

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Planar and Non Planar Construction of γ - Uniquely Colorable Graph

A. Elakkiya¹, M. Yamuna²*

¹Vellore Institute of Technology, Vellore ² Vellore Institute of Technology, Vellore *Corresponding author E-mail: myamuna@vit.ac.in

Abstract

A uniquely colorable graph G whose chromatic partition contains at least one γ - set is termed as a γ - uniquely colorable graph. In this paper, we provide necessary and sufficient condition for \overline{G} and G^* to be γ - uniquely colorable whenever G γ - uniquely colorable and also provide constructive characterization to show that whenever G is γ - uniquely colorable such that $|P| \ge 2$, G can be both planar non planar.

Keywords: Complement; Dual; Non Planar; Planar; Uniquely colorable graphs.

1. Introduction

In [1] Bing Zhou investigated the dominating $-\chi$ -color number, $d_\chi(G)$, of a graph G. In [2],[3], M. Yamuna et al introduced γ - uniquely colorable graphs and also provided the constructive characterization of γ -uniquely colorable trees and characterized planarity of complement of γ - uniquely colorable graphs. In [4],[5],M. Yamuna et al introduced Non domination subdivision stable graphs (NDSS) and characterized planarity of complement of NDSS graphs

2. Terminology

We consider simple graphs G with n vertices and m edges. K_n is a complete graph with n vertices. K_5 and $K_{3,3}$ are called Kuratowski's graph. Results related to graph theory we refer to [6].

Chromatic partition of a graph G is partition the vertices into smallest possible umber of disjoint ,independent sets. A graph G = (V, E) is said to be uniquely colorable ifhas a unique chromatic partition

D is adominating set if every vertex of V-D is adjacent to some vertex of D. Minimum cardinality of D, is said to be a minimum dominating set (MDS). The cardinality of any MDS for G is said to be domination number of G, represented by $\gamma(G)$. Results related to domination we refer to [7].

3. Result and Discussion

A uniquely colorable graph G whose chromatic partition contains atleast one γ - set is termed as a γ - uniquely colorable graph. In Fig. 1 G_1 and G_2 are γ - uniquely colorable graphs. $\overline{G_1}$ is γ - uniquely colorable while $\overline{G_2}$ is not γ - uniquely colorable graph. So when G is γ - uniquely colorable, \overline{G} need not be γ - uniquely colorable. In Fig. 2 G_1 and G_2 are γ - uniquely colorable graphs. G_1^* is γ - uniquely colorable while G_2^* is not γ - uniquely colorable

graph. So when G is γ - uniquely colorable ,G*need not be γ -uniquely colorable. In this paper, we determine the condition for $\overline{\mathbf{G}}$ and G* to be γ - uniquely colorable whenever G is γ - uniquely colorable. We also provide the constructive characterization to show that whenever G is γ uniquely colorable such that $|P| \geq 2$, G can be both planar and non planar.

Fig.1

Theorem 1. Let G be a isyuniquelycolorable graph. $\overline{\mathbf{G}}$ is alsoyuniquely colourable if and only if \exists a unique smallestpossible partition $P = \{\ V_1,\ V_2,\ \dots\ V_k\ \}$ of V(G) \ni

1. every V_i , i = 1 to k is a clique

2. there exist one V_i 9 every vertex in $V-\{V_i\}$ is notadjacent to atleast one vertex in V_i

3. $|V_i| \ge |V_i|$, for every $i \ne j$

4. V_i is the smallest set in G satisfying 2

Proof. Assume that $\overline{\mathbf{G}}$ is a γ - uniquely colourable graph, impliesthere exist a partition $P_1 = \{ V_1, V_2, ... V_k \}$ for $\overline{\mathbf{G}}$ such that

- P₁ is unique and smallest possible set.
- every V_i , i=1 to k, is independent in $\overline{\textbf{G}}$ implies every V_i is a clique in G.
- there exist one V_i such that V_i is a γ set for $\overline{\textbf{G}}$. Also $|V_i| \ge |V_j|$, for every $i \ne j$ implies there exist one V_i in G such that every vertex in $V \{V_i\}$ not adjacent to atleast onevertex in every V_i .

