
 

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits 

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

 

International Journal of Engineering & Technology, 7 (4.44) (2018) 99-104 
 

International Journal of Engineering & Technology 
 

Website: www.sciencepubco.com/index.php/IJET  
 

Research paper 
 

 

 

 

Fault Tolerant Dynamic Scheduling on Real Time Hierarchical 

System: Proposals for Fault Tolerant Mechanism on  

Safety-Critical System 
 

Catur Wirawan Wijiutomo1*, Bambang Riyanto Trilaksono2**, Achmad Imam Kistijantoro3*** 

 
123School of Electrical Engineering and Informatics, Institut Teknologi Bandung 

Jl. Ganesha 10 Bandung 40132, Indonesia 
1School of computing, Telkom University, Indonesia 

*Corresponding author E-mail: catur20@students.itb.ac.id 

 
 

Abstract 
 

The paradigm changes from federated architecture to integrated architecture in the real time system introduces a partitioned system to 

ensure fault isolation and for scheduling the hierarchy scheduling at the global level between partition and local in partition. Integrated 

architecture based on partitioned system with hierarchical scheduling is referred as real time hierarchical system which is a solution to 

increase efficiency in terms of hardware cost and size. This approach increasing the complexity of the integration process including the 

handling of faults. In this paper the authors describe a proposal with three components for dealing with fault tolerant in real time hierarchical 

systems by handling fault in task level, partition level and distributed level. The contribution of this proposal is the mechanism for building 

fault tolerant system on real time hierarchical system. 

 
Keywords: Real time Hierarchical system, real time scheduling, Fault-tolerant system, Integrated Modular Avionics

 

1. Introduction 

The developments of microprocessor technology impact on 

increasing computational speed. It gives microprocessor capability 

to handle more tasks in a certain period. Suddenly, it is wasteful to 

run single task or application on modern microprocessor, to 

improve processor utility, researcher introduce using parallel 

computing to run multiple applications and virtualization to run 

multiple operating systems on one platform. Although this method 

initially applied to the needs of the data center, this development 

also affected the real time system with embedded processor which 

experienced a change in the development paradigm. 

Real time system starts to be developed based on integrated system 

which runs several applications in one shared hardware platform. 

Previously real time system uses separate dedicated hardware for 

specific function. Each unit communicate with each other with a 

communication bus on dedicated specific link, this configuration is 

referred to as federated architecture, this architecture could create 

problem once the real time system grows with many dedicated 

hardware and communication it could become more complex. The 

integrated architecture is introduced to mitigate this complexity. 

This paradigm change is illustrated in the Figure 1, in this picture, 

the architectures of functions that build an application distributed 

using own hardware communicate with common bus changed to 

share a common hardware communicate within hardware via OS 

mechanism and run on exclusive partition. 

 

Function 1

Function 2

Function 3

Hardware

Functio
n 1

Functio
n 2

Functio
n 3

Hardware

Hardware

Hardware

 
Figure 1 Paradigm Change 

Despite Federated architecture drawbacks, it provides isolation 

against fault with exclusive dedicated hardware in each unit, faults 

that occur on one unit will not spread to other units so that it is 

naturally a fault containment. But with the increasing demands for 

features, capabilities and application certification, this architecture 

has become more complex and has led to proposals to switch to 

integrated architectures which several software application units 

run on shared hardware platform. One of the applications of this 

architecture is the avionics system which is referred to as integrated 

modular avionics [1] and automotive called AUTOSAR [2]. while 

reducing the complexity on hardware used and communication bus, 

the integrated architecture also introduces challenges related to 

resource sharing, scheduling and fault tolerance. 

The problem of resource sharing and scheduling between real time 

applications on shared hardware platform needs to be made strictly 

related to CPU time (temporal) and memory resources (spatial). 

This causes integrated architecture to be implemented in a 

partitioned scheme where each application is run on a partition that 

guarantees temporal and spatial isolation with other partitions. This 

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET
mailto:*catur20@students.itb.ac.id


100 International Journal of Engineering & Technology 

 
approach forms a hierarchy of scheduling) which consists of global 

level (between partitions) and local level (between tasks in the 

partition). the unique approach of scheduling application in real 

time system on integrated architecture that form hierarchy to isolate 

application on shared hardware platform is called real time 

hierarchical system[3]. 

