
 
Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted 

use, distribution, and reproduction in any medium, provided the original work is properly cited. 
 

 

International Journal of Engineering & Technology, 7 (4.8) (2018) 692-696 
 

International Journal of Engineering & Technology 
 

Website:www.sciencepubco.com/index.php/IJET 
 

Research paper 
 

 

 

 

Structural and Topological Properties of the Most Compact 

Toroidal-Lattice Communication Networks 
 

Oleksii Tyrtyshnikov1*, Maryna Mavrina2, Ilona Chernytska3, Serhii Voloshko4 

 
1Poltava National Technical Yuri Kondratyuk University, Ukraine 
2Poltava National Technical Yuri Kondratyuk University, Ukraine 
3Poltava National Technical Yuri Kondratyuk University, Ukraine 
4Poltava National Technical Yuri Kondratyuk University, Ukraine 

*Corresponding author E-mail: alexey_it@ukr.net 

 

 

Abstract 
 

In this article a simple analytical description of the structural-topological properties of toroidal-lattice communication networks is 

proposed, which allows accurately estimate the main topological metrics of the network at the stage of its topological synthesis. It is 

shown, that with an increase in the size of a toroidal-lattice network, the number of possible variants for its construction (configurations) 

increases rapidly. Therefore, it is necessary to solve the problem of finding the most compact structure in the process of topological 

synthesis, taking into account restrictions on the topological cost of the network. A method for searching for such a structure is described. 
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1. Introduction 

In modern multiprocessor computer systems communication 

networks (CN), whose topologies form a class of toroidal-lattice 

structures (TLS) – n-dimensional tors based on rectangular n-

lattice or hypertors, are widely used [1-6]. 

The attractiveness of TLS is due to the following properties: 

- the configuration of n-lattice topological structures corresponds 

to the specifics of scientific and technical tasks that require 

processing of large arrays of various dimensions [2, 4, 6]; 

- non-univalent n-lattices are easily transformed into univalent n-

tors by adding a relatively small number of additional connections 

to their structure [7, 8]; 

- TLS provide many opportunities for their optimization (choosing 

the ratio between the topological cost of the CN and the values of 

the metrics that characterize its reliability and the maximum delay 

in the transmission of messages) [7-10]; 

- the routing of messages in the CN TLS is carried out on the basis 

of a simple cubic function, which provides the possibility of a 

simple hardware implementation of an adaptive coordinate-by-

order routing algorithm [2, 4, 11]. 

In modern multiprocessor computer systems, there is an obvious 

tendency to an increase in the dimension and complexity of the 

CN structure [1]. 

Accordingly, obtaining a generalized and formalized description 

of TLS with the aim of automating their topological synthesis, 

taking into account the features of various subclasses of these 

structures, looks quite relevant. 

The aim of this work is to obtain the method of search for TLS, 

the best for the given size of the network and its topological cost. 

Achieving this aim involves the following tasks: 

- obtaining a set of analytical expressions describing the main 

topological metrics of TLS; 

- clarification of the formulation of the problem of synthesizing 

such structures, taking into account the possibility of optimizing 

them (achieving the desired ratio between the values of the main 

topological metrics characterizing the speed, reliability and cost of 

the network); 

- development of a formal description of the method. 

2. Statement of the problem of topological 

synthesis of a communication toroidal-lattice 

network 

The task of synthesizing CN TLS can be formulated as the search 

for the optimal variant of distribution of a certain number of I 

connections between N network nodes with a fixed (or bounded 

above) order of nodes d while maintaining the cubic routing 

function [7, 8]. 

The best option is to minimize the maximum diameter D and 

maximize the width of the bisection B. The maximum diameter 

value is an estimate of the maximum message transfer delay in the 

network. The width of the bisection is equal to the minimum 

number of connections between any two halves of the structure; 

therefore, it can be used at the topological level to assess the 

reliability of the network [8]. The network size is most often 

chosen as N = 2n, which ensures the addressing of network nodes 

using all possible combinations of an n-bit binary address code. 

