from even class ( Bin,, ), odd

class (Bin, ,) and all classes (Bin, ) wind speed data against

the observed power density;
The comparison of the mean wind speed calculated using
Weibull parameters estimated from even class (Bin,, ), odd

class (Bin,,,) and all classes (Bin, ) wind speed data against

the observed mean wind speed;
e  The comparison of the standard deviations calculated using
Weibull parameters estimated from even class ( Bin,, ), odd

class (Bin,,,) and all classes (Bin, ) wind speed data against

the observed standard deviation.
This classification is further given in Table 3.

6. Results and discussion

6.1. Histograms of the weibull functions: fitting the even,
odd and all classes

Fig. 2, Fig. 3 and Fig. 4 show the Weibull probability density fun-
tions respectively for Lomé, Accra and Cotonou that are adjusted to
the even class (), odd class (') and all classes () histograms corre-
sponding to the 13 years aggregated wind speed data. From these
three figures it may be concluded that each histogram is well fitted
since largest RMSE value is about 0.09573; and the lowest R2 value
is 0.92421.

For each period and each site of the study, the Weibull parameters
are estimated for series of wind speeds belonging to even ( Bin,, ),

odd (Bin,,,) and all (Bin, ) classes. The performance indicators R?

and RMSE used to assess the estimated Weibull parameters in
Lomé, Accra and Cotonou are recorded in Table 4.

The results in Table 4 may indicate that a good adjustment was
achieved for each histogram.

Fig. 1: Geograpgical Locations of the Study Sites.

Table 2: Mean Wind Speed, Wind Speed Standard Deviation and Mean
Wind Power Densty According for the Group of Data Series for the Three
Stations

Mean wind speed

Standard deviation Mean power den-

(mfs) (mis) sity (W/m?)
Sie aib Even Odd Al Even Odd Al Even Odd
s Bins Bins s Bins Bins Bins Bins Bins
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Table 3: Wind Speed Classes Adopted for the Three Sites.

Wind speed (m/s) Bins Type

10, 1[ Bing Even bin
[1, 2] Bin; Odd bin
[2, 3[ Bin, Even bin
[3, 4] Bing Odd bin
[4, 5[ Bin, Even bin
[5, 6[ Bins Odd bin
[6, 7[ Bing Even bin
[21], [22] Biny Odd bin

Wind speed probability density functions (Lome site)

I Histogram (Even=48.6527% All data)

[ Histogram (Odd=51.3473% All data)

I Histogram (Al data)

—©— Ewen : C= 4.3842m/s, K= 2.327, R?= 0.95596, RMSE= 0.08495
Odd : C= 3.994m/s K= 1.796, R?= 0.97365, RMSE= 0.095732

—*— All: C= 4.1785m/s K= 2.0148, R?= 0.97889, RMSE= 0.015588

probability

o
iy
&

2

10
Bins of Wind speed (m/s)

Fig. 2: Wind Speed Probability Density Function of Lomé Site for Whole
Years 2000 to 2012.

12 14 16

Wind speed probability density functions (Accra site)

I Histogram (Even=48.0635% All data)

[ Histogram (Odd=51.9365% All data)

I Histogram (Al data)

—©— Even : C= 5.2311m/s, K= 2.4526, R%= 0.92421, RMSE= 0.073792
Odd : C= 4.8468m/s K= 2.3461, R?= 0. 98965, RMSE= 0.082092

—+— All: C= 5.0172m/s K= 2.3825, R°= 0.97795, RMSE= 0.014208

probability
°
S
T

0 2 4 6 8 10 12 14 16 18

Bins of Wind speed (m/s)
Fig. 3: Wind Speed Probability Density Function of Accra Site for Whole
Years 2000 to 2012.