Although integrated architecture provides resource efficiency, the 

use of such architecture in hierarchical scheduling manner has the 

need for fault tolerance. Several fault tolerant scheduling studies 

have handled partitioned scheme but are limited to recovery of task 

[4] and backup partitions [5] for a single processor platform, so that 

there are still opportunities to develop method for real time 

hierarchical systems in some special cases or wider scope. 

Fault tolerant on the real time hierarchical system is the focus of 

this paper, although the relationship between components is more 

integrated and uses sharing platforms but it is proper that the real 

time task on the system needs to be functional within a constraint 

deadline, so that the fault tolerant method commonly used in 

conventional real time systems cannot be fully implemented. This 

paper give insight on some proposal on fault tolerant scheduling 

method for real time hierarchical systems that can handle potential 

faults at each level of hierarchy. 

2. Related Work 

Some research related to the fault tolerant method on partitioned 

systems. The recent one is conduct by Hyun that add recovery job 

to the partition [4]. The research proposed a new framework for real 

time hierarchical system with the fault tolerant property and add 

scheduling analysis to monotonic fault tolerance rate in the periodic 

resource model. There is an assumption that the "fault manager" can 

detect faults that occur on the component. The default model is 

offered when the fault task is detected at the end of the execution of 

the task. The task process is recovered using a task recovery scheme 

such as re-execution, forward recovery, checkpointing. The 

Periodic task defines its own recovery scheme and uses backup 

tasks based on available time. 

In addition, research from Jin developed a resource model to 

support primary and backup partition [5]. With the aim of deploying 

backup partition and being able to handle failover from primary 

partition when fault software is detected. in this research the task in 

a partition is divided into Context Dependent task (CDT) and 

Context Independent Task (CIT). CIT must always run because this 

task must know the trace of the current situation while the CIT is 

only active when the primary file is. Fault is detected by event 

deadlines and the absence of heartbeat. In the backup partition tasks 

are divided into Context Dependent Task (CDT) and Context 

Independent Task (CIT). The combination of CIT and CDT in the 

backup partition is the total workload in the backup partition. In this 

fault tolerant mechanism, there are modes that state the conditions, 

including Primary (no error) (in the backup partition only CDT that 

runs), Recovery (error detected), Backup (error happen and primary 

stop) (Workload backup partition has been executed). 

This paper based on the scheduling real time problem form Liu 

Layland [15] model which discusses multi task scheduling on the 

hard-real time system up to Guasqe [16] which states that arbitrary 

scheduling at the global level can guarantee the task level below it 

on real time hierarchical system. The author tries to see the 

correlation between the oldest and most recent papers and the 

following  papers such as periodic resource for compositional real 

time guarantees [17]and compositional real time scheduling 

framework [18]. Furthermore, based on the scheduling model in the 

paper and the fault tolerant method studied, several proposals can 

be designed for the fault tolerant scenario in the real time 

hierarchical system 

3. Real Time Hierarchical System 

Real time hierarchical system is used in hard real time embedded 

computer that run safety-critical function. such as space & defense, 

process control and automotive fields. The high level of safety 

demands that not only the computational output is correct but also 

meets the computational time required[6], [7]. 

Real time hierarchical system designed to run several tasks sets 

where each task has deadline timing constraint. Based on the impact 

of failure, the task can be divided as soft real time system and hard 

real time system. soft is when the condition does not meet the 

deadline usually appear form of a lag or inconvenience can be 

tolerated while hard is when failure to meet the deadline will cause 

disaster and loss. 

3.1. Real Time Scheduling 

Real time scheduling problem is a specific scheduling problem is to 

ensure the T tasks can be scheduled in N resources or processors 

with strict timing constraint. In general, a task in real time system 

can be described in the form of Gantt chart which describes the 

nature of a task 

Main parameters can be listed, those include: 

• 𝑎𝑖 arrival time is when task arrive in CPU and ready to 

execute 

• 𝑠𝑖 start time is when task is executed 

• 𝑐𝑖 computation time is when CPU run task 

• 𝑓𝑖 finishing time is when CPU stop running task 

• 𝑑𝑖  deadline is constraint that need task to be finish. 

