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Abstract 
 

Conjugate gradient method has been widely used for solving unconstrained optimization and famously known for its low memory re-

quirements and global convergence properties. Many works have been directed towards improving this method. In this paper, we propose 

a superior conjugate gradient coefficient  by revising the already proven Hestenes-Steifel formula. Theoretical proofs show that the 

new method fulfils sufficient descent condition if strong Wolfe-Powell inexact line search is used. Moreover, the numerical results 

showed that the proposed method has outclassed the exiting CG coefficients operating under standard test set. The numerical results also 

showed that the new formula for  performs significantly better than that of the original Hestenes-Steifel. 
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1. Introduction 

Conjugate gradient (CG) method is a line search algorithm mostly 

known for its wide application in solving unconstrained optimiza-

tion problems. Its low memory requirements and global conver-

gence properties makes it one of the most preferred method in real 

life application such as in economics, engineering and physics. 

They are designed to solve problem of the form 

 

                                                                       (1) 

         

 is continuously differentiable function, and its 

gradient is denoted by     

  

The nonlinear CG method generates a sequence by using the re-

currence relation 

 

                                                (2)  

 

where  is step size obtained by line search,  is the current 

iterate and  is the search direction defined by 

              

              (3) 

 

where the scalar  is known as the conjugate gradient coefficient. 

Until now, many choices of  are available. Each of them shows 

different results when applied on unconstrained optimization func-

tions. 

 

In this paper, the strong Wolfe line search – an inexact line search 

- is used to calculate the step size in which the  should satisfy 

the two following conditions 

 

                                          (4)                                                 

 

                                               (5) 

 

where  .  

Originally in 1952, Hestenes and Stiefel (HS) [1] proposed the 

initial conceptual of CG such that  

 

 
 

In the following year, in 1964, another CG method proposed 

Fletcher and Reeves (FR) [2]. 
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For further improvement, in 1969, another CG method was in-

vented by Polak and Ribiere (PRP) [3, 4].  

                

 
 

Not long after, Fletcher introduced what is called Conjugate De-

scent (CD) [5] in 1987. 

 

 
 

Afterward, in 1991, Liu and Storey (LS) [6] relied on the PRP 

method to propose robustly their own  which is  

 

 
 

Dai and Yuan (DY) [7] exploited that in 1999 to extended the LS 

to become 

 

 
    

The study of convergence performance for the aforementioned 

formulas with some line search conditions are widely available 

(see Zoutendijk [8], Powell [9-11], Wei [12], Dai [13], Al-Baali 

[19], Li and Feng [20] Dai and Yuan [25], Yuan and Sun [26]).  

However, the question arise over the issues of global convergence 

of PRP, LS and HS methods which was never been proven under 

all stated line searches. Obviously, this is due to the fact that the 

descent in the value of the objective function on each iteration 

cannot be guaranteed (Hager and Zhang [27]). See also Yuan and 

Wei [28] and Andrei [29] for much detail.                                                                                              

During the last decade, many variations of the classical conjugate 

gradient methods were brought forward. Mamat et al. [30] with a 

bold step proposed a simple conjugate gradient parameter method 

and the succeeding algorithm known as Eigen Conjugate Gradient 

(ECG) was proved to possess the global convergence properties 

using the strong Wolfe line search.            

In this paper, we streamline our works into working with the HS 

method. Based on manual calculations, the HS method is shown to 

outperform most if not all other simple conjugate gradient meth-

ods.  

By modifying the HS method, Hager and Zhang [27] proposed a 

new variant called CG-DESCENT method. In CG-DESCENT 

method, the parameter  holds the following properties 

 

 
 

The CG-DESCENT method is known to produce sufficient de-

scent directions. In fact, Hager and Zhang [27] showed that the 

CG-DESCENT method is globally convergent under Wolfe line 

search. Dai [15] modified HS and suggested  

                                        

                                                                       

 

Zhang [16] extended the HS method and proposed the NHS meth-

od as follows. 