Wind speed probability density functions (Cotonou site)
045 r r r I Histogram (Even=49.6065% All data)
[ Histogram (Odd=50.3935% All data)
I Histogram (All data)
—O— Even : C= 4.6961m/s, K= 2,849, R’= 0.98469, RMSE= 0.092086
0dd : C= 4.5197mls K= 2.36, R= 0.94285, RMSE= 0.11002
—+— All C= 4.6061m/s K= 2.58, R’= 0.97149, RMSE= 0.018973

probability

Bins of Wind speed (m/s)
Fig. 4: Wind Speed Probability Density Function of Cotonou Site for
Whole Years 2000 to 2012.

The tuned parameters in the Weibull distribution function for each
period and site are tabulated. On the site of (Lomé, Accra, Cotonou)
the highest RMSE value is 0.1469. For the march’s data March,
Cotonou site recorded a correlation coefficient of R? = 0.9151; and
the lowest R? value is 0.6022 obtained for the same period in 2005
on the Lome’s site (with RMSE = 0.1302).

6.2. Weibull parameter estimation time

The estimation time of Weibull parameters (K and C) was per-
formed by using the Maximum Likelihood Method (MLM). A com-
parison was conducted on the derived times of Weibull parameters
(K and C) for even (Bin,, ), odd (Bin, ,) and all (Bin, ) classes of
wind speed data. The proposed approach is implemented in Matlab
on a computer processor (Intel® Celeron® B840 CPU @ 1.90 GHz
1.90 GHz) with a 4 GB RAM. The Table 5, Table 6 and Table 7
illustrate the processing times of the Weibull parameters estimation
for the three configurations of speed data ( Bin,, , Bin, ,and Bin, )
in Lomé , Accra and Cotonou respectively. The results in Tables 5,
6 and 7, may point out that the processing time of all (100%) speed
wind data ( Bin, -class) in respect to a given period is approximately

twice that of the even ( Bin,, ) and odd ( Bin,, ,) class data. For ex-

ample, it can be noted in the Table 4, for the period of January in

Lomé, K, and C_ (all class data shape and scale Weibull param-
eters) are estimated in 9 ms; while K , and C_, (odd class data
shape and scale Weibull parameters) in 5.5 ms, and K__ and C_,

(even class data shape and scale Weibull parameters) in 4.8 ms.

odd

6.3. Adjustment of the distribution histograms with
weibull distribution functions

The work evaluates the time for computing the Weibull parameters
based on the proposed sampling. It is observed that a less computa-
tion time was achieved based on the proposed Maximum Likeli-
hood Method (MLM) to estimate the Weibull parameters with ac-
ceptable accuracy on the various sites located in the Gulf of Guinea
Lome, Accra and Cotonou. For each site; and for a given period,
the wind speeds series are divided into two groups of classes (even
and odd classes). The parameters of three Weibull functions are es-
timated for even class (K,, and C,, ), odd class (K, and C_,)
and for all class (K, and C,, ) data. Performance indicators RMSE
and R? of the Weibull adjustment distribution functions of all the
wind measurement data are calculated and presented in Tables 8, 9
and 10. Figures 5, 6 and 7 present (a) the three Weibull probality
density functions and (b) the three Weibull cumulative distribution
functions respectively for Lomé, Accra and Cotonou over 13-year
time period (2000 -2012). For this study period and for all locations,
figures 5, 6 and 7 show:
e A quasi-perfect fitting of the distribution histograms by the
pdf and cdf curves obtained using the entire dataset (
K, =20148 and C, =4.1785m/s for Lomé, K, =2.3825

and C,=50172m/s for Accra, and K, =2.5800 and

C, =4.6061m/s for Cotonou), with minimum correlation
coefficient R? of 0.97149 and maximum RMSE of 0.018973;
e Anacceptable fitting of the distribution histograms by the pdf
and cdf curves obtained using the even class dataset (
K, =23270and C, =4.3842m/s for Lomé, K_, =2.4526

eve even

and C, =5.2311m/s for Accra, and K_, =2.8490 and
C,.=4.6961m/s for Cotonou), with minimum correlation

coefficient R? of 0.9382 and maximum RMSE of 0.02716;

e Anacceptable fitting of the distribution histograms by the pdf
and cdf curves obtained using the odd class dataset (
K, =17960and C, =3.9940m/s for Lomé, K, =2.3461

and C, =48468m/s for Accra, and K, =2.360 and
C,, =45197m/s for Cotonou), with minimum correlation

coefficient R? of 0.9520 and maximum RMSE of 0.02075.