Derived parameters: 

• 𝑜𝑖 Offset is the time of arrival task to start time 

• 𝑙𝑖 Laxity or slack time, is the remaining time between the 

time of completion and the deadline stating the maximum 

time that an activation of the task can be postponed before 

the deadline. 

 

on that parameter we can create tuple 𝜏𝑖 

𝜏𝑖 = {𝑎𝑖 , 𝑠𝑖 , 𝑐𝑖 , 𝑓𝑖 , 𝑑𝑖} 

The nature of the task can be periodic, aperiodic and sporadic. The 

difference is time interval between instance of task. For periodic 

tasks the time interval is always the same and is often modeled in 

terms of 𝑇𝑖 so that this periodic Task is quite typical and added to 

the previous tuple model. 

𝝉𝒊 = {𝒂𝒊, 𝒔𝒊, 𝒄𝒊, 𝒇𝒊, 𝒅𝒊, 𝑻𝒊} 

whereas aperiodic will have different interval for each instant but 

have a maximum interval which is not found in sporadic. In 

addition, there is a pre-emptive nature which states that a task can 

be delayed or not implemented. 

Tasks in the real time system can be scheduled both statically and 

dynamically. In the case of static scheduling algorithms, the task 

assignment to the processor and task execution schedule are set 

from the beginning before the task is executed. the advantage of 

static scheduling is that the schedule that is run is certain that all 

tasks can meet the deadline. 



International Journal of Engineering & Technology 101 

 
Some real time systems require dynamic scheduling algorithms due 

to changes in resources and tasks. In dynamic scheduling when the 

task arrives, scheduler sets and determines how tasks are scheduled 

without disrupting the pre-existing task scheduling. 

3.2. Partitioned System 

Federated architectures have guaranteed system isolation and 

faults. Examples of avionics use the distributed function of avionics 

packaged in a self-contained units that called Line-Replaceable 

Unit (LRU) [8] In addition, automotive traditional design is based 

on the concept Federated architectures which integrates hardware 

and software on Electronic Control Unit (ECU) independently 

based on loosely interconnected functions [2] This component is 

connected by certain bus and works together by exchanging 

messages. Although quite effective, this design is not efficient when 

adding units need each bus or connection for each function that 

must be added to each additional unit. 

The Integrated architecture uses a high integrity partitioned 

environment that is used to put several functions with different 

levels of safety in a shared hardware platform. This provides 

benefits in terms of weight and power because computing resources 

can be used more efficiently. In terms of implementation, avionics 

itself is divided into open Integrated Modular Avionics (IMA), 

which use open interface standard which is available in public 

domains while closed IMA uses customizable proprietary interfaces 

[8]. 

Integrated architecture development adds to the responsibility of the 

system integrator because several system functionalities will reach 

a higher level of integration than federated architecture. Such 

integration level provides some additions to system optimization 

but also adds an additional layer to the complexity of integration. 

Software components can be supplied from a variety of sources, 

which are then integrated into the hardware text platform that is the 

same or physically distributed and can be moved from one CPU to 

another without functional loss with integrated architecture so that 

some functions can be combined in one integrated ECU/LRU or can 

be distributed in several integrated ECU/LRU. 

Regarding the complexity and high level of integration transition 

from federated systems to IMA, the system integrator must be able 

to fulfil the responsibilities for integration tools and processes 

including. Increased interface definition and management, resource 

allocation management and system configuration analysis. 

Resource allocation issues related to partitions with different 

critical levels, hierarchical schedules, partition allocation for cores 

and generation of global schedules.  Real time system need to use 

applications with different critical levels that each component with 

different dependability and real time constraints are integrated into 

the shared computing platform. The functional critical and different 

laying on one sharing platform are non-functional things such as: 

decrease in cost, volume, weight and power consumption. 

3.3. Partitioned System Implementation 

In terms partitioned system, virtualization software techniques 

provide partitioned architecture with temporal and spatial isolation. 

The purposes of a partitioned system are isolation of the function 

and fault containment. The partitioned system for the real time 

system itself can be obtained using virtualization techniques with 

hypervisor which will provide an environment that divides physical 

resources in a virtual CPU to execute some independent execution 

environment as it should in native hardware. 

Time partitioning and isolation of memory resources in ARINC 653 

have similarities with virtualization techniques. So, there is a 

convenient to combine these two technologies. The current 

implementation has two approaches and this approach has 

directions that are opposite to each other [9]. 

