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Abstract 
 

The article examines precast-monolithic reinforced concrete beams with a cross section in the form of a hollow triangle. The advantages 

of such beams are presented and say that their stiffness in torsion is ten times bigger than the similar rigidity of a T-beam with the same 

stiffness and bending resistance. The article introduces the method of manufacturing such beams without the use of form work which 

was developed by the author of the article. Earlier the authors investigated the stiffness of such beams in torsion and it is mentioned in 

the article. However, stiffness and bending resistance are not investigated. Resistance and stiffness of precast-monolithic beams under 

bending differs from the resistance and stiffness of the monolithic ones. Consequently, taking into account the nonlinear properties of 

materials the calculation of such beams is different. The method for calculating beams under bending is introduced and it is based on the 

application of the flat section hypothesis. This method is used in conventional methods of calculation. The difference from the traditional 

calculation is the addition of equilibrium stress to the equations which are perceived by sections of monolithic concrete with physical and 

mechanical characteristics that differ from those of the main part of the structure. In calculation the cross-section of the beam is reduced 

to the equivalent T-section. The obliquity of the side faces is taken into account and the thickness of the edge of the equivalent T-beam is 

understood as the doubled thickness of the side edge divided by the sine of the angle of obliquity of the edges. In order to apply this cal-

culation method, at first, it is necessary to check the sufficiency of the presence of a transverse reinforcement in the grid which is laid in 

the construction of the structure. With a sufficient diameter and rod spacing of transverse reinforcement which are calculated according 

to the authors’ previously developed method, the structure can be calculated as monolithic with sections with different material character-

istics according to the method introduced in the article. The calculations based on the above procedure showed a good match with the 

results of experimental studies of the authors. 
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1. Introduction 

It is known that taking into account the spatial work of reinforced 

concrete floors provides significant savings in materials and sig-

nificantly improves the accuracy of determining the forces acting 

in the floor elements [1]. Analysis of various types of overlap 

shows that the spatial work of the latter, consisting of plates of 

type T or TT, is the smallest. This is due to the low torsional rigid-

ity of such plates. In [2] it was shown that the overlap of T or TT 

plates can be replaced by overlaps of beams-slabs of triangular 

cross section. Such beams combine the functions of beams and 

slabs (Fig. 1). 

 
Fig. 1: Overlap hollow triangular section prefabricated plates cross section 

 

The manufacture of T-shaped and I-beams is associated with the 

difficulties of making formwork. A beam with a cross-section 

shown in fig. 1 has all the advantages of T-beams, but at the same 

time it has a torsional rigidity ten times greater than the rigidity of 

a similar T-beam [2]. In order to simplify and reduce the cost of 

manufacturing such beams, it was proposed to manufacture them 

without the use of formwork in the form of a monolithic assembly. 

A diagram of the beam cross section in the monolithing position is 

shown in fig. 2 

After curing concrete sections and monolithic sections 9 beam is 

ready for use. It turns over to the working position so that the 

working reinforcement is in the stretched zone. Such a beam com-

bines the functions of the truss structure and plate, as the width of 

the compressed shelf can be freely taken 1.5 meters or more. The 

torsional stiffness of such a beam is much greater than that of a T-

beam with the same strength and bending stiffness in the vertical 

direction. The last factor is a very, very significant advantage, 

since the greater the torsional rigidity, the more pronounced the 

effect of spatial work under the action of local loads. 

 

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET
http://mbox2.i.ua/compose/1030879055/?cto=HigbK372FywWNAkSIV5Zfpq9aJjDlrF7q5ePmg%3D%3D
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Fig. 2: Prefabricated monolithic reinforced concrete beam hollow triangu-
lar shape cross-section. 1, 2, 3 beam sides; 4- starter bars 5 - monolithic 

areas; 6 - working reinforcement 

 

In [2], the torsional rigidity of such beams was investigated. It also 

shows the principle of calculating such beams during bending. 

However, the question of calculating such beams, taking into ac-

count the nonlinear properties of concrete, remains unexplored. 

2. Hollow triangular cross-section precast-

monolithic beams calculating methods dur-

ing bending, taking into account materials 

nonlinear properties  

2.1. Methods for calculating hollow triangular cross-

section precast-monolithic beams during bending, con-

sidering the materials nonlinear properties  

 For the calculation taking into account materials nonlinear prop-

erties, the deformation method are used [3, 4, 5, 6, 7]. The calcu-

lated beam cross section is shown in Fig. 3. 

 
Fig. 3: Element in the form of a hollow triangle section diagram 

 

Monolithic areas in the upper zone width bk and in the lower width 

b1 have physical and mechanical characteristics that are different 

from the characteristics of the main beam sides. For the calcula-

tion of torsion, the section is considered in its original form. To 

calculate the bend in the form of a hollow triangle, it can be re-

place the T-section (Fig. 4). The width of the edge brand is equal 

to twice value (Fig. 4). b3, being the horizontal projection of 

thickness t element sides (Fig. 3). It can be seen easily that 

b3=t/sinα, where α – element lateral sides angle (Fig. 3). 

