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Abstract 

Linear fractional programming problems are useful tools in producti
on planning, financial and corporate planning, health care and hospital 
planning and as such have attracted considerable research interest. The 
paper presents a new approach for solving a fractional linear program-
ming problem in which the objective function is a linear fractional 
function, while the constraint functions are in the form of linear 
inequalities. The approach adopted is based mainly upon solving the 
problem algebraically using the concept of duality and partial fractions 
and an example is given to clarify the developed method. 
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1 Introduction  

Linear programming is a mathematical technique aimed at identifying optimal 

maximum or minimum values of a problem subject to certain constraints [1], 

while a linear fractional programming (LFP) problem is one whose objective 

function has a numerator and a denominator and are very useful in production 

planning, financial and corporate planning, health care and hospital planning. 

Several methods to solve this problem have been proposed [2]. Charnes and 

Kooper [3], have proposed a method which depends on transforming the LFP 

problem to an equivalent linear program. Another method which is called up 

dated objective function method was also derived to solve the linear fractional 

programming problems by re-computing the local gradient of the objective 

function [4]. Also some aspects concerning duality and sensitivity analysis in 

linear fraction program was discussed by Bitran and Magnant [5].  
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Nowadays, the most important issue considered by managers of industries is 

production planning. Manufacturers require a production policy to be globally 

competitive [6]. In production planning, managers, sometimes, may face up with 

goals to optimize inventory/sales, actual cost/standard cost, output/employee, etc., 

with respect to some constraints. Such types of problems are inherently multi 

objective fractional programming problems. Wide applications of fractional 

programming arise in different problems in operations research, for example, 

production, resource allocation [7].  This kind of mathematical programming 

problem has attracted considerable research and interest, since they are useful in 

production planning, financial planning corporate planning and health care 

planning. However for a single objective linear fractional programming the 

transformation by Charnes and Cooper [3], can be used to transform the problem 

into a linear programming problem.  

 

The concept of Multi-Objective Programming (MOP), on the other hand, has 

become popular among researchers during the past few years due to the fact that 

many single objective optimization methods are not able to help practitioners 

reach desirable solutions [8-10]. The concept of MOP combined with fractional 

programming is an interesting area of research which incorporates many 

production planning applications [11, 12]. Few approaches have been reported for 

solving the multiple objective linear fractional programming (MOLFP) problem 

[13, 14]. Multi-objective linear programming is an extension of linear 

programming and it was introduced by Chaudhuri and De [15]. The problem was 

also considered and presented a simplex–based solution procedure to find all 

weakly efficient vertices of the augmented feasible region [16]. It was however 

showed that the procedure suggested by Kormbluth and Steuer for computing the 

numbers to find break points may not work all the time and a failsafe method for 

computing these numbers was proposed by Benson [17]. The objective space for 

multiple objectives linear fractional programming with equal denominators was 

given by Tantawy [2], using the concept of duality. The approach enables the 

transformation of a single objective linear fractional programming problem into a 

linear programming problem using partial fractions method with the concept of 

duality. 

 

2 Definition of a Linear Fractional Programming 

Problem  
 

A linear fractional programming problem occurs when a linear fractional function 

is to be minimized or maximized and the problem can be formulated 

mathematically as follows:   

A linear - fractional programming problem is of the type; 

   Maximize ( )
T

T

c x
P x

f x









 



 

 

 

 300 

 

     subject to  ( , )x X x Ax b                                                                    (1) 

                     0Tf x    

                               0x   

where ,nx R   A is an ( )m n n   matrix, c and d are n-vectors, ,m nb R   

and  ,   are scalars. It is assumed that the feasible solution set X is bounded and 

closed (compact set). Assume 
0

lim 0
h

if a
h




    and 
0

lim
h h




   0if a  . 

By generalizing the linear fractional programming problem we have;                                        

                          maximize ( )
T

i i

T

i i

c x d
F x

f g





                                                     (2) 

                              subject to Ax b  

                        0, 1, ,T
i if x g i k   ,     

              maximize ( ) ( )Ti i
i T

i i

d dx
F x c f

g f x g g
  


    

                    subject to ( )Ti i
T

i i

d bx
A f

g f x g g
 


                                       (3) 

            Defining 0
T

i i

x

f g



, then Equation (3) can be written in the form 

                           Maximize ( ) ( )Ti i
i

i i

d d
F y c f

g g
                 

                               subject to  ( )Ti i

i i

d b
A f

g g
                                           (4) 

                                      Equation 4 can simply be written in the form 

                                       Maximize ( ) T i

i

b
F y P y

g
   

                                         Subject to Gy t                                                       (5) 

                            where  ( ),T Ti
i

i

d
P c f

g
    ( )Ti

i

d
G A f

g
   and i

i

b
t

g
 .                                                                                                                     

            From (4) which defines y, we have 
1

i T

y
x g

f y



                                (6) 

           Now, consider the dual of the  linear programming in (5) in the form 

                                                     Minimize Tw u t  

                                                     Subject to T Tu G P                                      (7) 
                                                                                                               

0u      
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On multiplying the set of constraints of this dual problem by T = (T1 | T2), 

1 ( ),TT p p p   

the column of the matrix T2 constitutes the base of  

( ) { ; 0}T TN p v p v                                                                                          (8) 

We have 1 21, 0 0.T Tu GT u GT and u    In this case when 2 0,GT an  

( )s m n matrix Q   of non- negative entries is defined such that QGT = 0. 