The first approach is using the current hypervisor technology 

implementation of the hypervisor in virtualization to adapt the 

technology to a safety-critical environment to meet the ARINC 653 

standard by applying DO-178B. 

The second approach uses proprietary RTOS technology for safety-

critical application. for example, by adding the concept of 

virtualization on ARINC 653 RTOS. 

As for these two approaches, almost all vendors real time operating 

systems (RTOS), such as Windriver and LynxWorks, use the 

second approach by adding existing RTOS solutions with the 

hypervisor's ability to RTOS products. Windriver with VxWorks 

653 is adding the ARINC 653 extension based on virtualization on 

the VxWorks RTOS. This is because the focus for conventional 

virtualization solutions is different from the real time system, 

including: 

• Virtualization is used for CPU utilization needs to run 

multiple OS 

• Virtualization technology generally focuses on 

improving performance throughput 

•  Hypervisor generally do not provide communication 

between partitions. 

•  The DO-178B requirement is not fulfilled in existing 

virtualization technology. 

On the paper [9] there is an opportunity to build ARINC 653 on the 

existing hypervisor. One of them is using Xen, Xen is an open 

source hypervisor with low level system software that manages 

virtual machines. Xen runs directly above hardware and provides a 

virtual view of the machine to the domain. One domain called 

domain 0 has special privileges to access hardware and set another 

domain. There is enough research related to the implementation of 

Xen for the real time system [10], [11] although it is not yet widely 

used in safety-critical applications. 

4. Fault Tolerant Computer System 

Fault, error, and failure are words commonly used in research 

related to fault tolerant computing system [12]. According to Laprie 

fault is damage or defect in hardware or software that can cause the 

system to state incorrect. an error is part of the system state which 

can cause a fault that ends in failure. Failure is a state of a system 

that cannot function properly or in other words also called a system 

that has failed. 

When designing fault tolerant system, a fault tolerant method is 

applied to handle one or several types of faults. An efficient method 

to increase the fault tolerant is to use redundancy by providing 

backups during failures. This redundancy in the real time system is 

generally classified in two scheme hardware-based redundancy and 

time-based redundancy [13] 

Hardware-based redundancy or spatial-based redundancy develops 

in several techniques such as hardware replication, stand-by 

sparing, DMR (Dual Modular redundancy) and TMR (Tripe 

Modular Redundancy) [14]. In general, this method works by 

copying the execution to additional hardware, if the primary 

hardware is experiencing a fault, then the hardware backup can 

handle the function of the primary. although it is effective in 

handling permanent faults, this technique has a shortage of 

hardware overhead cost and additional power consumption. 



102 International Journal of Engineering & Technology 

 
Software-based redundancy or time-based redundancy which is 

pretty much used, including rollback recovery and re-execution 

[13], is to make serial copy-executions on the same hardware where 

the copied task is executed. in the absence of additional hardware, 

additional costs of hardware are not an issue. the weakness of the 

technique is that it is not effective for permanent faults or transient 

faults with long duration. with the addition of time when this 

method is run can cause the task to fail to meet the time constraint. 

On the purpose of measuring system performance against faults, 

two criteria are defined: fault coverage and computational integrity. 

Default coverage is measured based on qualitative and quantitative 

parameters. Quantitative parameters specify the type of fault that 

can be handled by the system. The requirement that the system can 

handle faults if the system can do recovery when the type of fault 

occurs. In other words, quantitative parameters provide a 

measurement of how well the protection mechanism works for each 

type of fault. Computational integrity is measured based on three 

main parameters: (1) computational accuracy, (2) reconfiguration 

time which is the time needed to isolate fault and recovery, and (3) 

protection in critical states. 

4.1. Partition Resource Model 

Partition resource model is model for partitions behaviour on real 

time hierarchical system. This model is then used for mathematical 

verification and simulation. The model resource partition in this 

paper is derived from the periodic resource model [17] Periodic 

resource models used on this paper because of the nature of the 

partition which limits the task to a temporal limit can be equalized 

with periodic resources. 