                                  

            

 

More recently, Rivaie et al. [14] proposed a new algorithm from 

the original HS method, and be known as Modified Hestenes-

Steifel method (MHS). For this , it comes with a re-formulated 

denominator while maintaining the numerator as that of Hestenes-

Steifel formula given by. 

 

 
 

Shapiee et al. [17] depict a variation conjugate gradient coefficient 

which relates also to HS formula and present. 

 

 
 

In 2017, Hamoda et al. [18] follow the method of Wei et al. [27] 

and suggest the formula. 

                                

 

2. Proposed formula for  

In recent years, much works have been directed towards develop-

ing a modified variant of conjugate gradient methods, of which as 

we mentioned earlier comes not only with strong convergence 

properties, but also achieved computational superiority over clas-

sical methods. As result to that, many variants of conjugate gradi-

ent algorithms were discovered. A survey by Andrei [21] has dis-

closed as many 40 nonlinear conjugate gradient algorithms for 

unconstrained optimization. 

Wei et al. [22] presented a modified version of the PRP method 

famously known as the WYL method. From the idea of WYL, 

Zhang [23] proposed a new conjugate gradient method, to be 

known as NPRP, and he emphasized that the NPRP method satis-

fied the descent condition and the global convergence property 

under strong Wolfe line search. Moreover, Dai and Wen [24] fur-

ther improved the NPRP method to another variant called DPRP 

method. 

In this section, influenced by aforementioned concepts [14, 16, 22], 

we propose our  which identified as , where  indi-

cates Tala’t, Mustafa and Rivaie. The new  is a modifica-

tion of HS conjugate gradient method as follow: 

 

 
                                                        

The representation algorithm is as in Algorithm 2.1. 

 

Algorithm 2.1  

S1: Initialization. Given  set  if                                                                            

  then stop. 

S2: Compute  by Strong Wolfe-Powell line search. 

S3: Let   if   

then stop. 

S4: Compute  by (6), and generate  by (2). 

S5: Set   go to S2. 

3. Analysis of Convergence Properties 

We begin this section by examining the convergent properties of 

. To converge, an algorithm must fulfill an adequate descent 

condition and the global convergence properties. 

The following assumptions are often required to establish the con-

vergent properties of any newly proposed formula. 
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Assumption 1 

 is function which is bounded below on the level set  

, that is a positive constant M exists 

such that  

 

Assumption 2 

For some neighborhood  of , with continuously differentiable 

objective function, its gradient  is Lipschitz continuous in , 

 

                  
        

 

The sufficient descent condition is the key point in the study of the 

CG method, its condition is given by 

 

                                                 (7) 

 

where 1) 

 

Theorem 3.1.1 

Consider the two sequences  and  which were generated 

by the method of form (2), (3) and (6), with the value of  de-

termined by the Strong Wolfe-Powell (SWP) line search defined 

following to (4) and (5), if , then the sufficient descent 

condition given in (7) holds. 

 

Proof 

We firstly need to streamline our new , so that our conver-

gence proof will be dramatically easier. In (6), we can see that 

 

 
 

 
 

Hence, we obtain             

 

                                                                    (8) 

 

Using (5) and (8)       

 

                                          (9)  

 

In (3)  

 

                                                    (10) 

 

Using mathematical induction, the descent property of  can be 

proved. Since
 

, let  

 are all descent directions, that is  
 

. 

  

In (9) 

 

 

  

     
 

In (10)                      

 

 
 

By iterating this  procedure, in addition to the fact that 

, we obtain 

 

                                      (11) 

 

Since 

 

 
 

In (11) can be written as 

 

                                       (12) 

 

By making the restriction , we obtain . Let 

, then  and (12) is deriveable to  

 

 
 

     

This shows that (7) holds and hence the proof is complete. 

 

Lemma 3.1.2 

Assume that Assumptions 1 and 2 hold true for any iteration 

method given in (1), with  as a descent search direction and  

satisfies the Strong Wolfe minimization rule. Consequently, the 

following Zoutendijk condition also holds  

 

 
 

which is equivalent to 

                         

 
 

For much detail of this proof, refer to [8].  