Since the end parts of the shelf brand are made of concrete with 

different characteristics, it is possible to carry out calculations for 

the two-layer element similarly to the method [4]. The preliminary 

calculations of the authors carried out by this method displayed 

that, due to the small width of the monolithic sections bk the sec-

tion can be considered as a solid with a shelf width bf=b2+2bk 

(Fig. 3). 

In addition, as shown by calculations based on the methodology 

[1], at a certain step and diameter of the grid bars, the beam can be 

considered monolithic. 

For calculation, the T-section should be divided into a number of 

horizontal layers with a thickness a (Fig. 4). Layers can be either 

the same thickness or different. 

 
Fig. 4: Reduction of a hollow triangle to a T-section: a) cross section; 

b) epyura longitudinal deformations 

 

The calculation is carried out according to an algorithm similar to 

[3, 4] with some changes related to the presence of various materi-

als in the section. Let us dwell on these differences. For calcula-

tion at zero iteration, a certain deformation of a compressed ex-

treme compressed fiber is set. εс1 first layer (Fig. 4). Deformation 

on the bottom side of the last layer with the number n (Fig. 4) is 

taken equal to zero εс2=0.  

Further, the curvature in cross section is calculated by the formula: 

 

./1 21

h
r cc  −
=                                                                        (1) 

 

At the level of every i-layer, based on the linear distribution of 

deformations (Fig. 4, b), the deformation of this layer is deter-

mined εi. According to acquainted diagrams “-” определяются 

текущие значения модуля деформаций в этом слое для 

основного бетона determined by the current values of the modu-

lus deformations in this layer for the main concrete E1,i and con-

crete grouting E2,i. In each layer, the efforts are determined. Ni by 

formula: 

 

 .,,,2,2,1,1 isisiiiiii AEAEAEN ++=                                    (2) 

 

where A1,i  and A2,i – layers cross-sectional area of the layers, re-

spectively, for the main concrete and concrete grouting; Es,i, As,i – 
respectively, the modulus of elasticity and the cross section of 

reinforcement i-layer. 

Signs Ni are taken in accordance with the signs of the deformation 

plot: compression is a positive sign, tension is negative. 

Square  A1,i and A2,i are determined from expressions (Fig. 3, 4): 

 

;
sin

2,1


t
aA i = .2,2 abA ki =                                           (3) 

 

If the width of the monolithic section in the lower zone (Fig. 3) 

larger 2b3, then the areas of these layers are adjusted accordingly. 

If the layers along the section height have different thickness, then 

in expression (3) instead of a it should be taken ai. 

Expression (2) differs from the  similar expressions [3, 4] by the 

presence of the second terms E2,i and A2i, which take into account 

the presence of the second component for monolithic concrete in 

cross section. Moreover, if for the i- layer the inequality ia>hf, if 

the layer is below the shelf of the element, then in expression (2) 

is taken E2,i=0 и A2i=0.  

Next, the total force in the cross section is calculated. If it is great-

er than zero, then at the next iteration a tensile strain is added. εс2  

and the calculation is repeated. Thus, the further algorithm does 

not differ from the acquainted algorithm [4], and therefore in the 

article is not given further. 
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The advantage of this approach to the calculation is the fact that 

the calculation takes into account the various characteristics of 

precast materials and monolithic materials, and can also be taken 

into account reinforcing bars not only of the main working rein-

forcement, but also the longitudinal bars of the mesh, which are 

placed in the element lateral sides in a horizontal position. 

To clarify the calculations can be at the level (top to bot-

tom)h2≤i·a≥hf to take into account that in this layer, the areas of 

the main concrete and the concrete hardening vary, and they can 

be easily calculated from geometrical considerations ( Fig. 3). 

It should be noted that in order for the precast-monolithic beam to 

be counted as monolithic (without taking into account the shelf 

shift relative to the ribs), it is necessary to carry out calculations 

according to the method [1] and take a certain diameter and step of 

the transverse mesh reinforcement in the manufacture of the beam. 

With a smaller diameter or reinforcement spacing, consideration 

should be given to the possibility of shifting the flange relative to 

the rib and reducing the total force in the compressed zone accord-

ing to [1]. 

The calculations by the above method showed proper correlation 

with the authors’ experimental studies. 

2.2. Hollow triangular cross-section precast-monolithic 

beams calculating method during bending using imput-

ed concrete resistances  

The calculation of hollow triangular section beams can be made 

using the method of imputed reinforced concrete resistance, which 

is described in detail in [8, 9, 10]. For the calculation of reinforced 

concrete elements using this method, non-linear materials defor-

mation diagrams, the hypothesis of deformations linearity, as well 

as the corresponding criteria for the formation of cracks and frac-

ture is used. Calculation formulas for the convenience of calcula-

tions are reduced to the formulas of material classical resistance. 