This matrix will play an important role to find the optimal value of the above 

problem as the maximum value of w on the interval on the real line defined by 

  1{ | QGT }W w R w Qg    

The above representation can simply be written as W= {w   R | Zw ≤ z}, 

where Z = QGT1  and z = Qg .                                                                             (9) 

Also a sub matrix Q  of the given matrix Q satisfying Q GT1 = 1 will be important 

for  specifying the dual values needed for solving the linear fraction programming 

problem (1). The dual values satisfy the well known Kuhn-Takucer condition [2] 

and for a point ky  to be an optimal solution of the above program, (5) must exist.  

                      0u   such that ,TG u p  or simply 

                            1( , ) ,Tu G G G p                                                              (10) 

 

3 New Method for Solving Linear Fractional 

Programming (LFP) Problems 
 

The new method for solving LFP problems is summarized as follows: 

 1.   Compute 1

1 ( )TT p p p  and the matrix T2 as in Equation (8) 

 2.   Find the matrix Q of non-negative entries such that QGT2 = 0, 

 3.   Find a sub matrix Q  of the given matrix Q satisfying Q GT1 = 1 

 4.   In the rows of Q   for every positive entry, determine the corresponding active 

constraint in the given matrix GT1 

5.  Solve an n n  system of linear equations for these set of active constraints to 

get the optimal solution y*. Then use (6) to get the optimal solution of the Linear 

Fractional Programming (LFP) problem defined by Equation (1). 

 

3.1   Remarks 
 

1.  The matrix Q of non-negative entries such that QGT = 0, is considered as the a 

polar matrix of the given matrix GT2 

2.  With d = 0 in (LFP), the above problem reduces to linear programming (LP) 

problem, and hence the method can be used to solve the (LP) as a special case of 

this (LFP) using the same argument. 
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3.2   Numerical Examples 
 

Some numerical examples is now considered in other to illustrate the problem: 

Example 1.  

Maximize 1 3 3

1 2 3

3 2

2 4 1

x x x
Z

x x x

 


  
 

Subject to  1 2 33 6 8x x x    

                  1 2 32 4 5x x x    

                    1 2 3, , 0x x x   

 

Table 1: The final table for 1 3 2

8
0,

3
x x x    to be an optimal solution. 

a1                  a2                   a3                  a4                                 a5                  XB                

1/3                1                    2                  1/3                     0                  8/3  

5/3                0                    2                  1/3                     1                  7/3 

40/3                                   92/3                1                                

 

For the solution x2 = 8/3, x1 = x3 = 0, we observe that the first constraint  

                   1 2 3

1 8
2

3 3
x x x     holds as an equality, 

 while the second constraint  1 2 3

5 7
0 2

3 3
x x x     holds as an inequality.  

This second constraint is an invalid constraint. We therefore combine this invalid 

constraint with the objective function to generate the following parametric 

fractional programming problem. 

              
1 2 3 1 3

1 2 3 1 3

5
3 2 ( 2 )

3
5

2 4 1 ( 2 )
3

x x x x x

Z

x x x x x





   



    

 

   Subject to    1 2 3

1 8
2

3 3
x x x    

                        1 2 3, , 0x x x   

                          

Example 2: Consider the following combination of linear fractional programming 

(LFP) problems,  

Maximize  1 3
1

1

2

2

x x
z

x

 



 and Maximize 1 2

2

1

2 4

2

x x
z

x

  



 

Subject to   1 2 3 1x x x      

                   1 2 30, 0, 0x x x    

Using partial fractions with duality concept we have, 
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1

tc  = (1  0  1), 2

tc  = (1  2  0), td  = (1  0  0), also 1  = 2, 2  = 4 and   = 2 

Example 3: Consider the following linear fractional programming (LFP) problem  

            Maximize 1 2

2

3

1

x x
Z

x

 



  

       Subject to   1 2 6x x   

                                  
1

2

0,

0

x

x

 

 
 

                                   

For this LFP we have c
t
 = (1   1),  d

t
 = (0   1), bi = 3, gi = 1, (c and d are matrices) 

and then we have  

                    T1 = 

1
5

2
5

 
 
 
 

,  T2 = 
2

1

 
 
 

, and GT = 

10

2

1

 
 
 
  

 

Which gives Q =  
1 5 0

1 0 10

 
 
 

         

The second row in Q satisfies Q GT1 = 1. This indicates that the first and the third 

constraints in G are the only active set of constraints, on solving y1 + 8y2 = 6 , y2 

= 0 , we get y
t
* = (6  0) as the optimal solution for the equivalent problem which 

finally on using (6) gives x
t
* = (6  0) as the optimal solution of our linear fraction 

program with optimal value z* = 9.  

 

4 Conclusion 
 

A method for solving linear fractional functions with constraint functions in the 

form of linear inequalities is given. The proposed method differs from the earlier 

methods as it is based upon solving the problem algebraically using the concept of 

duality with partial fractions approach. The method appears simple to solve any 

linear fractional programming problem of any size.  
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