

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.10) (2018) 985-991

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

A Big Data Solution to Detect Conditional Functional

Dependency Violations

G. Somasekhar
1
, K. Karthikeyan

2,
*

1School of Computer Science and Engineering,VIT , Vellore-632014, Tamil Nadu,India.

2Department of Mathematics, School of Advanced Sciences,VIT, Vellore-632014, Tamil Nadu, India.
*Corresponding author E-mail: k.karthikeyan@vit.ac.in

Abstract

The violation detection of conditional functional dependencies in distributed environment has been a research problem giving inspiration
to many researchers recently. A very few solutions were given in the recent past to handle conditional functional dependencies. Unfortu-
nately, these are inappropriate in real time big data applications. This article mainly focuses on the big data solution to such type of prob-

lems. The proposed IMRCFDHBD algorithm reduces elapsed time and provides scalability with minimum data shipment. The result
proves that the algorithm outperforms the state-of-the-art techniques in the big data scenarios.

Keywords: Big data; Conditional functional dependencies; Hadoop; Mapreduce;Violation detection.

1. Introduction

Nowadays, due to the evolution of mobile devices, sensors, cloud
computing, and digitalisation, we are able to collect huge amounts
of data. Its storage, management, processing and analysis is very
hard to implement using traditional techniques. It is technically
termed as big data, with the principal identification of five Vs.
They are volume, velocity, variety, veracity, and value. We fo-
cused on the last two Vs, which describe big data integrity and big
data quality respectively. The message digest algorithm (MD5) is

discussed in [1] which may be used for data compression.
G.A.Lakshen et al. [2] presented a brief literature review on big
data quality, its challenges and analysis of big data frameworks. C.
Batini et al. [3] examined the research coordinates relevant to big
data quality such as the variety of data types, data sources and
application domains, focusing on maps, semi-structured texts,
linked open data, sensor & sensor networks and official statistics.
D. Zhang [4] thoroughly explained the issue of big data inconsis-

tencies, their impact on big data analysis, and the use of inconsis-
tency-induced learning as a tool in the big data analysis. Among
functional dependency inconsistencies stated in [4], the condi-
tional functional dependency inconsistencies motivated us. The
real time big data are often dirty. Big data quality is very essential
in getting accurate results. We can detect the violations from most
of the errors in the big data quality rules, namely temporal incon-
sistencies, spatial inconsistencies, text inconsistencies, and func-
tional dependency (FD) inconsistencies. The violation of condi-

tional functional dependencies (CFDs) in big data is the hot topic
today. Naturally, big data co-exists in the distributed environment.
It is so hard to detect the violations in a distributed environment.
Some pioneer works were performed to impose constraints in
distributed databases [5-7]. As constraint checking is hard in dis-
tributed settings, some attempts [6-7] were made to check con-
straints locally at individual sites, without data shipment. Yet,
catching CFD violations needs shipping of the data. W. Fan et al.

[8], found solution for CFD violation detection in horizontal parti-

tions. G. Ramalingam and T. W. Reps [9] explained the use of
incremental algorithms in a variety of areas. A. Gupta and I. S.
Mumick [10] extensively studied the incremental view mainte-
nance. Various incremental views [11-14] were proposed for dis-
tributed data. The Researchers offered different additional struc-
tures to reduce data shipment. For example, counters [13], pointer
[14] and tags [11]. The valuable contributions on multi-query
optimization [15] and query processing [16] for distributed data

typically aimed to generate distributed query plans, to reduce data
shipment or response time. The techniques in [16] included special
join techniques, techniques to exploit intra-query parallelism,
techniques to reduce communication costs, and techniques to ex-
ploit caching and replication of data. Optimization strategies, e.g.,
semi Joins [17], bloom Joins [18], and other recent innovations on
joins [19-21], had proved useful in main-memory distributed data-
bases (e.g., H-Store [22]), and in cloud computing and MapRe-

duce [23-24]. W. Fan et al. [25] gave some solutions for incre-
mental CFD violation detection in distributed environment. The
algorithms in [25] leveraged the techniques of [15] to reduce data
shipment when validating multiple CFDs, in particular. However,
these are insufficient in real time big data scenarios. There is much
need for the replacement of traditional techniques with new big
data algorithms. A considerable work was done by A. Imawan et
al.[26] to extract information from road traffic data using mapre-

duce. A mapreduce based technique for image processing was
proposed by M. Ali and J. Kumar[27]. A big data solution for a
redundancy problem in data matching was given by G. Somasek-
har and K. Karthikeyan[28]. A fast multiplication approach for
large sparse matrices was proposed by G. Somasekhar and K.
Karthikeyan[29]. Mapreduce was applied on neighbourhood
blocking by L. Kolb et al.[30]. An efficient big data algorithm in
cloud was proposed by K. Gao et al.[31] to predict the execution
time. The proposed Incremental MapReduce based Conditional