The main parameters of the stress-strain state are summarized in 

tabular form. The strength of T-sections of reinforced concrete 

elements is determined based on the following condition 

 

,zМ
c

Ed f
W

М
                                                                              (4) 

 

where fzM =f(concrete type, f, fуd)− the calculated resistance of 

reinforced concrete is determined by the relevant tables [8]; Wc − 

elastic moment of resistance to the cross section of concrete. Table 

1 shows the value of the calculated resistance reinforced concrete, 

calculated for reinforced concrete elements of rectangular cross-

section with a single reinforcement, while the formula proposed in 

the Eurocode 2 was used as concrete deformation diagram [3]. 

To determine the strength of the cross section using formula (4), it 

is necessary to know in advance the position of the neutral line in 

the cross section. In the case, each section is calculated twice: a T-

profile element with a moment of resistance Wt and an element of 

rectangular cross section bf×d with moment of resistance bf×d2/6.  

Of the two values obtained, when determining the area of rein-

forcement, they take a larger value, and when calculating the bear-

ing capacity, it is less. 

The deflections of T-reinforced concrete elements by the method 

of imputed resistance reinforced concrete are calculated using the 

curvature of the sections. In this case, it is used to determine the 

deflections Mohr integral or the Simpson formula. In some cases, 

for the preliminary determination of the deflections, it is possible 

to use an approximate formula. In it, the deflection is determined 

by the same curvature value found in the cross section with the 

greatest moment. 

 

 

 

 

Table 1: Reinforced concrete estimated resistance fzM with single rein-

forcement  

Concrete 

class  

Proportion of reinforcement, f 

0.05 0.50 1.00 1.25 1.50 1.75 2.00 3.00 

 fyd=375 МПа (A400С) 

С8/10 1.10 9.44 14.6

8 

15.1

2 

15.4

3 

15.6

7 

15.8

6 

16.3

2 

С12/15 1.11 9.97 17.3

8 

20.0

9 

20.8

5 

21.2

7 

21.6

0 

22.4

5 

С16/20 1.11 10.3

0 

18.7

0 

22.1

9 

25.2

0 

27.3

8 

27.9

0 

29.2

9 

С20/25 1.11 10.4

9 

19.4

8 

23.4

0 

26.9

5 

30.1

1 

32.8

8 

35.6

5 

С25/30 1.11 10.6
0 

19.9
1 

24.0
8 

27.9
3 

31.4
6 

34.6
6 

40.6
9 

С30/35 1.12 10.6

8 

20.2

4 

24.5

9 

28.6

6 

32.4

5 

35.9

6 

45.4

5 

С32/40 1.12 10.7
5 

20.4
9 

24.9
8 

29.2
3 

33.2
2 

36.9
6 

49.2
6 

С35/45 1.12 10.8

1 

20.7

2 

25.3

5 

29.7

6 

33.9

4 

37.9

0 

51.5

2 

С40/50 1.12 10.8

4 

20.8

8 

25.6

0 

30.1

1 

34.4

2 

38.5

3 

52.9

4 

С45/55 1.12 10.8

7 

21.0

1 

25.8

0 

30.4

0 

34.8

2 

39.0

5 

54.1

0 

С50/60 1.12 10.9
0 

21.1
4 

26.0
0 

30.6
9 

35.2
1 

39.5
6 

55.2
6 

 fyd=450 МПа (A500С) 

С8/10 1.32 10.9

0 

14.5

7 

15.0

2 

15.3

5 

15.6

0 

15.7

9 

16.2

7 

С12/15 1.33 11.6
6 

19.4
0 

20.1
5 

20.7
0 

21.1
3 

21.4
8 

22.3
5 

С16/20 1.33 12.1

3 

21.5

3 

25.1

7 

26.5

0 

27.1

6 

27.7

1 

29.1

3 

С20/25 1.33 12.4
1 

22.6
5 

26.9
5 

30.6
9 

32.6
7 

33.4
2 

35.4
3 

С25/30 1.34 12.5

7 

23.2

8 

27.9

3 

32.1

2 

35.8

2 

37.8

9 

40.4

0 

С30/35 1.34 12.6

9 

23.7

4 

28.6

6 

33.1

8 

37.2

8 

40.9

3 

45.1

0 

С32/40 1.34 12.7

8 

24.1

1 

29.2

3 

33.9

9 

38.3

9 

42.4

0 

49.5

3 

С35/45 1.34 12.8

6 

24.4

4 

29.7

6 

34.7

5 

39.4

2 

43.7

8 

54.5

2 

С40/50 1.34 12.9

2 

24.6

7 

30.1

1 

35.2

6 

40.1

1 

44.6

8 

58.5

2 

С45/55 1.34 12.9

6 

24.8

6 

30.4

0 

35.6

8 

40.6

9 

45.4

3 

61.4

0 

С50/60 1.34 13.0

1 

25.0

4 

30.6

9 

36.1

0 

41.2

5 

46.1

7 

63.3

7 

The elastic moment of concrete resistance is determined depend-

ing on the position of the neutral line in the section: 

- When the position of the neutral line in the edge 

 

;
6

2db
W

f
c =                                                                                (5) 

 

- When neutral line position in the shelf  

 

( )( )
.