 

Theorem 3.1.3 

Suppose that Assumptions 1 and 2 hold,  generated by the 

Algorithm 2.1, where the step size is obtained under Strong Wolfe 

minimization rule. Then, Lemma 3.1.2 holds for all    . 

  

Proof 

According to [34], by contradiction i.e., if Theorem 3.1.3 is not 

true, then . 

 

In (3) 
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  In (7)      

             

 
 

 
 

Since , we know that and . 

Therefore, it follows that   

 

 
 

which implies that 

 

 
 

However, this is contradictory to Lemma 3.1.2. Hence, the proof 

is concluded. 

4. Results and discussion 

In order to check the efficiency of , we compare 

method with the classical methods  FR, HS and MHS. Ta-

ble 1 shows the computational performance of R2015a MATLAB 

program on a set of unconstrained optimization test problems. We 

select randomly 33 test functions which were collected by [33]. 

In this test, we choose  and stopping criteria is set to 

 as [32] suggested. We selected three initial points, start-

ing with a point close to the solution point moving on to a point 

distant away. This is necessary for the purpose of testing the glob-

al convergence properties of the new coefficient. The dimensions 

n of 33 problems are 2, 4, 10, 100 and 1000. 

For selected cases, the calculations were blocked as a result of 

failing to find the positive step size by the line search. Thus, it was 

considered a failed. In addition, unsuccessful search can also be 

resulted when the number of iterations exceeding 10,000. We use 

two parameters, the iteration number and the CPU time from ex-

perimental result as the basis for our comparison. We employ the 

performance profile presented by [31] to obtain the results shown 

in Figure 1 and Figure 2. 

All experimentations were carried out on a PC running on the 

Windows 7 OS, powered by Intel (R) processor with CoreTM i3-

M350 (2.27GHz) having memory size of 4GB. 

 
Table 1: Problem Functions 

N

o. 

Function Dimen-

sion 

Initial Point 

1 SIX HUMP 2 (0.5,0.5), (8,8), (40,40) 

2 THREE HUMP 2 (-1,1),(-2,2),(2,-2) 
3 LEON 2 (2,2),(4,4),(8,8) 

4 QUADRATIC  QF1 2 (3,3),(5,5),(10,10) 

5 MATYAS 2 (5,5),(10,10),(15,15) 
6 DIAGONAL 2 2 (1,1),(5,5),(15,15) 

7 BOOTH 2 (10,10),(25,25),(100,10

0) 
8 RAYDAN 2 (3,3),(13,13),(22,22) 

9 ZETTL 2 (5,5),(20,20),(50,50) 

10 TRECANNI 2 (5,5),(10,10),(50,50) 
11 NONDIA 2 (10,10),(20,20),(35,35) 

12 HAGER 2 (7,7),(15,15),(20,20) 

13 EXTENDED MARATOS 2 (10,10),(60,60),(120,12
0) 

14 EXTENDED PENALTY 2 (40,40),(80,80),(100,10

0) 
15 GENERLIZED TRIDIAGO-

NAL1 

2 (3,3),(21,21),(90,90) 

16 QUADRATIC QF2 2 (4,4),( 40,40),(80,80) 
17 CLOVILLE 4 (2,..,2),(4,..,4),(10,..,10) 

18 EXTENDED WOOD 4 (5,..,5),(20,..,20),(30,..,

30) 
19 DIXON & PRICE 2 

4 

(6,6),(18,18),(60,60) 

(6,..,6),(18,..,18),(60,..,
60) 

20 ARWHEAD 2 

10 

(8,8),(24,24),(32,32) 

(8,..,8),(24,..,24),(32,..,
32) 

21 GENERRALIZED QUARTIC 2 

10 

(7,7),(70,70),(140,140) 

(7,..,7),(70,..,70),(140,..
,140) 

22 FLETCHCR 2 

10,100,10
00 

(12,12),(15,15),(35,35) 

(12,..,12),(15,..,15),(35,
..,35) 

23 ROSENBROCK 2 

10,100,10

00 

(3,3),(15,15),(75,75) 