implies $P_1 = \{ V_1, V_2, ... V_k \}$ is a γ - chromatic partition for V(G). P_1 is not unique implies \exists one $P_2 = \{ W_1, W_2, ... W_k \}$ in G such that { $W_1, \ W_2, \ \dots \ W_k$ } is a clique, implies P_2 is also a $\ \gamma$ chromatic partition in $\overline{\bf G}$ such that every W_i is independent and | P₁ $| = | P_2 |$, a contradiction to our assumption that P_1 is unique. P_1 is not smallest, implies one $P_3 = \{\ V_1,\ V_2,\ \dots\ V_k\ \}, q < k \ \text{such that}\ P_3$ isa γ chromatic partition in G \ni U_i, i = 1to q is clique implies P₃ isa ychromatic partition in $\overline{\bf G}$ \ni every U_i is independent and $|P_3| < |P_1|$, a contradiction. P_1 is a γ uniquely colorable partition for $\overline{\mathbf{G}}$ implies there exist one V_i such that V_i is a γ -set for $\overline{\mathbf{G}}$, implies every vertex in $V - \{V_i\}$ is adjacent to at least one vertex in V_i , implies P_1 is a γ - chromatic partition in G \ni every vertex in V – { V_i } is not adjacent to at least one vertex in V_i . Also, we know that $|V_i| \le |V_i|$ for every $i \neq j$ in $\overline{\mathbf{G}}$, implies it is true in G also. If V_i is not the smallest set \ni every vertex in $V - \{V_i\}$ is \bot to at least one vertex in V_i in $\overline{\bf G}$, implies there exist one W contained in $V(\overline{\bf G})$ such that W $|<|V_i|$ and every vertex in W - V $(\overline{\textbf{G}})$ is \perp to at least one vertexin W, a contradiction \Rightarrow V_i is the smallest set satisfying the property. Hence P_1 is a γ - chromatic partition in $G \ni$ the conditions of the theorem are satisfied.

Conversely assume that the conditions of the theorem are satisfied. P is a partition such that it is unique and smallest such that every V_i is a clique, implies P_1 is a partition in $\overline{\textbf{G}}$ such that every V_i is independent. If P is not a smallest possible partition in $\overline{\textbf{G}}$ such that each exist one partition $P_4 = \{\ R_1, R_2, \dots R_q\ \}, \ q < k$ in $\overline{\textbf{G}}$ such that each R_i is independent , implies P_4 is a partition in G such that every R_i is a clique such that $|\ P_4| < |\ P|$, a contradiction. P is not unique in $\overline{\textbf{G}}$, implies there exist a partition $P_5 = \{\ S_1, S_2, \dots S_k\}$ such that each S_i is independent in $\overline{\textbf{G}}$, implies P, P_5 are two possible partition with the same cardinality in G, a contradiction.P is a partition \ni there exist one V_i , every vertex in $V - \{\ V_i\ \}$ is not \bot to atleast one V_i , $|\ V_j| \ge |V_i|$ for any $i \ne j$ implies P is a partition in $\overline{\textbf{G}}$ every vertex in $V - \{V_i\ \}$ is adapted to atleast one $V_i, |\ V_i| \le |V_j|$, if $\ne j$, implies V_i is a dominating set for $\overline{\textbf{G}}$. Since V_i is the smallest set satisfying this property, implies V_i is the γ - set for $\overline{\textbf{G}}$

Let $P = \{R_1, R_2, \dots R_q\}$, betheset of regions of G. Let $T = \{r_1, r_2, \dots r_q\}$, betheset of vertices in the regions R_1, R_2, \dots, R_q respectively, that is r_1 is the vertex in the region R_1, r_2 is the vertex in the region R_q respectively. We observe that

- There is a 1-1 mapping between S and T, i.e \forall R_i \in S \exists r_iin T, i = 1,..., q.
- $\forall X \subseteq S \exists a \text{ corresponding set in } T \text{ (say } X^* \text{)}^*, \text{ i.e if } X \subseteq S = \{ R_i, R_p, R_j \}, \text{ then } X \subseteq T = \{ r_i, r_p, r_j \}.$
- If a is any edge in G there is a corresponding edge in G*(say a*)
- Let D ⊆ S ∋ every region in S D is ⊥ to at least one region in D ⇒ ∃ D ∈ T ∋ any vertex in T D is ⊥to at least vertex in D.
- D is a smallest cardinality satisfying this property \Rightarrow D* is a γ set for G*.