66

22
fff

сt

hdbbdb
W
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In general, the curvature can be found by the formula 

 

,1
dr


=


                                                                                   (7) 

 

where   − the sum of deformations in compressed concrete and 

tensile reinforcement. 

The total deformations of the concrete depend on the following 

parameters. 
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),,,,( ACf zMf  =                                                              (8) 

 

where 
c

zМ
W

М
= − conditional stresses in the cross section of a 

reinforced concrete element. The sum of compressed concrete 

deformations and tensile reinforcement can be found using appro-

priate tables. A fragment of such a table is shown below (Table 2). 
 

Table 2: Stress-strain state parameters 

Concrete 

class  

Load 

level 

Proportion of reinforcement, f 

0.5 1 

zМ, 

MPa  
  

×104 
s,  

MPa 
zМ, 

MPa  
  

×104 
s,  

MPa 

С20/25 

 

МW1 3.4 2.9 31.9 4.1 3.0 31.8 

МW2 3.4 4.4 101.6 4.1 4.4 63.0 

0.4 6.8 12.5 243.1 8.5 10.7 155.4 

0.6 9.1 18.1 329.1 12.8 16.9 239.4 

0.8 11.0 26.4 398.9 20.8 31.5 400.0 

1.0 11.3 126.5 400.0 21.3 72.4 400.0 

С25/30 

МW1 4.0 3.0 33.8 4.7 3.2 33.7 

МW2 4.0 4.7 118.6 4.7 4.7 72.2 

0.4 6.9 11.4 240.9 8.7 10.1 155.9 

0.6 9.1 16.8 329.0 13.0 16.2 241.4 

0.8 11.1 26.1 398.8 21.3 32.7 400.0 

1.0 11.4 137.9 400.0 21.7 77.7 400.0 

2.3. Hollow triangular cross-section precast-monolithic 

beams deflection calculating method during bending 

using linearization dependencies 

The above proposed method of design resistances of reinforce-

ment concrete makes it possible to significantly simplify the de-

termination of reinforced concrete elements deflections. To do this, 

you must perform a linearization dependency. 

 

,+=  iizМ bа                                                                        (9) 

 

where ai, bi − linearized dependencies parameters. 

The linearization of the parameters of the stress-strain state should 

be carried out from the moment of the formation of cracks until 

the onset of the yield stress in the stretched armature. This will 

make it possible to find deflections with accuracy sufficient for 

engineering practice at operational loads. The linearization coeffi-

cients obtained in this way for the main classes of concrete, and 

reinforcement percentages of 0.5–3%, are presented in Table 3. It 

is worth noting about the high degree of approximation of the 

obtained straight lines within the specified limits, constructed 

using formula (9). So the correlation coefficients of straight lines 

are within 0.956-0.98. 

Using formula (9) it is easy to obtain a linearized curvature formu-

la 
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To find the deflections, it is necessary to write down the Mohr 

integral or Simpson's formula for the corresponding computational 

scheme, and obtain the necessary formula. For some of the most 

common calculation schemes, the formulas for finding the maxi-

mum deflections using linearization parameters are presented in 

Table 4. 
 

Table 3: To the calculation of deflections of bending reinforced concrete 

elements using linearization dependencies  

Concrete 

class  

а, 

МPа 

Proportion of reinforcement, f 

0.5 1 2 3 

bi, 10-4 MPa 

С8/10 1.845 0.262 0.410 0.614 0.764 

С12/15 2.116 0.301 0.484 0.741 0.929 

С16/20 2.146 0.343 0.544 0.851 1.075 

С20/25 2.256 0.355 0.598 0.929 1.175 

С25/30 2.455 0.368 0.613 0.992 1.277 

С30/35 2.701 0.374 0.644 1.024 1.315 

С32/40 2.769 0.396 0.663 1.038 1.376 

С35/45 2.803 0.398 0.684 1.102 1.404 

С40/50 2.843 0.419 0.706 1.148 1.475 

С45/55 2.849 0.437 0.723 1.183 1.526 

С50/60 3.188 0.452 0.725 1.201 1.563 

 

Table 4: Deflection Formulas  

№ Beam scheme  
Formula for determining 

deflection  

1 

 

.
8384

5 24

db

аl

dWb
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f
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−=  

2 

 

.
28

1 24

db

аl

dWb

ql
f

ici

−=  

3 

 

.
848

1 23

db

аl

dWb

Pl
f

ici

−=  

3. Interaction forces between the shelf deter-

mination and inclined sides in beams of hol-

low triangular cross section 

The peculiarity of composite-monolithic beams calculations hol-

low triangular cross-section lies in the fact that they cannot always 

be calculated as elements of a continuous section due to the pres-

ence of a monolithic seam. If the rigidity of the monolithic seam is 

high enough, then it can be calculated as a monolithic structure by 

the method described above. 