The periodic resource model can be equalized as  

𝑴 = {𝑾, 𝑹, 𝑨} 

W is workload that will use resources, R is a resource, and A is the 

algorithm for scheduling policy that defines how workload will uses 

resources. Workload itself is a collection of tasks that can be 

derived from commonly found task models. in this paper the 

definition of task is used in equation 

𝑾 = {𝝉𝟏, 𝝉𝟐, . . . , 𝝉𝒏} 

The scheduling model for can be equalized as  𝑴 = {𝑾, 𝑹, 𝑨} is 

called schedulable if a periodic set of workloads W can be 

scheduled with algorithm A with resource R. 

The periodic model itself describes a partitioned resource that 

guarantees the allocation of  𝚯 units every 𝚷 unit period, 

partitioning resources can be modelled as 

𝚪 = (𝚷, 𝚯) 

5. Fault Tolerant Hierarchical Scheduling 

The fault tolerant scheduling on the real time hierarchical system 

becomes our motivation to design a fault tolerant algorithm which 

the author calls a fault tolerant hierarchical scheduling (FTHS). 

FTHS is a fault tolerant scheduling algorithm for real time 

hierarchical system with the composition of 𝐴1, 𝐴2, 𝐴3by adding 

extra level from usual hierarchical system. each hierarchical level, 

level 1 in the task scope same as local level, level in 2 partitions 

same as global level, level 3 which is added that is system 

scope/distributed. this FTHS can be stated in the scheduling model 

𝑀 = {𝑊, 𝑅, 𝐴} with A is a set of fault tolerant feasible algorithms, 

which are 𝐴1, 𝐴2, 𝐴3 ∈ 𝐴 . 

 

5.1. First Component (A1) 

The First Component of The fault tolerant mechanism is to handle 

possible faults at the task level that can apply the fault tolerant 

method. The task dependencies on this partitioned system can be 

placed on one partition or connected to each other in different 

partitions with a communication mechanism between tasks as 

shown in the Figure 2 

 

One of the fault tolerant techniques considered is DFTS [19]by 

measuring the critical level based on the task utility against the 

period and laxity available [4] 

P1

P2

P3

Task 1 Task 2 Task 3

Task 1 Task 2

Task 3

App 1

App 2

 
Figure 2 Task within Partition 

on this first proposal the utility function is modified by measuring 

the level of criticality of tasks in the task set by calculating 

utilization not based on tasks but based on the resources provided 

on the partition where the task is located. 

𝑈𝑡𝑖 =
𝑡𝑖

𝑅𝑖
 

If the value of utilization is closer to 1 and near threshold, then it 

will be classified as critical. because the value of task utility means   

that there is almost no laxity or spare time. A task with high utility 

would not allow job recovery if a fault occurs due to a narrow spare. 

In addition to utilization also sought a threshold value by 

calculating the laxity properties that exist in all tasks to become 

additional properties of task classification. After obtaining task 

classes based on utilization and threshold then used task replication 

in critical tasks and recovery job in non-critical tasks by utilizing 

available laxity. That shown on Figure 3 

 
Figure 3 Algorithm on first component 

In the last case it occurs if laxity is not available then the task fault 

is ignored and raise the flag message to partition, this kind of fault 

will be handled at the partition level by activating partition backup 

on second component.: 

 



International Journal of Engineering & Technology 103 

 
5.2. Second Component (A2) 

Each SBC has several applications arranged in partitions that have 

several tasks. It is possible to communicate between tasks both in 

partitions and between partitions at the task level as described 

below in Figure 4 and Figure 5, in figure 4 application is distributed 

each partition within a SBC. Each application is running on 

partition with each have primary and backup. In figure 5 the backup 

component distributed in another SBC this backup component can 

be communicate with the primary partition. 

SBCs

P1p

P2p

P3p

P1b

P2b

P3b

RACK

SBCs SBCs

 
Figure 4 Partition within SBC 

 

SBCs

P1p

P2p

P3p

P1b

P2b

P3b

RACK

SBCs SBCs

P1b

P2b

P3b

 
Figure 5 Partition in different partition 

 

The first proposal of the fault tolerant mechanism in this study was 

to populate partitions into primary and backup application with 

different scheduling strategies. The primary partition is run with As 

Soon as Possible (ASAP) and the backup partition is run with As 

Late as Possible (ALAP). backup partitions can be placed on one 

SBC as in the Figure 4or different SBC as in the image Figure 5, so 

that this mechanism is a fault tolerant at the SBC level or partition. 