Theorem 2. Let G be a γ - uniquely colourable graph. G* isalso γ - uniquely colourable graph if and only if there exist a unique smallest partition $P = \{ R_1, R_2, ..., R_k \}$ of R(G) such that

1. every R_i , i = 1, 2, ...,k is independent.

2. there exist one R_i such that every region in $R-\{\ R_i\}$ is adjacent to atleast one region in $R_i.$

3. $|R_i| \ge |R_i|$.

Proof. Assume that G^* is γ -uniquelycolourable graph. If G^* is γ -uniquely colourable graph, then there exist a partition $P = \{V_1, V_2, ..., V_k\}$ such that P is a γ -chromatic partition, \Rightarrow

1. every V_i is independent.

2. V_1 is a γ - set for G^* .

1 implies, there exist a set of regions $R_1, R_2, ..., R_k$ in G such that every R_i is independent.

2 implies, there exist $R_1 \ni$ every region in $R - \{R_1\}$ is adjacent to atleast one region in R_1 and R_1 is the smallest set satisfying this property implies the conditions of the theorem are satisfied.

Conversely, assume that the conditions of the theorem are satisfied. $P = \{ V_1, V_2, ..., V_k \}$ is a partition of R (G), implies there exist a partition $P_1 = \{ V_1, V_2, ..., V_k \}$ of $V(G^*)$.

1 implies, every V_i , i = 1, 2, ...,k is independent.

2 implies, there exist one $V_i\mathfrak{p}$ every vertex in $V-\{\ V_i\}$ is $\bot to$ atleast one region in $V_i.$

3 implies $|V_i| \ge |V_i|$ for all $i \ne j$

Since P is a unique partition there exist no other partition of V (G^*) that satisfies all these conditions implies, P_1 is a γ - chromatic partition for G^* .

Planar and Non planar Construction

In this section, we provide constructive characterization to show that whenever G is γ uniquely colorable such that $\mid P \mid \geq 2$, G can be both planarand nonplanar.

Planar Construction when |P| = 2.

Let $\gamma(G) = k_1$. Let $P = \{ V_1, V_2 \}$, where $V_1 = \{ a_1, a_2, ..., a_{k1} \} V_2 = \{ b_1, b_2, ..., b_{k2} \}, k_2 \ge k_1, k_1 \ge 3, k_2 \ge 4.$

Constructagraph G₁ as follows

1. $V(G_1) = V(G)$

2.Considerk₁ vertices in V_1 and V_2 say { $a_1, a_2, ..., a_{k1}$ } and { $b_1, b_2, ..., b_{k2}$ }.

Construct a comb graph with $2k_1$ vertices. Label the vertices of this comb as seen in Fig. 3

Fig.3

Include the remaining k_2 - k_1 vertices of V_2 as pendant vertices with a_{k1} as the support vertex. The general structure of graph G_1 is as seen in the Fig.4.

Fig.4

Since we have atleast k_1 pendant vertices, $\gamma(G_1) \geq k_1$, { a_1 , a_2 , ..., a_{k1} } is a dominating set for G_1 , implies $\gamma(G_1) = k_1$. Since $\langle a_1, a_2, ..., a_{k1}, b_1, b_2, ..., b_{k2} \rangle$ is acomb, the only possible maximal independent sets are { $a_1, a_2, ..., a_{k1}$ } and { $b_1, b_2, ..., b_{k2}$ }. $P = \{V_1, V_2\}$ is a partition for G_1 such that

1. V_1 is ay- set for G_1

2. P is the only possible partition for $G_1, \Rightarrow G_1$ is a $\gamma-$ uniquely colorable graph.

Non Planar Construction when |P| = 2.

Let $\gamma(G) \ge k_1$. $k_1 \ge 6$, $P = \{ V_1, V_2 \} V_1 = \{ a_1, a_2, ..., a_{k1} \}; V_2 = \{ b_1, b_2, ..., b_{k2} \}$, $k_2 \ge 6$

Construct a graph G₁ as follows

 $1.V(G_1) = V(G)$

2.Considerk₁ vertices in V_1 and k_1 vertices in V_2 say { a_1 , a_2 , a_3 , a_4 , a_5 , a_6 }, { b_1 , b_2 , b_3 , ..., b_{k2} }. Let $\langle a_1$, a_2 , a_3 , b_1 b_2 , $b_3 \rangle$ is $K_{3,3}$. Include the remaining a_i , b_i , i=1,2,3. Include the remaining b_i , $i=6,7,...,k_2$ as arbitrary pendant vertices adjacent to any a_i , i=1,2,3. Graph G_1 is as seen in Fig.5.