e Tables 8, 9 and 10 show the Weibull parameters estimated by
the Maximum Likelihood Method (MLM) for three sets of
speed data ( Bin,, , Bin,, and Bin, ) and the results of statis-

tical tests respectively for Lome, Accra and Cotonou.

even
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L A Co Accra
[0} cc to- All data Even bins data Odd bins data
m ra no Period Time (s) td (%)  Time (s) td (%)  Time (s)
é u 2004 0.0058 48.241  0.0035 51.759  0.0037
Even Odd Even Odd Even Odd 2005 0.0052 46.8777 0.0032 53.1223 0.0035
bins bins bins bins bins bins 2006 0.0054 45.9614 0.0031 54.0386 0.0036
data data data data data data 2007 0.0038 46.8401 0.0025 53.1599 0.0031
R R R R R R 2008 0.0046 42.7759 0.0025 57.2241 0.0033
Pe- M R M R M R M R M R M R 2009 0.0069 43.0155 0.0032 56.9845 0.0048
riod S 2 S 2 S 2 S 2 SE 2 S 2 2010 0.0065 49.4031 0.0046 50.5969 0.0045
E E E E E 2011 0.0059 51.1494 0.0036 48.8506 0.0036
6 6 4 0 0 6 3 5 4 8 2 2012 0.0064 49.4571 0.0037 50.5429 0.0042
7 5 7 9 9 0 4 5 0 8 2
0. 6. 0. 0. 0 0 0 O 0. 0 O Table 7: Time Calculating Weibull Parameters for Cotonou Site
1 9 6 0 6 9 6 1 9 10 8 1 3 All data Even bins data Odd bins data
8 8 3 5 7 4 7 5 90 2 8 4 Period Time () td (%)  Time (s) td (%)  Time ()
2 4 9 9 8 2 79 9 3 2 Jan, 0.0076 49.3485 0.0030 50.6515 0.0035
0.0 0 0 0 0 0 0O 0. 0 0O Feb. 0.0090 49.6431 0.0052 50.3569 0.0059
200 0 9 1 9 09 09 0 9 19 Mar. 0.0087 49.9471 0.0049 50.0529 0.0054
5 9 5 05 98 8 9 07 10 Apr. 0.0087 49.9408 0.0058 50.0592 0.0062
79 28 6 3 93 97 8 4 May 0.0082 49.1730 0.0046 50.8270 0.0055
3 6 3 1 2 5 8 6 70 4 Jun. 0.0079 50.8499 0.0048 49.1501 0.0041
Jul. 0.0084 49.2415 0.0043 50.7585 0.0053
Aug. 0.0088 48.5408 0.0056 51.4592 0.0059
Sep. 0.0114 48.4371 0.0048 51.5629 0.0058
Oct. 0.0078 48.8112 0.0046 51.1888 0.0048
Table 5: Time Calculating Weibull Parameters for Lomé Site Nov. 0.0083 50.7937  0.0047 49.2063  0.0051
L om? Dec. 00084  50.4787 0.0050 495213 0.0052
All data Even bins data 0Odd bins data Whole years 0.0935 49.6065 0.0342 50.3935 0.0455
. . 0 B 0 . 2000 0.0042 51.3073 0.0030 48.6927 0.0027
Period Time (s) td (%)  Time (s) td (%)  Time (s)
2001 0.0071 52.0724 0.0043 47.9276 0.0041
Jan. 0.0090 49,7089 0.0048 50.2911 0.0055
2002 0.0073 51.1300 0.0046 48.8700 0.0042
Feb. 0.0091 49.6086 0.0048 50.3914 0.0049
2003 0.0070 51.2827 0.0041 48.7173 0.0043
Mar. 0.0070 49,7258 0.0052 50.2742 0.0056
2004 0.0070 48.9999 0.0041 51.0001 0.0045
Apr. 0.0093 48.9074 0.0053 51.0926 0.0051
2005 0.0069 47.7298 0.0040 52.2702 0.0044
May 0.0109 48.3258 0.005 51.6742 0.0058
2006 0.0059 48.0932 0.0036 51.9068 0.0039
Jun. 0.0080 48.4074 0.0051 51.5926 0.0060
2007 0.0081 49.6683 0.0048 50.3317 0.0053
Jul. 0.0082 49.0373 0.0056 50.9627 0.0057
2008 0.0087 48.6081 0.0053 51.3919 0.0058
Aug. 0.0075 48.2338 0.0053 51.7662 0.0065
2009 0.0092 49.8892 0.0061 50.1108 0.0065
Sep. 0.0084 49.5426 0.0057 50.4574 0.0053
2010 0.0087 49.6608 0.0056 50.3392 0.0060
Oct. 0.0118 46.6527 0.0051 53.3473 0.0069
2011 0.0096 49.0356 0.0042 50.9644 0.0052
Nov. 0.0105 47.6500 0.0046 52.3500 0.0055 2012 0.0117 49.3521 00073 50.6479 00078
Dec. 0.0105 48.1620 0.0046 51.8380 0.0059 : : : . -
Whole years  0.0948 48.6527 0.0309 51.3473 0.0495
2000 0.0062 49.1760 0.0039 50.824 0.0049 o5 a-Wind speed probability density functions (Lome site)
2001 0.0067 49.1602 0.0043 50.8398 0.0059 | I Histogram (All data)
2002 0.0043 49.9612 0.0030 50.0388 0.0027 0.4 Even : C= 4.3842m/s, K= 2.327, R?= 0.93828, RMSE= 0.027169
2003 0.0050 47.0345 0.0034 52.9655 0.0034 - —&— Odd : C= 3.994m/s K= 1.796, R?= 0.97208, RMSE= 0.017432
2004 0.0064 51.4947 0.0038 48.5053 0.0039 % 0.3 All : C= 4.1785m/s K= 2.0148, R?= 0.97889, RMSE= 0.015588
2005 0.0063 52.9999 0.0033 47.0001 0.00400 g
2006 0.0055 48.8818 0.0035 51.1182 0.0036
2007 0.0075 52.9132 0.0042 47.0868 0.0046
2008 0.0100 46.9015 0.0061 53.0985 0.0076
2009 0.0101 47.2186 0.0071 52.7814 0.0076 wind speed (mis
2010 0.0087 47.1710 0.0070 52.829  0.0076 bWind u ative distribution funct N )
2011 0.0100 47.3443 0.0069 52.6557 0.0080 - mn speet cumulative distribution nc |0ns( ome si E)
2012 0.0073 48.7763 0.0064 51.2237 0.0062