 

𝐶𝑝 = {𝜏𝑝, 𝑅𝑝, 𝐴𝑆𝐴𝑃} 

 

𝐶𝑏 = {𝜏𝑏 , 𝑅𝑏 , 𝐴𝐿𝐴𝑃} 

 

On partitioned system Γ(Π, Θ), the ASAP strategy is to arrange 

scheduling for a task to be done as quickly as possible on the Θ 

partition unit guarantee, for example for  Γ(3.10) task unit Π has a 

minimum offset and produces a supply function. This strategy 

means that the remaining partition guarantees are obtained for spare 

time or laxity which can be used for fault tolerant requirements for 

backup partitions. 

In the partition backup, the ALAP strategy is used by delaying if 

possible the task in the partition unit guarantee. so, the offset task 

will be very large, and the laxity task will be minimal. This is 

applied to the partition backup with the intention of optimizing the 

spare time at the beginning with an assumption that the optimistic 

fault task does not occur at the beginning of the task running.  

As for there are still fault scenarios that are not expected and cannot 

be handled. for example, faults that occur on both primary partitions 

and backup, so that the spare time used for backups has run out or 

backup tasks also fail. So that the handling of faults like this needs 

to be done by handling at the next level. 

5.3. Third Component (A3) 

At the system/distributed level, a minimum of dual redundancy can 

be used which allows resource redundant utilization in integrated 

distributed system (integrated system with distributed architecture) 

as shown in Figure 6. In this figure there is another rack that 

provided to mitigate fault. Even though dual redundancy does not 

necessarily provide the ideal fault masking, this method is chosen 

because of minimum physical redundancy method and cost 

effective. There is some consideration on using this redundant rack 

that using is as idle rack (passive backup) that backup a whole rack 

or using it as another resources that can be used (active backup) 

SBCs

RACK

SBCs SBCs SBCs

RACK

SBCs SBCs

 
Figure 6 Distributed SBCs 

5.4. Integration Configuration 

The algorithm scheme is 𝐴1, 𝐴2, 𝐴3 intended to handle faults at each 

level of real time hierarchical system but the implementation in 

integrated architectures requires a configuration to be able to 

perform dynamic resource settings when a fault occurs. The 

assumption used is that the operating system has provided fault 

management and fault detection mechanisms such as health 

management in ARINC 653[9] or signals on POSIX. The 

mechanism can be used as information and signals that can be 

forwarded to the scheduler to dynamically change scheduling based 

on the three proposed algorithms. This is illustrated in the Figure 7 

 
Figure 7 Configuration step 

6. Conclusion 

These Components and integration configuration are the 

mechanism of fault tolerant system and the main contribution on 

this paper. This architecture provides fault tolerant system on real 

time hierarchical system. the integrated architecture nature is 

considered by handling fault in each level 

The proposed algorithm of 𝐴1, 𝐴2, 𝐴3 is a fault tolerant hierarchical 

scheduling (FTHS) proposed to be able to handle faults at the task 

level, partition and system/distributed in the real time hierarchical 



104 International Journal of Engineering & Technology 

 
system. Even though the fault tolerant [4], [5], [19], [20] scheme 

has been formulated but still requires a fault management strategy 

that is connected to scheduler to handle change of task schedule and 

conduct resource mapping when a fault occurs. This give dynamic 

behavior to the fault tolerant system of real time hierarchical 

system. 

At the next research stage, the author plans to do a simulation to 

prove whether the algorithm 𝐴1, 𝐴2, 𝐴3 are a set of algorithms that  

meets schedulable analysis, schedule feasibility, utility bound and 

compositional guarantee for real time hierarchical system. As for 

the fault tolerant performance parameters, it will be based on a 

certain fault scenario that will be calculated based on error coverage 

and computational integrity. Regarding implementation in the 

RTOS environment, the author has access to VxWorks 653 and RT-

Xen with target platform which is one of the research value-added 

opportunities.  

Acknowledgement 

I would like to give my acknowledgement to Telkom University 

and LPDP. 

References 

[1] P. J. Prisaznuk, “Integrated modular avionics,” in Aerospace and 

Electronics Conference, 1992. NAECON 1992., Proceedings of the 
IEEE 1992 National, 1992, pp. 39–45. 