The presence of a monolithic seam between the flange and the 

edge (two inclined elements that constitute the edge of the beam) 

turns such a beam into a composite with flexible shear links. Its 

calculation can be carried out in the first approximation by the 

composite rods A.R. Rzhanitsyna theory [11]. However, when 

calculating to the nonlinear properties of a monolithic concrete, 

the calculation according to the theory of composite rods [11] is 

difficult, since in the theory of composite rods, the plastic proper-

ties of shear bonds are taken into account only when subjecting 

the Prandtl diagram. 

This disadvantage can be avoided by counting the beam in the 

form of a rod system shown in Fig. 5. In this figure it is indicated: 

1 - upper shelf; 3 - edge (side flanges of the beam); 2 - links that 

imitate the work of a monolithic seam between the shelf and the 

edge. The number and pitch rods 2, imitating the work of a mono-

lithic seam can be selected by preliminary calculation. 

 
Fig. 5: Composite monolithic two-layer beam scheme 

 

It is known [10] that in two-layer composite beams, the elasticity 

of cross-links can be neglected and considered as absolutely rigid. 

Thus, if we assume that in the vertical direction rods 1 and 3 have 

the same displacements, then the accuracy of the calculation will 

not suffer. The factor is taken into account when developing the 
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method for calculating the beams under consideration. If commu-

nications 2 on fig. 5 in the transverse direction are not deformed, 

then the rods 1 and 3 will bend along the same curve. The main 

system can be improved by dissecting cross-links and considering 

the consistency of horizontal displacements of rods 1 and 3. That 

is, displacements along the X axis of the lower side of the upper 

rod are equal to the displacements of the upper side of the lower 

rod, corrected for the shear of cross-links.  

Let it 2n connections between rods. Split the beam into sections 

)2/( nlat = . And the arrangement of communications will be 

symmetric as shown in fig. 6. If only the condition of compatibil-

ity horizontal displacements is taken into account, then after the 

thoughtful dissection of the connections, the main system and 

unknown forces will have the form shown in (fig. 6). Let the beam 

acts uniformly distributed load. q. Then by virtue of symmetry 

instead of 2n it will be n indeterminate (Fig. 6). 

 
Fig. 6: Unknown forces after cutting a beam into two rods  

 

Now it is proceed directly to the derivation of equations system 

for determining unknown forces. Ti. To determine the movement 

along the axis х first are the angles of rods rotation. 

1. Beam angles at i-point 

 

,
24

3

i
tot

i
EI

ql
 =                                                                        (11) 

 

where the index i denotes the location number of the connection 

(i=1, 2, 3, …n); 
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ai – distance from the origin (left support of the beam) to the i-

point: 

 

( ) ;1 t
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totEI  – the upper and lower rods flexural stiffness sum. 

Move the lower face of the upper rod  

 

;si
V
i a−=                                                                              (14) 

 

Перемещения верхней грани нижнего стержня: 

Move the upper side of the lower rod 

 

,si
n
i b=                                                                                 (15) 

 

where ss ba ,  – the distance from the seam between the beams, 

respectively, to the upper and lower rods (see Fig. 6). The angle of 

rotation according to (11) and (12) is determined by the familiar 

formula for the resistance of materials [12]. 

2. Angles of rotation from the action of moments created by un-

known forces Ti 
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where M
ij  − the coefficient to determine the angle of rotation of 

the beam at point i from the force applied at point j and to the left 

of the mid-span of the beam;. 

Coefficients M
ij  are determined by the formulas: 
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Difference in definition M
ij  from ji   consists in the fact that 

under the action of the concentrated moment in the beam accord-

ing to the scheme in fig. 7 is determined by the formulas [12]: 
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Fig. 7: The design scheme for determining the angle of rotation in the 

beam with co-focused moment  

 

Expressions (19) - (20) are derived by the formulas of the re-

sistance of materials [11]. 

The coefficients from the action of forces to the right of the mid-

dle of the beam are determined by the formula  
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where r
rj,  − the distance from the origin to the force to the right 

of the middle of the beam (see Fig. 8). 