Table 6: Time Calculating Weibull Parameters for Accra Site

Accra
All data Even bins data Odd bins data
Period Time (s) td (%)  Time (s) td (%)  Time (s)
Jan. 0.0069 47.8993 0.0037 52.1007 0.0039
Feb. 0.0053 47.7375 0.0033 52.2625 0.0037
Mar. 0.0058 49.2586 0.0036 50.7414 0.0045
Apr. 0.0053 49.1022 0.0033 50.8978 0.0039
May 0.0062 51.1736 0.0034 48.8264 0.0043
Jun. 0.0057 48.3131 0.0034 51.6869 0.0037
Jul. 0.0070 44.8792 0.0034 55.1208 0.0046
Aug. 0.0067 46.0611 0.0039 53.9389 0.0047
Sep. 0.0058 48.0346 0.0034 51.9654 0.0039
Oct. 0.0057 48.4899 0.0032 51.5101 0.0035
Nov. 0.0066 48.5719 0.0034 51.4281 0.0041
Dec. 0.0077 47.8538 0.0036 52.1462 0.0039
Whole years 0.0381 48.0635 0.0154 51.9365 0.0207
2000 0.0032 51.0446 0.0027 48.9554 0.0025
2001 0.0035 53.4393 0.0025 46.5607 0.0025
2002 0.0035 53.8105 0.0029 46.1895 0.0025
2003 0.0076 48.4461 0.0037 51.5539 0.0039