Functional Dependency violation detection algorithm for Horizon-
tally partitioned Big Data (IMRCFDHBD) is an incremental algo-
rithm, which uses horizontal partitioning. We compared it with
incHor and other batch counterparts. The results show that the

986 International Journal of Engineering & Technology

algorithm surpasses all existing techniques in performance. It is
good enough for real time big data applications.

2. Problem statement

Given a batch update ∆D to a database D, a set ∑ of CFDs, and an
initial set of violations V(∑, D) we want to find V 1 in the big data

scenario, where V 1 = V(∑, D U ∆D) i.e. all violations of CFDs of
∑ in the updated database D U ∆D. Here we use D U ∆D to denote
the updated database of D with ∆D. ∆D is a list of tuple insertions
and deletions. A modification is treated as an insertion after a
deletion. In order to solve this problem in real time big data appli-
cations, mainly three parameters, i.e. execution speed, scale up,
and data shipment optimization is crucial. There is a need for more
focus on these three aspects. As traditional techniques do not sat-

isfy the above aspects in the big data scenarios, there should be
focus on the implementation of new big data programming strate-
gies to get the results.

3. Problem solving and innovative content

We applied a big data-programming model called mapreduce here

to solve the problem. Figure 1 exposes the control flow of a typi-
cal mapreduce job. We may give a huge amount of data as input.
At first, mapreduce partitions the input. Each mapper node re-
ceives a partition where map task starts its execution. Mapreduce
job processes a fixed number of mapper nodes in parallel. Mapre-
duce job collects the outputs from all the mappers. Each reducer
receives this output collection. Every mapreduce job follows split,
sort, and merge operation sequence. At last, mapreduce fetches the

outputs from all reducer functions and accumulates as one final
output file. The proposed IMRCFDHBD uses mapreduce to ac-
complish the goal.
A solution to a big data problem should fulfil the three Prerequi-
sites mentioned below.
i) The input data must be distributable in nature.
ii) All the local outputs must lead to the global/ final output.
iii) It should feasible for the implementation of the map reduce
model.

The key, value pairs in a sample input file, the sample CFDs in ∑,
sample mapreduce data flow for a single key before reducer proc-
ess, and the key value pairs going to be processed by the reducer
function IMRCFDHBD Reducer() are depicted in Figure 2, Fig-
ure 3, Figure 4, and Figure 5 respectively. Figure 2 represents each
tuple in the form of a key, value pair. We used a unique Long-
Writable key for each value. The value starting with D indicates

Fig. 1: The Mapreduce flow.

the deletion of the tuple in the near future. The value starting with

I indicates the insertion of the tuple in the near future. The value
starting with E indicates that the tuple is an already existing one.
The number after D or I or E indicates the unique tuple identifica-
tion number. All the data over a tuple identification number de-
note the attribute values of the corresponding tuple. The attribute
values are stored sequentially using the following schema.

 Schema ={name, AC, phn, street, city, zip, CC, title, salary};

For the tuples in deletion, we append a tag old# after attribute
values information. For the tuples in insertion, we append a
tagnew# after attribute values information. For the existing tuples,
we do not append any tag after attribute values information. We
append a timestamp to old# or new# at the end of the correspond-
ing value of a tuple in deletion or insertion respectively.
For each key, value pair in Figure 4, we use data type Text for
both key and value. The key contains the CFD# and the corre-

sponding LHS value of the tuple for that CFD (See the output-
generated by mapper #1 and mapper #2 for a single key). The
value contains tuple id and the RHS value of the tuple for that
CFD.

(a)

(b)

Fig. 2: The key, value pairs in a sample input file.

For convenience, this key, value pair may be denoted as (cfd#,
lhs#), tid#. The key contains the corresponding CFD id and the lhs
id of the tuple for that CFD. There may be multiple keys for vari-
able CFDs.

However, for constant CFDs, the only single key is possible. The
key that belongs to a constant CFD, contains its CFD id only. The
value is denoted by tid# where tid# contains the tuple id and the
RHS value of the tuple for that CFD. Figure 6 shows this inform-
ation (e.g. The keys (5) and (6) belong to constant CFDs).