The relationship between N, I, d for TLS, as for all univalent 

structures, is described by the simple relation I = N*d/2 [8]. The 

value of d determines the topological dimension of the univalent 

TLS [11, 12], and the value of I is a simple estimate of its 

topological cost [7, 8]. 

Note that the basic graphs for constructing TLS are non-univalent 

rectangular n-lattices, the dimension of which is determined by the 

minimum order value of their nodes [12, 13]. 
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Obviously, rectangular n-lattices and n-tors can have the same or 

different number of nodes in each of their dimensions. The first 

will be called “cubic”, the second, respectively, “non-cubic”. 

3. Estimation of metrics of rectangular n-

lattices and n-tors on their basis 

A set of known expressions [2, 6, 10] for determining metrics of 

cubic n-lattices of dimension n = 1÷3 (the linear structure is 

considered here as a one-dimensional lattice) is presented in table 

1 (rows 1-3). 

The size of the n-dimensional cubic lattice here is determined by 

the parameter m ≥ 3 (the number of nodes in the edge of the lattice) 

to the power n. 

It is easy to obtain expressions for the metrics of a generalized n-

dimensional cubic lattice by using the method of mathematical 

induction: 

 
nN m= , 

2d n n=  , 
1( 1)nI nm m−= − ,                                                                         (1) 

( 1)D n m= − , 
1nB m N m−= = . 

 

Similarly, expressions for the metrics of d-dimensional tors based 

on cubic lattices of dimension n = d/2 were obtained. The initial 

expressions for TLS of dimension d = 2, 4, 6 are presented in table 

2 (rows 1-3) [2, 6, 10]. 
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It should also be noted, that in the framework of the previously 

formulated approach, the introduction of toroidal connections into 

the base n-lattice leads to a doubling of its dimension. However, 

d-dimensional TLS are often called d/2-dimensional tors [2, 4, 6, 

12, 13], which is due to the peculiarities of the visual presentation 

of these structures and, accordingly, may be the source of some 

misunderstandings. 

If a rectangular n-lattice is “non-cubic” its size can be defined as 

1

; 3
n

i i

i

N m m
=

=  . 

The set of expressions for the metrics of such n-lattice of 

dimension n = 1÷3 is presented in table 1 (rows 1, 4, 5). 

Expressions for metrics of n-dimensional non-cubic lattice: 
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Accordingly, the expressions for the metrics of the d-dimensional 

tor based on the n-dimensional non-cubic lattice will be obtained 

on the basis of the set of expressions presented in rows 1, 4, 5 of 

table 2: 
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In fig. 1. 2D-torus is shown (N = 16). Note that in reality this 

structure has the dimension d = 4. 

 

 
 

Fig. 1: 2D-tor (N = 16) 

 

Table 1: N-lattice metrics (n=1÷3) 

№ n N I D d В K 

1 1 m 
1

1 1m m
m

 
− = − 

 
 m-1 1, 2 1 

1
1

m
−  

2 2 m2 2m(m-1) 2(m-1) 2÷4 M 

3 3 m3 3m2(m-1) 3(m-1) 3÷6 m2 

4 2 m1m2 1 2

1 2

1 1
2m m

m m

  
 − +   

  

 m1+m2-2 2÷4 min(m1, m2) 1 2

1 1

1
2

m m
+

−  

5 3 m1m2m3 1 2 3

1 2 3

1 1 1
3m m m

m m m

  
 − + +   

  

 m1+m2+m3-3 3÷6 min(m1m2, m2m3, m1m3) 1 2 3

1 1 1

1
3

m m m
+ +

−  

 



694 International Journal of Engineering & Technology 

 
Table 2: Metrics of d-tors based on rectangular n-lattices (n=1÷3) 

№ d N I D В 

1 2 m m [m/2] 2 

2 4 m2 2m2 2[m/2] 2m 

3 6 m3 3m3 3[m/2] 2m2 

4 4 m1m2 2m1m2 [m1/2]+[m2/2] 2min(m1, m2) 

5 6 m1m2m3 3m1m2m3 [m1/2]+[m2/2]+[m3/2] 2min(m1m2, m2m3, m1m3) 

 

From the sets of expressions (4) and (3) it is easy to get (2) and (1) 

respectively, which confirms their correctness. Thus, the 

topological metrics of TLS and their basic lattices, cubic and non-

cubic, can be accurately estimated in the process of topological 

synthesis of CN using simple analytical expressions. 