Cumulative probability

4 6
Wind sneed (m/s

Fig. 5: Suitability of Weibull Distributions for Lomé Site for Whole Years
2000 to 2012.
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Fig. 11: Wind Power Density Obtained from the Measured Data (Eq. (7))
Versus Those Obtained from the Weibull Models (Eg. (8)), on A Yearly
Basis for Accra Site.
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Fig. 12: Wind Power Density Obtained from the Measured Data (Eq. (7))
Versus Those Obtained from the Weibull Models (Eg. (8)), on A Monthly
Basis for Cotonou Site.
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Fig. 13: Wind Power Density Obtained from the Measured Data (Eq. (7))
Versus Those Obtained from the Weibull Models (Eq. (8)), on A Yearly
Basis for Cotonou Site.
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6.4. Comparison of estimates of wind power density

One of the objectives of this work is to determine adequate Weibull
parameters (K and C) among K, and C K, and C_ , and

even even ! odd odd !

K, and C, ofeach speed class group (even, odd or all) for a quick

computation of the mean wind power density on the sites (Lomé,
Accra and Cotonou in the Gulf of Guinea). As exposed in section
3, obtaining the appropriate Weibull parameters (K and C) of a wind
site should lead to an accurate estimate of the mean power density.
In this study, Weibull parameters from even class data (K, and

C...), odd class data (K, and C

C, ) are estimated by the MLM. These parameters estimated for
each period (26 periods total) are used to calculate the mean wind

power density on each site (Lomé, Accra and Cotonou) according
to equation (8). Figures 8, 9, 10, 11, 12 and 13 compare the mean

) and all class data (K, and

odd

power densities calculated (equation 8) and observed (equation 7)
respectively on a monthly scale and on an annual basis in Lomé
(Figures 8 and 9), Accra (Figures 10 and 11) and Cotonou (Figures
12 and 13).
The absolute value of the relative errors on the mean wind power
densities estimated over 26 periods for the three study sites are cal-
culated and presented in Table 11.
In the case of Lomé:

e The parameters K, and C, were used to calculate the

mean wind power density with the lowest relative error for 8

periods out of 26;
e The parameters K, and C_ were used to calculate the

mean wind power density with the lowest relative error for 3
periods out of 26;

e The parameters K, and C_, were used to calculate the
mean wind power density with the lowest relative error for
15 times out of 26.

e Thus the estimated parameters K , and C_, enabled a fast
and accurate computation of the mean wind power density
compared to others on the Lomé site. This is confirmed by
the fact that the least mean relative error of 5.9091% commit-
ted in the calculation of mean wind power densities over 26
periods is obtained using K, and C_, .

e Inthe case of Accra:

e The parameters K, and C, were used to calculate the
mean wind power density with the lowest relative error for 7

periods out of 26;
e The parameters K, and C_ were used to calculate the

mean wind power density with the lowest relative error for 1
period out of 26;

odd

e The parameters Ko and Cou were used to calculate the
mean wind power density with the lowest relative error for
18 times out of 26.
Thus the estimated parameters K, and C_, enabled a fast and ac-
curate computation of the mean wind power density compared to
others on the Accra site. This is confirmed by the fact that the least
mean relative error of 4.5101% committed in the calculation of
mean wind power densities over 26 periods is obtained using K,

and C_, .
In the case of Cotonou:

odd

e The parameters Ka and Ca were used to calculate the
mean wind power density with the lowest relative error for
11 periods out of 26;

e The parameters Ko and Com were used to calculate the
mean wind power density with the lowest relative error for 5
periods out of 26;

e The parameters Ko and Cou were used to calculate the
mean wind power density with the lowest relative error for