Movement the lower side of the upper rod  

 

.si
V
i a=                                                                                 (22) 

 

Movement the upper side of the upper rod  

 

,si
n
i b−=                                                                              (23) 

 

here, the signs are taken as opposite signs according to (14) and 

(15), since from the action of moments СTM ii =  the points of 
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the lower side of the upper rod move to the right, and the points of 

the upper side of the lower rod move to the left. 

 
Fig. 7: Scheme for determining distances to unknown moments  

 

3. Displacement from compression-tension of rods by forces  

 iT : 
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where VEA и nEA  − respectively, the axial stiffness of the upper 

and lower rods; Т
ij  determined by the formulas (Fig. 8): 

 
Fig. 8: Scheme for determining displacements from compression of rods 

by unknown forces iT  
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4. Displacement from shear relationships. For simplicity, it is as-

sume that each bond is deformed independently of its neighbors 

(like the calculation of beams on an elastic base, when the elastic 

base is represented by a system of unrelated springs) 
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where G – bond concrete shear modulus; S, t, d – respectively, 

half the height, thickness and width of the bond (section of the 

monolithic seam of the beam). In our case d=at. 

The condition of compatibility deformations will be written as 

n
i

V
i = , so it should be equated the sum of all expressions V

i  

by formulas (14), (22), (24) and (28) the sums of expressions n
i  

by formulas (15), (23), (25) и (28). 

As a result, it will be obtained linear equations system: 
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As a result of solving equations system (29), all unknown forces 

will be found iT , after it the forces and displacements of the beam 

are determined by the known formulas of the materials resistance 

against the action of an external load and moments СTM ii = . 

In the absence of compliance shear ties, the last term of expression 

(30) turns into zero and the beam is considered as monolithic with 

a total section height equal to the sum of the heights of the upper 

and lower rods. 

The advantage of the proposed calculation method is the possibil-

ity of taking into account the nonlinear properties of shear bonds 

(monolithic seam), since the rigidity of each bond may be differ-

ent. In this case, instead of the last term of expression (30), which 

is a constant for all points, there will be an expression ,
2

iii dtG

S
 so 

at each point, the shear stiffness (shear modulus, thickness, and 

width of the bond) is different. This stiffness is determined by 

iterative calculation depending on the workload of the i shear con-

nection by known methods. 

The number of sections where the length of the beam should be 

divided is selected by preliminary calculation and usually 15–20 

sections are sufficient for quite acceptable calculation accuracy. 

Thus, a method for determining the forces in the monolithic seam 

between the shelf and the ribs of the beam under consideration has 

been developed, which enables to take into account the nonlinear 

properties of the concrete for monolithing. The technique is based 

on the prerequisites of composite rods theory, but differs in the 

possibility of using any laws of deformation in a monolith seam, 

which is practically impossible in the composite rods theory. 

If the rigidity of the connections is sufficiently large, then the 

beam can be considered as monolithic and calculated using the 

method described above. To determine the stiffness of the bond, 

where a beam can be considered monolithic, several calculations 

should be carried out with a gradual increase in the stiffness of the 

bonds. If at the last and previous stage of increasing the rigidity of 

the bonds, the efforts differ little from each other, the rigidity of 

the bonds can be considered conditionally infinite and the beam 

can be considered as monolithic. 

4. Hollow triangular cross-section floors con-

sisting of beams calculations, taking into 

account the spatial work 

Let an overlap consisting of n hollow triangular cross section 

beams be given. In general, the overlap with beams in one direc-

tion looks as shown in Figure 9. 

It will be cut the overlap into separate beams of a hollow triangu-

lar section with planes parallel to the longitudinal axes (Fig. 9) and 

used the method of spatial calculation [2]. 

 

Fig. 9: Scheme for the calculation of the overlap with the spatial work  
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In the above-mentioned method [2], in the general case, four com-

ponent forces of interaction act on the overlapping cut-off lines 

into individual beams. To calculate the system we are considering, 

it is quite sufficient to use a method that takes into account only 

the presence of vertical efforts of the interaction of the beams with 

each other. For this purpose, from the general system of differen-

tial equations [2], it is necessary to leave only the terms containing 

the vertical forces of interaction S(x). The system of differential 

equations in this case is: 
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where the following notation is used: Li, Ri – distances from the 

center of gravity  the i-beam to the left and right sections; EIi, GIi 

– Flexural rigidity of the beam, respectively, in vertical and hori-

zontal directions; EAi – axial stiffness of the beam; Di – T beam 

cylindrical rigidity of the flange ;bi– vertical distance from the 

center of gravity of the beam section to the axis of the flange; 

MSi=MSi(x) – bending moment function from unknown vertical 

forces Si(x), associated with the latest differential dependence 

MSi"(x)=Si(x); MQi=MQi(x) – function of bending moments from 

external load qi. 