4. Boolean hypercube as a toroidal--lattice 

structure 

Boolean hypercube in CN topology is called n-cube, which has 

only two nodes in each of the n edges. Its metrics are described by 

well-known expressions: 

 

2dN = , 
12dI d −= , 

D d= ,                                                                                         (5) 
12 2dB N−= = . 

 

From comparison of (5) and (2) it can be seen that for boolean 

hypercube of any even dimension d, there exists an equivalent 

cubic TLS with m = 4, since equality /22 dd m=  holds only for 

the specified value m. 

Accordingly, for a boolean hypercube of any odd dimension d, 

there exists an equivalent non-cubic TLS, which has 2 nodes in 

only one of d/2 dimensions, and 4 in each of the others. On this 

basis, boolean hypercubes of various dimensions can be 

considered as TLS for which the “hypercubicity condition” is 

satisfied – 2log .d N=  
As an example, in fig. 2 shows a 4D hypercube of size N = 16. It 

is easy to verify that this structure and the 2D torus shown in Fig. 

1. are equivalent. 

 
Fig. : 4D hypercube (N = 16) 

 

Note that the “hypercubic” method of scaling (increase in size) 

TLS leads to an increase in the order of all nodes of the structure 

by one for each doubling of their number [2]. At the same time, 

the width of the binary address code also increases by one, the 

topological cost of the network and the hardware cost of routing 

increase significantly, but the cubic routing rule retains its classic 

look (there are no forbidden ways to send messages) [11]. In fact, 

this method requires an increase in the number of ports of the 

message nodal processors as the number of network nodes 

increases, which makes it extremely difficult to scale the 

hypercubic structure. 

Scaling homogeneous TLS while maintaining a fixed order of 

nodes requires only breaking and then reinstalling some part of the 

network connections. 

In this case, topological cost and hardware costs for routing 

increase much slower [11], however, prohibited message transfer 

paths appear, and the values of D, B metrics are always worse in 

general than the hypercubic structure of the same size N. 

5. Calculation of metrics of toroidal-lattice 

structures and analysis of the obtained results. 

Table 3 presents the results of calculating the metrics of the 

construction options (configurations) of some TLS (N = 16÷4096) 

based on expressions (1-4) for all possible values 

2log 4.N d   

From the analysis of the results obtained, the following 

conclusions can be made: 

1. With an increase in the size of the TLS, the number of its 

possible configurations is rapidly increasing. So, if N = 16 it can 

be represented only in a single “hypercubic” form, and if N = 

4096, then 32 variants of presentation are possible. 

2. From the point of view of achieving the best values of D, B the 

“hypercubic” version of its construction is optimal, however, it 

has the maximum topological value (the values in the rows of 

table 3 describing such options are underlined). 

3. For TLS of any size 2n ≥ 32, except for the indicated optimal 

version of construction, there are its “sub-optimal” configurations 

(the values in the rows of table 3 describing such options are in 

italics). With a sufficiently large N, these configurations provide, 

in comparison with the "hypercubic", a significant decrease in the 

order of nodes and the topological cost of the network with a 

slight increase in the maximum diameter and a two-fold reduction 

in the bisection width. It should be noted that when decreasing the 

order of nodes by a certain value, the maximum diameter 

increases by the same value. For example, the "hypercubic" TLS 

with a size of N = 4096 nodes has D = d = 12, B = 2048, I = 

24576. The “suboptimal” version of constructing TLS of the same 

size with    d = 8 (decrease by 4) has D = 16 (increase by 4), B = 

1024,          I = 16384. It should be noted that the topological cost 

of the second TLS configuration is 1.5 times less than the first. 

It should also be noted, that with a sufficiently large size of the 

network N, there are several possible configurations of TLS that 

have the same dimensionality and, accordingly, the topological 

cost. For example, for N = 4096 and d = 6, six variants are 

possible (see Table 3), of which only one is the best, since it has 

the minimum value D and the maximum value B. 