10 times out of 26.
Thus the estimated parameters K, and C_, enabled a fast and ac-
curate computation of the mean wind power density compared to
others on the Cotonou site. This is confirmed by the fact that the
least mean relative error of 2.9566% incurred in the calculation of
mean wind power densities over 26 periods is obtained using K,

and C_, .

odd

6.5. The estimated mean wind speed

The quick assessment of the mean wind speed at a prospective wind
farm location with a small error is important. It is crucial to identify
adequate Weibull parameters (K and C) among K, and C

K. andC

odd odd 1

odd or all) for a quick computation of the mean wind speed on the

and K, and C, of each speed class group (even,
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sites (Lomé, Accra and Cotonou in the Gulf of Guinea). As exposed
in Section 3, obtaining the appropriate Weibull parameters (K and
C) of a wind site should lead to an accurate estimate of the mean
wind speed. In this study, Weibull parameters from even class data
(K, andC, ), odd class data (K, and C_,) and all class data (

K, and C, ) are estimated by the MLM. These parameters esti-

mated for each period (26 periods total) are used to calculate the
mean wind speed on each site (Lomé, Accra and Cotonou) accord-
ing to equation (5). Figures 14, 15, 16, 17, 18 and 19 compare the
mean wind speed calculated (Equation (5)) and observed (equation
3) respectively on a monthly scale and on an annual basis in Lome
(Figures 14 and 15), Accra (Figures 16 and 17) and Cotonou (Fig-
ures 18 and 19).

The absolute value of the relative errors on the mean wind speed
estimated over 26 periods for the three study sites are computed and
presented in Table 12.

In the case of Lomé:

e  The parameters Ka and Ca were utilized to calculate the
mean wind speed with the lowest relative error for 1 periods
out of 26;

e The parameters Ko and Com helped in calculating the
mean wind speed with the lowest relative error for 3 periods
out of 26;

e  The parameters Ko and Cou were used to calculate the
mean wind speed with the lowest relative error for 22 periods
out of 26.
Thus the estimated parameters K, and C_, enabled a fast and ac-
curate computation of the mean wind speed compared to others on
the Lomé site. This is confirmed by the fact that the least mean rel-
ative error of 2.8488% committed in the calculation of mean wind
speed over 26 periods is obtained using K_, and C_,, .

In the case of Accra:

e Only Ko and Cou led to the mean wind speed with the low-
est relative error for 26 priods out of 26.
Thus the estimated parameters K_, and C_, enabled a fast and ac-
curate computation of the mean wind speed compared to others on
the Accra site. This is confirmed by the fact that the least mean rel-
ative error of 3.7579% committed in the calculation of mean wind
speed over 26 periods is obtained using K_, and C_,, .

In the case of Cotonou:

odd odd

e The parameters Ka and Ca were used to calculate the
mean wind speed with the lowest relative error for 1 periods
out of 26;

e  The parameters Ko and Com were used to calculate the
mean wind speed with the lowest relative error for 3 periods
out of 26;

e The parameters Ko and Cou were used to calculate the
mean wind speed with the lowest relative error for 22 periods
out of 26.

Thus the estimated parameters K, and C_, enabled a fast and ac-

curate computation of the mean wind speed compared to others on
the Cotonou site. This is confirmed by the fact that the least mean
relative error of 1.2126% committed in the calculation of mean
wind speed over 26 periods is obtained using K, and C_,

odd

6.6. Comparison of the estimateds tandard deviations

As exposed in Section 3, obtaining the appropriate Weibull param-
eters (K and C) of a wind site should lead to an accurate estimate of
the standard deviation of wind speeds.