[2] M. Di Natale and A. L. Sangiovanni-Vincentelli, “Moving from 

federated to integrated architectures in automotive: The role of 
standards, methods and tools,” Proc. IEEE, vol. 98, no. 4, pp. 603–

620, 2010. 

[3] A. Guasque, P. Balbastre, and A. Crespo, “Real-time hierarchical 
systems with arbitrary scheduling at global level,” J. Syst. Softw., 

vol. 119, pp. 70–86, 2016. 

[4] J. Hyun and K. H. Kim, “Fault-tolerant scheduling in hierarchical 
real-time scheduling framework,” in Embedded and Real-Time 

Computing Systems and Applications (RTCSA), 2012 IEEE 18th 

International Conference on, 2012, pp. 431–436. 
[5] H.-W. Jin, “Fault-tolerant hierarchical real-time scheduling with 

backup partitions on single processor,” ACM SIGBED Rev., vol. 10, 
no. 4, pp. 25–28, 2013. 

[6] H. Kopetz, “Real-time systems: design principles for distributed 

embedded applications,” 2011. 
[7] G. Buttazzo, Hard real-time computing systems: predictable 

scheduling algorithms and applications, vol. 24. Springer Science 

& Business Media, 2011. 
[8] C. B. Watkins and R. Walter, “Transitioning from federated 

avionics architectures to integrated modular avionics,” in Digital 

Avionics Systems Conference, 2007. DASC’07. IEEE/AIAA 26th, 
2007, p. 2--A. 

[9] S. H. VanderLeest, “ARINC 653 hypervisor,” in Digital Avionics 

Systems Conference (DASC), 2010 IEEE/AIAA 29th, 2010, p. 5--E. 
[10] S. Xi, J. Wilson, C. Lu, and C. Gill, “Rt-xen: Towards real-time 

hypervisor scheduling in xen,” in Embedded Software (EMSOFT), 

2011 Proceedings of the International Conference on, 2011, pp. 
39–48. 

[11] S. Xi et al., “Real-time multi-core virtual machine scheduling in 

xen,” in Embedded Software (EMSOFT), 2014 International 
Conference on, 2014, pp. 1–10. 

[12] J.-C. Laprie, “Dependable computing and fault-tolerance,” Dig. 

Pap. FTCS-15, pp. 2–11, 1985. 
[13] Y. Zhang and K. Chakrabarty, “Fault recovery based on 

checkpointing for hard real-time embedded systems,” in Defect and 

Fault Tolerance in VLSI Systems, 2003. Proceedings. 18th IEEE 
International Symposium on, 2003, pp. 320–327. 

[14] E. Elnozahy, R. Melhem, and D. Mossé, “Energy-efficient duplex 

and tmr real-time systems,” in Real-Time Systems Symposium, 
2002. RTSS 2002. 23rd IEEE, 2002, pp. 256–266. 

[15] C. L. Liu and J. W. Layland, “Scheduling algorithms for 

multiprogramming in a hard-real-time environment,” J. ACM, vol. 
20, no. 1, pp. 46–61, 1973. 

[16] A. Guasque, P. Balbastre, and A. Crespo, “Real-time hierarchical 

systems with arbitrary scheduling at global level,” J. Syst. Softw., 

2016. 

[17] I. Shin and I. Lee, “Periodic resource model for compositional real-
time guarantees,” in Real-Time Systems Symposium, 2003. RTSS 

2003. 24th IEEE, 2003, pp. 2–13. 

[18] I. Shin and I. Lee, “Compositional real-time scheduling 
framework,” in Real-Time Systems Symposium, 2004. Proceedings. 

25th IEEE International, 2004, pp. 57–67. 

[19] M. H. Mottaghi and H. R. Zarandi, “DFTS: A dynamic fault-
tolerant scheduling for real-time tasks in multicore processors,” 

Microprocess. Microsyst., vol. 38, no. 1, pp. 88–97, 2014. 
[20] A. A. Bertossi, L. V Mancini, and F. Rossini, “Fault-tolerant rate-

monotonic first-fit scheduling in hard-real-time systems,” IEEE 

Trans. Parallel Distrib. Syst., vol. 10, no. 9, pp. 934–945, 1999. 

 