Fig.5.

Since G_1 has atleast k_1 pendant vertices { a_4 , a_5 , ..., a_{k1} , b_4 , b_5 ,..., b_{k1} }, $\gamma(G_1) \ge k_1$, { V_1 } dominates G_1 . Also | V_1 |= k_1 , implies that V_1 isay- setfor G_1 , since G_1 isabipartite graph $P = \{ V_1, V_2 \}$ is the onlychromatic partition for G_1 such that V_1 is a γ - set for G_1 , implies G_1 is γ - uniquely colorable and non planar.

$$\gamma(G)=3,\ P=\{V_1,\ V_2\},\ V_1=\{\ a_1,\ a_2,\ a_3\ \},\ V_2=\{\ b_2,...,b_{kl}\},k_l\geq 6,$$

$$\gamma(G) = 4$$
, $P = |P| = 3V_1 = V_1 = \{a_1, a_2, a_3, a_4\}$, $V_2 = \{b_1, b_2, ..., b_{kl}\}, k_l \ge 6$,

$$\gamma$$
 (G) = 5, P = {V₁, V₂}, V₁ = V₁ = { a₁, a₂, a₃, a₄,a₅ }, V₂ = { b_1 , b_2 , ..., b_{k1} }, k_1 \ge 6, are analogus to the above discussion.

 $\mid P\mid = 3 = P = \{V_1,\,V_2,V_3\}, = K_1.\mid V_2\mid = k_2,\mid V_3\mid = k_3,\,k_2,\,k_3{\geq}\,k_1.$ Planar Construction when $\mid P\mid = 3.$

 $\begin{array}{l} \mid P \mid = 3 = P = \{V_1, \, V_2, \, V_3\}, = K_1. \mid V_2 \mid = k_2, \, \mid V_3 \mid = k_3, \, k_2, \, k_3 \!\! \geq k_1. \\ \text{Consider a wheel graph with } k \text{ vertices where } k = k_1 + 2k_i, \\ \text{where} k_i = \min(k_2, \quad k_3). \text{ Label the vertices of the wheel in the following fashion as seen in Fig. 6.} \end{array}$

Fig.6

If $k_2 \neq k_3$, then we include the remaining vertices as follows. Let $k_2 > k_3$. Let $k_2 = k_3 + m$. Label the additional vertices as { b_{k3+1} , b_{k3+2} , ..., b_{k2} }. Include these vertices as seen in Fig.7.

Since $\langle b_1, a_j, c_i \rangle$, i=1 to k_{1-1} , j=2 to a_{k1} is P_3 eithe a_j or b_i or c_i should be included in every possible γ - set for G. $\{a_1, a_2, ..., a_{k1}\}$ is a γ - set for G. Also $\{V_1, V_2, V_3\}$ is the only possible chromatic partition for G implies γ - uniquely colorable graph G is planar.

4. Conclusion

In this paper, we provide necessary and sufficient condition for \overline{G} and G^* to be γ uniquely colorable and also provide constructive characterization to show that whenever G is γ - uniquely colorable such that $|P| \ge 2$, G can be both planar and non planar.

References

- [1] Bing Zhou, "On the maximum number of dominating classes in graph coloring", *Open Journal of Discrete Mathematics*, Vol 6,(2016).pp.70 73.
- [2] M. Yamuna, A. Elakkiya, "γ Uniquely colorable graphs", IOPConf. Series: Materials Science and Engineering, Vol.263, (2017).
- [3] M. Yamuna, A. Elakkiya," Planar graph characterization of γ-Uniquely colorable graphs", IOP Conf. Series: Materials Science and Engineering, Vol263, (2017).
- [4] Yamuna, M., Elakkiya, A., "Non domination subdivision stable graphs", *IOP Conf. Series: Materials Science and Engineering*. Vol 263, (2017).
- [5] Yamuna, M., Elakkiya, A, "Planar graph characterization of NDSS graphs", IOP Conf. Series: Materials Science and Engineering, Vol 263, (2017).
- [6] Harary, F, Graph Theory, Addison Wesley, Narosa Publishing House, (2001).
- [7] Haynes, T.W., Hedetniemi, S. T & Slater, P. J. Fundamentals of domination in graphs, New York, Marcel Dekker, (1998).