In this study, Weibull parameters from even class data (K, and

C..), odd class data (K, and C

even odd

) and all class data (K, and

odd

C, ) are estimated by the MLM. These parameters are estimated

for each period (26 periods total) are used to calculate the standard
deviation on each site (Lome, Accra and Cotonou) according to
equation (6). Figures 20, 21, 22, 23, 24 and 25 compare the standard
deviations calculated (equation 6) and observed (equation 4) re-
spectively on a monthly scale and on an annual basis in Lome (Fig-
ures 20 and 21), Accra (Figures 22 and 23) and Cotonou (Figures
24 and 25).

The absolute value of the relative errors on the standard deviation
estimated over 26 periods for the three study sites are computed and
presented in Table 13.

In the case of Lomé:

o Ku and Cou are the only ones who led to a standard devia-

tion with the lowest relative error for 26 priods out of 26.
Thus the estimated parameters K, and C_, enabled a fast and ac-
curate computation of the mean wind speed compared to others on

the Lome site. This is confirmed by the fact that the least mean rel-
ative error of 2.3424% committed in the calculation of mean wind

speed over 26 periods is obtained using K, and C_, .
In the case of Accra:

odd

odd

e The parameters Ka and Ca were used to calculate the
standard deviation with the lowest relative error for 1 periods
out of 26;

e The parameters Ko and Com were used to calculate the
standard deviation with the lowest relative error for 17 peri-
ods out of 26;

e  The parameters Ko and Cou were used to calculate the
standard deviation with the lowest relative error for 7 periods

out of 26.
Thus the estimated parameters K, and C,, enabled a fast and ac-

curate computation of the standard deviation compared to others on
the Accra site. This is confirmed by the fact that the least mean rel-
ative error of 9.6215%% committed in the calculation of the stand-
ard deviation over 26 periods is obtained using K, and C

In the case of Cotonou:

e The parameters Ka and Ca were used to calculate the
mean wind speed with the lowest relative error for 1 periods
out of 26;

e  The parameters Ko and Con were used to calculate the
mean wind speed with the lowest relative error for 3 periods
out of 26;

e The parameters Ko and Cou were used to calculate the
mean wind speed with the lowest relative error for 22 periods

out of 26.
Thus the estimated parameters K

.« et C_, enabled a fast and ac-

curate computation of the mean wind speed compared to others on
the Cotonou site. This is confirmed by the fact that the least mean
relative error of 1.2126% committed in the calculation of mean
wind speed over 26 periods is obtained using K_, and C_, .

The case studies conducted in this paper on three sites (Lomé, Accra
and Cotonou) located in the Gulf of Guinea reveals that:

odd

e  The estimation time of the Weibull parameters Ko and Cou

K C . .
or "= and =, using our approach, is reduced compared to

the time required to estimate Ka and Ca for each period
and site.

e  The parameters Ko and Cou estimated from series of odd
classes for a given period are adequate for a quick and a fairly
accurate calculation of the mean wind power density, mean
wind speed and the standard deviation of wind speeds on the
Lomé site.
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7. Conclusion

In this study, a new ML-based approach is proposed to estimate the
Weibull’s distribution parameters with time efficient assessment.
These parameters are namely the mean wind power density, mean
wind speed and wind speed standard deviation. This new approach
consists in applying the classic MLM to either even or odd class
wind speed data subset with the objective of reducing the prediction
error and gain in the computational time. This new approach is ei-
ther referred to as Maximum Likelihood with Odd Bins time series
Method (MLOBM) or Maximum Likelihood with Even Bins time
series Method (MLEBM). MLOBM and MLEBM are compared
with the Maximum Likelihood Method (MLM) considering power
density, standard deviation and mean wind speed estimation capa-
bility for different geographical locations. It is worth to indicate that
superiority of MLOBM or MLEBM over MLM can be obviously
seen with estimation capability of power density, mean wind speed
and wind speed standard deviation. Then it is concluded that
MLOBM or MLEBM is very suitable and efficient in order to esti-
mate Weibull parameters for wind energy applications with time
efficiency.
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