Fig. 3: The sample CFDs in ∑.

International Journal of Engineering & Technology 987

Fig. 4: The sample Mapreduce data flow of IMRCFDHBD for a single key before generating the final output by the reducer process.

Fig. 5: The key, value pairs going to be processed by a reducer function

IMRCFDHBD Reducer().

For the sample key, value pairs depicted in Figure 2 and the sam-
ple CFDs depicted in Figure 3, we get the key, value pairs in Fig-
ure 5 just before starting of the reducer process. We merge the
key, value pairs with the same key into one key, value pair. It
avoids multiple unnecessary data shipments of the same key. We

perform this merging in two phases. In the first phase, combiner p-
erforms merging at mapper side. In the second phase, reducer per-

forms final merging. Figure 4 shows this clearly for a single key.
Figure 6 depicts the overview of entire incremental violation de-
tection of CFDs using mapreduce. The detailed IMRCFDHBD
algorithm is mentioned below.

Algorithm IMRCFDHBD ()

Input: ∆D, D, ∑ and V(∑ , D).

Output: V1
 // New violations set

1. IMRCFDHBD_Mapper(∆D, D, ∑);

2. IMRCFDHBD_Combiner();

3. IMRCFDHBD_Reducer(∑ , V);

Algorithm IMRCFDHBD_Mapper() // Map task

Input: ∆D, D, ∑

Output: IF // Intermediate File

1. for each line in ∆D U D do

2. for each CFD ϵ ∑ do

3. find the names of attributes on LHS of CFD

4. collect all the attribute values in the line whose

attribute name matches with any attribute name

in LHS of CFD and form them as Key.

5. find the names of attributes on RHS of CFD

6. collect all the attribute values in the line whose

attribute name matches with any attribute name

in RHS of CFD and form them as Value.

7. write (Key, Value) as a line into the file IF.

8. end for

9. end for

Algorithm IMRCFDHBD_Combiner() //Combiner function

// merging of the key, value pairs having same key at mapper side.

Input: IFpart // A partition of IF file.

Output: IFpartNEW // Newly summarised partition of IF file.

1. combstr = “”;

2. for each line in IFpart do // grouped by key

3. combstr+ = Value.toString();

4. end for

5. Write (Key,combstr) into IFpartNEW.

Algorithm IMRCFDHBD_Reducer() // Reduce task
Input: IF RedPartNEW // The modified IF file.

 m // number of cfds
CFDm // set of CFDs
 HashMap<String, Set<String>> tidmap = new
HashMap<String, Set<String>>();
 HashMap<String, String>ehm=new HashMap<String,
String>();
 Vm // Set of violations for all cfds
Output: V1

Red // A part of New Violations set.

1. combstr1= “ ”;
2. for each line in IF RedPartNEW do //grouped by key
3. String[] strk = key.toString().split(“~”);
4. i = Integer.parseInt(strk[0]);
5. j = lhsid(strk[1]);
6. combstr1+ = Value.toString(); // Final merging of the key,

value pairs having same
 key.

7. Intrs=combstr1.split(“~”);
8. store each tuple of ∆Di, j in tidmap with tuple id as key;
9. store each tuple of Di, j in ehm with tuple id as key;
10. end for
11. tidmapEmpChk=tidmap. isEmpty();
12. if tidmapEmpChk != true // checking whether tidmap is a

non-empty hashmap
13. for each key in tidmap do // checking tidmap starts
14. TreeMap<Integer, String> tm = new TreeMap<Integer,

String>();
15. delete any unnecessary tuple information having no effect

on V. (i.e. The tuple
 inserted and deleted has no effect)

16. store the necessary tuple information in tm with updateId
or timestamp as key and
 the remaining tuple information as value.

17. for each key in tm do // checking deletions first.

18. if value contains old# at the end // i.e. if it is a tuple going
to be deleted.

19. if CFDi is a variable CFD
20. if Vi.equals(“No Violation”) // start of checking variable

CFDs for deletions.
21. V1

i, j = { };
22. else
23. V1

i, j = Vi, j ;

24. check whether the deletion of the tuple has any effect on
V1

i, j.
25. if there is effect on V1

i, j,
 change V1

i, j accordingly.
26. else
27. do not change V1

i, j.
28. end if

988 International Journal of Engineering & Technology

29. end if // end of checking variable CFDs for deletions
30. else
31. if Vi.equals(“No Violation”) // start of checking constant

CFDs for deletions
32. V1

i = { };
33. else
34. V1

i = Vi ;
35. check whether the deletion of the tuple has any effect on

V1
i

// Reduce task continuation

36. if there is effect on V1
i ,

 change V1
i accordingly.