In our case, the bending stiffness of the shelf can be taken equal to 

infinity, since the triangular cross section is fairly rigid and the 

curvature in the transverse direction can be neglected. With that 

said, equation (32) can be written as:  
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System (33) can be conveniently solved using the Fourier series 

expansion in sinuses: 
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where - for multiplicity indicated ;
l

n
=


 х − coordinate along 

overlap  span beam; l − span beam;  

Substituting (34) into (33), making a differentiation and reducing 

by Sin(αx), instead of a system of differential equations, will ob-

tain a system of linear finite equations, which in this case have the 

form: 
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      (35) 

Equations (35) should be written for each seam of the overlap. 

After determining the efforts of beams interaction with each other, 

each i- beam with its own external load and interaction efforts on 

the left Si and on the right Si+1 (fig. 10). 

In fig. 10 at the ends of the beam, the connections preventing the 

beam from turning around the longitudinal axis are shown. This is 

due to the fact that the ends of adjacent beams are interconnected, 

which prevents their rotation around the longitudinal axis. Efforts 

Si(x) have zero values on the supports (see fig. 10), since functions 

change them are functions of the sinuses. This is justified for the 

following reason. The supports of the beams at their ends are rigid 

and in this place the beams cannot move relative to each other. 

Therefore, the efforts of shifting one beam relative to another will 

be absent. 

 
Fig. 10: Forces diagram acting on the studied i- beam  

 

Thus, the first stage of the overlap calculation, consisting of hol-

low triangular cross-section beams, is the calculation of its spatial 

work according to the above method in order to determine the 

efforts of individual beams interaction with each other. After that, 

one should proceed to the calculation of the stiffness and strength 

of each beams, which are exerted by external loads and the forces 

of interaction applied to their edges (see Fig. 10). As calculation 

result, the presence of cracks is checked, the stiffness characteris-

tics of the flange and the side edges of the beam are changed, as 

well as its rigidity as a whole, and the calculation of the joint op-

eration of all the beams is repeated using the above method, but 

with the modified stiffness characteristics. 

5. Hollow triangular cross-section precast-

monolithic beams calculation examples 

while bending 

Consider precast-monolithic beams with triangular cross-section 

calculation examples at bending. 

Example1. Determine the strength of the section on the bend of 

the precast-monolithic beam shown in Fig.11. Class of concrete 

precast and monolithic parts C20/25. Reinforcement in construc-

tive walls. The beam is calculated without taking into account the 

shift of the shelf relative to the ribs. 

 
Fig. 11: Precast monolithic beam cross section  
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Solution. 
Replace the hollow triangular cross section with the one shown 

below (fig.12). 

Determine the moment of resistance for a rectangular section bf×d 

.3360
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Fig. 12: Given precast monolithic beam cross section  

 

Next, determine the percentage of reinforcement 
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Using interpolation according to table 1, we find the calculated 

resistance of reinforced concrete .ÌPà.f zÌ 7011=  

Find limiting bending moment value 

.mêN..WfÌ czÌEd === − 31391033607011 3  
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Find reinforced concrete calculated resistance according to ta-

ble 1 .ÌPà.f t,zÌ 3125=  

Bending moment limit value, when neutral line position in the 

edge 

.mêN...WfÌ tt,zÌt,Ed === − 8742103316933125 3  

Out of two values МЕd и МEd,t take less that is, the strength of a 

normal section is equal to М=39.31 kN·m. 

As a result of the calculation of the beam by an iterative method, 

we obtained load bearing value М=39.66 kN·m, the difference is 

0.88 %.  

Example 2. Determine beam deflections (see Example 1) on two 

supports loaded with a uniformly distributed load (Scheme No. 1, 

Table 4) of a hollow triangular section shown in Fig. 5 with the 

following loads 0.9q=7.86 kN/m, 0.8q=6.99 kN/m, 

0.7q=6.12 kN/m, 0.6q=5.24 kN/m. Beam has a span l=6 m. 

Solution. 

Using table 3 determine the coefficients of linearization by inter-

polation, depending on the class of concrete C20/25 and rein-

forcement percentage %444.1, =tf  − a=2.256 MPa; 

bi=0,745104 MPa. 

Deflections calculation will be performed according to the formula 

of the linearization method (1, tab.4): 
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The deflections determined by an iteration method based on a non-

linear deformation model have the following meanings 

сmf 828,31 = (=0,39%), сmf 469,32 = (=4.07 %); 

сmf 117,34 = (=8.79%), сmf 771,24 = (=15.01%). 

6. Conclusion  

Methods for calculating hollow triangular cross-section precast-

monolithic beams of, as combined structures consisting of two 

materials with different characteristics, are proposed. In this case, 

in all methods of calculating cross section rigidity and strength, 

the hypothesis of flat cross sections is used. Comparative calcula-

tions of the strength and stiffness hollow triangular cross section 

beams showed satisfactory convergence of engineering and itera-

tive methods for their calculation. 