Consequently, in the process of network topological synthesis, it is 

necessary to solve the problem of choosing the best possible 

configuration of TLS for given values of N, d. 

It is easy to see that for any given values of N and d (or limiting 

the topological cost I), the best option for constructing TLS will 

be a cubic configuration, and in cases where it does not exist, the 

one that comes closest to the cubic one, that is, as compact as 

possible. For such a TLS, the sequence of factors mi describing its 

configuration (see Table 3) has the maximum number of identical 

values, and the difference between the minimum and maximum 

factors is the smallest. For example, when N = 4096 and d = 9, 

out of two configurations (32 * 4 * 4 * 4 * 2 and 8 * 8 * 8 * 4 * 2), 

having three identical factors, the second one is preferable. 
 

Table 3: The results of the calculation of the metrics of possible 

configurations of TLS for N = 16 ÷ 4096 

d I Structure B D 

N=16 

4 32 24 8 4 

N=32 
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5 80 25 16 5 

4 64 8*4 8 6 

N=64 

6 192 26 32 6 

5 160 8*4*2 16 7 

4 128 16*4 

8*8 

8 

16 

10 

8 

N=128 

7 448 27 64 7 

6 384 8*4*4 32 8 

5 320 16*4*2 

8*8*2 

16 

32 

11 

9 

4 256 32*4 
16*8 

8 
16 

18 
12 

N=256 

8 1024 28 128 8 

7 896 8*4*4*2 64 9 

6 768 16*4*4 
8*8*4 

32 
64 

12 
10 

5 640 32*4*2 

16*8*2 

16 

32 

19 

13 

4 512 64*4 
32*8 

16*16 

8 
16 

32 

34 
20 

16 

N=512 

9 2304 29 256 9 

8 2048 8*4*4*4 128 10 

7 1792 16*4*4*2 

8*8*4*2 

64 

128 

13 

11 

6 1536 32*4*4 
16*8*4 

8*8*8 

32 
64 

128 

20 
14 

12 

5 1280 64*4*2 

32*8*2 
16*16*2 

16 

32 
64 

35 

21 
17 

4 1024 128*4 

64*8 
32*16 

8 

16 
32 

66 

36 
24 

N=1024 

10 5120 210 512 10 

9 4608 8*4*4*4*2 256 11 

8 4096 16*4*4*4 
8*8*4*4 

128 
256 

14 
12 

7 3584 32*4*4*2 

16*8*4*2 
8*8*8*2 

64 

128 
256 

21 

15 
13 

6 3072 64*4*4 

32*8*4 

16*16*4 
16*8*8 

32 

64 

128 
128 

36 

22 

18 
16 

5 2560 128*4*2 

64*8*2 
32*16*2 

16 

32 
64 

67 

37 
25 

 