37. else
38. do not change V1

i

39. end if
40. end if // end of checking constant CFDs for deletions

41. end if // end of checking CFDs for deletions

42. delete the tuple from the hash map “ehm”.
43. end for // end of checking tree map “tm” for deletions

44. for each key in tm do // checking insertions next.
45. if value contains new# at the end // i.e. if it is a tuple go-

ing to be inserted.
46. insert the tuple into the hashmap “ehm”.
47. if CFDi is a variable CFD

48. if Vi.equals(“No Violation”) // start of checking variable
CFDs for insertions

49. V1
i, j = { };

50. if the insertion of new tuple creates any new violations
51. change V1

i, j accordingly.

52. else
53. do not change V1

i, j

54. end if

55. else

56. V1
i, j = Vi, j ;

57. check whether the insertion of new tuple has any effect
on V1

i, j.
58. if there is effect on V1

i, j,
 change V1

i, j accordingly.

59. else
60. do not change V1

i, j.

61. end if

62. end if // end of checking variable CFDs for insertions

63. else

64. if Vi.equals(“No Violation”) // start of checking constant
CFDs for insertions

65. V1
i = { };

66. check whether the insertion of new tuple creates any
new violations.

67. if any new violations created,
 change V1

i accordingly.

68. else

69. do not change V1
i.

70. end if

71. else
72. V1

i = Vi ;
73. if the insertion of new tuple has any effect on V1

i,
74. change V1

i accordingly.

75. else
76. do not change V1

i.

77. end if
78. end if // end of checking constant CFDs for inser-

tions.
79. end if // end of checking CFDs for insertions.
80. end for // end of checking treemap “tm” for insertions

81. end for // end of checking hashmap “tidmap”
82. end if // end of checking the variable tidmapEmpChk

Note:

∆Di, j is the set of updates having conditional functional dependen-
cy CFDi with lhsid “j”.
Di, j set of existing tuples having conditional functional dependen-
cy CFDi with lhsid “j”.
lhsid() is a function which generates unique id for the lhs value of
each key.
V1

i, j is the subset of violations set V1 having violations on variable
conditional functional
dependency CFDi with lhsid “j”.

Vi, j is the subset of violations set V having violations on variable
conditional functional
dependency CFDi with lhsid “j”.
V1

i is the subset of violations set V1 having violations on constant
conditional functional
dependency CFDi .
Vi is the subset of violations set V having violations on constant
conditional functional

dependency CFDi .

Fig. 6: Incremental violation detection of CFDs using mapreduce : Overview.

Contributions:

1. Based on CFD#, LHS# pair as key in the reducer, we dis-
tributed the data over multiple reducers. This reduces the com-
plexity in Fans incHor Algorithm, simplifies the total task, im-

proves the degree of parallelism and solves the load imbalance
problem. As reducer works on the keys in parallel, we reduced the
elapsed time

here. We may take CFD# as key in the reducer. Nevertheless, it
leads to load imbalance problem among reducers if there exists a
skew distribution of CFDs in the given data set.

International Journal of Engineering & Technology 989

2. Fans incHor algorithm focused on minimizing the data ship-
ment only, whereas our algorithm focused on elapsed time and
scalability aspects, which are essential in big data applications.
3. By Merging the CFDs, we can reduce the elapsed time further.
4. In Fans incHor algorithm, there exist data shipment minimiza-
tion and replication overhead. In IMRCFDHBD algorithm,
Hadoop cluster automatically handles the tasks like replication,
partitioning, shuffling, combining and data shipment.

5. In addition to MD5, We used Combiner function to optimize
data shipment.
6. In Fan’s incHor algorithm,

 ∆Vi
- and ∆Vi

+ are found locally (where 1≤i≤n , n = no. of

horizontal partitions)



 ∆V- and ∆V+ can be found globally using the formulas

∆V- = ∆V- U ∆Vi
– (1)

and ∆V+ = ∆V+ U ∆Vi

+ (2)

 ∆V can be found using the formula

∆V = ∆V- U ∆V+ (3)

 And at last,

 V1 can be found using the formula
V1 = V U ∆V (4)

But IMRCFDHBD finds V1 directly in one step using (5) instead
of taking 4 steps ((1),(2),(3) and (4)) as in case of Fans IncHor
algorithm.