(3,..,3),(15,..,15),(75,..,

75) 

24 SHALLOW 2 

10,100,10
00 

(2,2),(12,12),(200,200) 

(2,..,2),(12,..,12),(200,..
,200) 

25 WHITE & HOLST 2 

10,100,10
00 

(3,3),(6,6),(10,10) 

(3,..,3),(6,..,6),(10,..,10) 

26 EXTENDED BEALE 2 

10,100,10
00 

(-4,-4),(-1,-1),(4,4) 

(-4,..,-4),(-1,..,-
1),(4,..,4) 

27 PERTURBED QUADRATIC 2 

10,100,10
00 

(1,1),(5,5),(10,10) 

(1,..,1),(5,..,5),(10,..,10) 

28 EXTENDED TRIDIAGONAL1 2 

10,100,10
00 

(25,25),(50,50),(75,75) 

(25,..,25),(50,..,50),(75,
..,75) 

29 DIAGONAL 4 2 

10,100,10
00 

(1,1),(20,20),(40,40) 

(1,..,1),(20,..,20),(40,..,
40) 

30 SUM SQUARES 2 

10,100,10
00 

(1,1),(5,5),(10,10) 

(1,..,1),(5,..,5),(10,..,10) 

31 EXTENDED DENSCHNB 2 

10,100,10
00 

(5,5),(30,30),(50,50) 

(5,..,5),(30,..,30),(50,..,
50) 

32 EXTENDED HIMMELBLAU 2 

10,100,10
00 

(10,10),(50,50),(125,12

5) 
(10,.,10),(50,.,50),(125,

.,125) 

33 EXTENDED BLOCK 
DIAGONAL BD1 

2 
10,100,10

00 

(1,1),(5,5),(10,10) 
(1,..,1),(5,..,5),(10,..,10) 

 

The studies in [31] on performance of the set solvers  given a 

test set ,  serves as a basis for evaluating our method. For each 

problem  and solver , suppose there exist   solvers and  

problems such that 

 

 = time taken to solve problem  by solver . 

 

We compared the performance of solver 𝑠 attending the problem  

for the finest performance against other solver, based on the per-

formance ratio parameter 

 

 
 

Consider that a parameter    is chosen such that  

  if and only if the problem  is unsolvable. The perfor-

mance of solver  on any given problem can be of lots of attrac-

tions, however, because we would like to gain an overall assess-

ment of solver’s performance, we further define 
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Thus, is the probability for solver  that a performance 

ratio   was within a factor   of the best possible ratio. For 

the performance ratio, a function  represents the cumulative 

distribution function. The performance profile for 

a solver is a non-decreasing, piecewise, and continuous from the 

right. The defines the probability that the solver is expected 

to outclass the rest of other solvers. Obviously, having a high val-

ue of , represented by being at the top right of the figure 

shows the superiority of  the best solver. 
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Figure 1 shows the measurement for the performance profile 

based on the number of iteration, whereas, Figure 2 shows its CPU 

time counterpart. Observe that the plots from Figure 1 and Figure 

2 are nearly identical in shape. The red-colored curve indicates 

that the  method perform significantly well than the FR, HS 

and MHS methods.  

From results shown in Figure 1 and Figure 2, it is obvious that 

  outperforms the other methods, by being able to solve all 

test problems and in turn reaches 100% success rate. Comparing 

with FR, HS and MHS that only reach 92%, 77% and 66% respec-

tively in solving the given test problems. Hence, our new method 

shows its superiority and competitiveness against the other exist-

ing methods for solving unconstrained optimization problem. 

5. Conclusion  

This study introduces a new conjugate gradient method for uncon-

strained optimization problem which was shown to suffice descent 

condition and achieving global convergence. The whole experi-

ment was executed under the used of strong Wolfe-Powell line 

search. For most cases, experimental results conclude that the 

method is by far more efficient than others. Hence, the 

method we proposed not only possesses excellent global conver-

gence but in addition is much superior than the HS conjugate gra-

dient method.  
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