4 2048 256*4 

128*8 
64*16 

32*32 

8 

16 
32 

64 

130 

68 
40 

32 

N=2048 

11 11264 211 1024 11 

10 10240 8*4*4*4*2 512 12 

9 9216 16*4*4*4*2 

8*8*4*4*2 

256 

512 

15 

13 

8 8192 32*4*4*4 
16*8*4*4 

8*8*8*4 

128 
256 

512 

22 
16 

14 

7 7168 64*4*4*2 
32*8*4*2 

16*16*4*2 

16*8*8*2 

64 
128 

256 

256 

37 
23 

19 

17 

6 6144 128*4*4 
64*8*4 

32*16*4 

16*16*8 
32*8*8 

32 
64 

128 

256 
128 

68 
38 

26 

20 
24 

5 5120 256*4*2 16 131 

128*8*2 

64*16*2 
32*32*2 

32 

64 
128 

69 

41 
33 

4 4096 512*4 

256*8 

128*16 
64*32 

8 

16 

32 
64 

258 

132 

72 
48 

N=4096 

12 24576 212 2048 12 

11 22528 8*4*4*4*4*2 1024 13 

10 20480 16*4*4*4*4 

8*8*4*4*4 

512 

1024 

16 

14 

9 18432 32*4*4*4*2 

16*8*4*4*2 
8*8*8*4*2 

256 

512 
1024 

23 

17 
15 

8 16384 64*4*4*4 

32*8*4*4 
16*16*4*4 

16*8*8*4 

8*8*8*8 

128 

256 
512 

512 

1024 

38 

24 
20 

18 

16 

7 14336 128*4*4*2 
64*8*4*2 

32*16*4*2 

16*16*8*2 
32*8*8*2 

64 
128 

256 

512 
256 

69 
39 

27 

21 
25 

6 12288 256*4*4 

128*8*4 
64*16*4 

64*8*8 

32*16*8 
16*16*16 

32 

64 
128 

128 

256 
512 

132 

70 
42 

40 

28 
24 

5 10240 512*4*2 

256*8*2 

128*16*2 
64*32*2 

16 

32 

64 
128 

259 

133 

73 
49 

4 8132 1024*4 

512*8 
256*16 

128*32 

64*64 

8 

16 
32 

64 

128 

514 

260 
136 

80 

64 

6. Method of searching of the most compact 

toroidal-lattice structure 

The number of "suboptimal" network configurations (differing in 

dimension d) also increases with an increase in its size N, although 

much slower than the number of all its possible configurations. So, 

for example, with N = 32 (d = 5) a single suboptimal 

configuration is possible (d = 4), with N = 4096 there are already 

four such configurations differing in dimension (d = 8 ÷ 11) and, 

accordingly, the topological cost. In fig. 3 shows the number of all 

possible configurations of TLS (K) for a given N = 2n with n≤12 

and, accordingly, the number of suboptimal configurations (M). 

 
Fig. 3: The number of all possible (K) and suboptimal (M) TLS 

configurations for a given N = 2n with n ≤ 12 

 

To solve the problem of finding the most compact TLS for given 

values of N and even value of d, the following method is proposed. 
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1. Find the value /2 .dm N=  If it is integer, the sought-for 

maximally compact structure is cubic, with the number of nodes in 

the “edge” m. 

2. If the resulting value of m1 is not an integer, this indicates that 

the desired structure is not cubic. In this case, m1 is replaced by the 

closest value from the 2n series and is considered the number of 

nodes in the first edge of the structure. 

3. N into m1 is divided to find the number of nodes of the structure 

smaller (by 2) in dimension, the copying of which is m1 times 

(with the connection of the corresponding nodes) leads to the 

initial TLS. 

4. In the future the described recurrent procedure for the N / mi 

structure, reducing the root degree by 1, d / 2-1 times, is repeated. 

5. The last value of mi by dividing N by the product of all previous 

mi. 

The described procedure, due to the replacement of fractional mi 

values with “rounding” to the nearest integer 2n both up and down, 

is guaranteed to result in a set of factors that differ from each other 

by no more than two times. For example, for N = 1024 and d = 8, 

a sequence 4 * 8 * 8 * 4 is obtained, that is, indeed, the description 

of the most compact TLS (the sequence of obtaining the factors 

does not matter). 

The described procedure is easily modified for TLS of odd 

dimensionality by simple preparation of the initial data. First, the 

value of N is divided by 2 (the first factor, in the description of the 

structure, respectively, is equal to 2), the dimension d is reduced 

by one. Further, the procedure described above is applied. 

7. Conclusions 

In this article, a simple analytical description of the structural-

topological properties of generalized TLS, cubic and non-cubic, 

was obtained, which allows to accurately estimate the main 

topological metrics of the CN TLS at the stage of their topological 

synthesis. 

It was shown that the boolean hypercubes of various dimensions 

can be considered as the most compact TLS of the same 

dimension, and the “hypercubic” (not necessarily boolean) 

representation of TLS exists only if the condition is also satisfied 

2log .d N  

Also, based on the analysis of the results of calculating the values 

of the main topological metrics for the versions of constructing 

some TLS it was demonstrated that in the process of network 

topological synthesis, it is necessary to solve the problem of 

finding the best possible TLS configuration, namely, the most 

compact. 

Accordingly, the direction of further research is to develop a 

method for finding such a configuration, generalized TLS. A 

method of searching for such a structure, which is formalized in 

the form of a simple recurrent procedure, is proposed. 
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