In future, it is planned to develop a methodology for hollow trian-

gular section precast-monolithic beams inclined sections calculat-

ing. 

References 

[1] Azizov, T., Azizova, A., & Al Ghadban, S. (2018). Construction 

and calculation of reinforced concrete overlap with a high spatial 

work effect. International Journal of Engineering and 
Technology(UAE), 7(3), 567-574. 

http://dx.doi.org/10.14419/ijet.v7i3.2.14591  

[2] Azizov T.N. Raschet zhelezobetonnyih perekryitiy i prolet-nyih 
stroeniy mostov / T.N. Azizov, A.Ya. Barashikov, V.S. Dorofeev. - 

Odessa, 2009. – 193p. 

[3] ENV 1992-1. Eurokode- 2. Design of concrete structure. Part 1, 
General rules and rules for buildings, GEN, 1993. 

[4] DBN V.2.6-98:2009. Konstruktsiyi budynkiv i sporud. Betonni ta 

zalizobetonni konstruktsiyi. Osnovni polozhennya., Minrehionbud, 
Kyiv 

[5] Li, G., Wang, B., & Zhou, M. (2018). Study on Flexural Properties 

of Reinforced Spontaneous Combustion Gangue Concrete 
Beams. Periodica Polytechnica Civil Engineering, 62(1), 206-218. 

https://doi.org/10.3311/PPci.10647 

[6] J. K. Wight, J.G MacGregor . Reinforced Concrete: mechanics and 
design, New Jersey: Upper Saddle River, (2009). 

[7] Rombach G.A. Finite-element Design of Concrete Structures: Prac-

tical problems and their solutions, Second edition. ICE Publishing. 
2011. - 350р. 

[8] Kochkarev, D., & Galinska, T. (2018). Nonlinear Calculations of 

the Strength of Cross-sections of Bending Reinforced Concrete El-

ements and Their Practical Realization. Cement Based Materials, 

13-30 http://dx.doi.org/10.5772/intechopen.75122 

[9] Kochkarev, D., & Galinska, T. (2017). Calculation methodology of 
reinforced concrete elements based on calculated resistance of 

reinforced concrete. Paper presented at the MATEC Web of 

Conferences, 116 https://doi.org/10.1051/matecconf/201711602020 
[10] Kochkarev, D., Galinska, T., & Tkachuk, O. (2018). Normal 

sections calculation of bending reinforced concrete and fiber 

concrete element. International Journal of Engineering and 
Technology(UAE), 7(3), 176-182. 

http://dx.doi.org/10.14419/ijet.v7i3.2.14399 

[11]  Rzhanitsyin A.R. Teoriya sostavnyih sterzhney stroitelnyih kon-
struktsiy, Gosstroyizdat. Moskva. 1948, 192  

[12] Opir materialiv / G.S. Pisarenko, O.L. Kvitka, E.S. Umanskiy; Za 
red. G.S. Pisarenko, K.Vyscha shk., 2004, 655. 

[13] Storozhenko, L., Butsky, V., & Taranovsky, O. (1998). Stability of 

compressed steel concrete composite tubular columns with centri-

http://dx.doi.org/10.14419/ijet.v7i3.2.14591
https://www.icevirtuallibrary.com/author/Rombach%2C+GA
https://doi.org/10.1051/matecconf/201711602020
http://dx.doi.org/10.14419/ijet.v7i3.2.14399


138 International Journal of Engineering & Technology 

 

 

fuged cores. Journal of Constructional Steel Research, 46(1-3), 484. 

http://dx.doi.org/10.1016/S0143-974X(98)80098-9  
[14] Kochkarev, D., Azizov T., & Galinska, T. (2018) Bending deflec-

tion reinforced concrete elements determination. Paper presented at 

the MATEC Web of Conferences, 230 
https://doi.org/10.1051/matecconf/201823002012 

[15] Piskunov, V. G., Gorik, A. V., & Cherednikov, V. N. (2000). Mod-

eling of transverse shears of piecewise homogeneous composite 
bars using an iterative process with account of tangential loads 2. 

resolving equations and results. Mechanics of Composite Materials, 
36(6), 445-452. https://doi.org/10.1023/A:1006798314569 

[16] Piskunov, V. G., Goryk, A. V., & Cherednikov, V. N. (2000). 

Modeling of transverse shears of piecewise homogeneous compo-
site bars using an iterative process with account of tangential loads. 

1. construction of a model.Mechanics of Composite Materials, 

36(4), 287-296. doi:10.1007/BF02262807 
 

http://dx.doi.org/10.1016/S0143-974X(98)80098-9
https://doi.org/10.1051/matecconf/201823002012
https://doi.org/10.1023/A:1006798314569