V1 = (V1)

1 U (V2)
1 U …..U (Vn)

1 (5)

where (Vi)

1 s (1≤i≤n) are incrementally found in parallel.
So reasons for reducing elapsed time in IMRCFDHBD are :

 Parallelism in fully distributed real time cluster.

 Using Combiner in addition to MD5.

 Direct incremental finding of V1 in one step rather than

4 steps.
In addition, as Hadoop is used for mapreduce programming, we
have the following two advantages.

 Hadoop Distributed File System implements a mapping

system to locate data in a cluster. The tools for mapreduce pro-
gramming are also generally located in the very same servers.
These features of Hadoop help in fast data processing.

 One of the biggest advantages offered by Hadoop is that

of its fault tolerance. Hadoop MapReduce has the ability to quick-
ly recognize faults that occur and then apply a quick and automat-
ic recovery solution.
The algorithm IMRCFDHBD follows the mapreduce based big
data programming strategy. It is split into sub-algorithms IMR-

CFDHBD Mapper(), IMRCFDHBD Combiner() and IMRCFD-
HBD Reducer() respectively. To optimize the data shipment, the
whole tuple is encoded, and then the coding of the tuple is sent
using message digest 5 (MD5) [1] algorithm. As we may not re-
quire entire tuple to get the result, only the required tuple infor-
mation, i.e. the corresponding information of the tuple related to
each CFD is stored in the intermediate file generated by mapper
function. While partitioning and transferring the data to mapper

nodes, transferring the data from mappers to combiners, and trans-
ferring the data from combiners to reducers, we used MD5 for
data shipment optimization. In addition to MD5,we used a com-
biner function at each mapper to optimize the data shipment when
needed.
Figure 6 shows the data flow in IMRCFDHBD. The key groups
the input to each reducer where the key is CFD#, LHS#. The key,
value pairs sent to each reducer are iteratively processed. Select-

ing CFD#, LHS# as key simplifies the task. For convenience,
CFD#

is termed as i and LHS# is termed as j. If we select only CFD# as
key, the load imbalance problem may occur due to the skewed
distribution of CFDs. The parallel execution of mappers and then
combiners reduce the total elapsed time of the job. After the full
execution of combiners, we process all the reducers in parallel. It
further reduces the total elapsed time of the job.
In the tuple information related to each key, the tuple information
that belongs to updates ∆D, is stored in a hash map "tidmap" whe-

reas the tuple information that belongs to existing tuples in D, is
stored in a hash map "ehm". In both hash maps tidmap, and ehm
we take tuple id as the key. Then for all the updates in tidmap, we
create a new tree map tm taking update id or timestamp as key.
We delete the tuple information about updates having no effect on
V from tree map tm. We initialize V 1 to V. In each reducer, we
initialize V 1 partially based on a key. At first, we process the nec-
essary tuple information of deletes in tree map tm having an effect

on V to modify V 1. We update the hash map ehm after deletions.
Then we process next the necessary tuple information of inserts in
tree map tm having an effect on V to modify V 1. We update the
hash map ehm while processing inserts. We use the hash map ehm
e_ectively as per requirements whenever needed. At last all the
local modifications of V 1 (Vi,j

1and/or Vi
1) from all reducers are

Combined to get the final V 1 (Initially, V 1 = V).

4. Results and Comparison

We used a fully distributed cluster setup of 10 systems installed
with Hadoop 2.6.0 on IntelPentium 2020M 2.4 GHz and having
16GB RAM each. We used the relation named "Cust" with the
schema mentioned in section III in the experiments. To populate
the relation we collected real-life data: the zip and area codes for

major cities and towns in all US states. Using these data, we wrote
a program that generates synthetic records for Cust relation. The
total number of tuples ranges from 30 million to 150 million
(30M to 150M). The size of 150M tuples is 10 GB. We designed
the CFDs manually. After designing FDs, we added conditions to
FDs to produce CFDs. For Cust relation, the number of CFDs, i.e.
| ∑ | varied from 25 to 125, by adding 25 each time. Batch updates
contain 80% insertions and 20% deletions, as insertions occur
more frequently than deletions in practice. The number of parti-

tions is 10 by default.

4.1 Impact of | D | :

| ∆D | is fixed at 90M tuples, where as | ∑| is fixed at 50 and n is
fixed at 10 partitions. We varied the size of D is from 30 M to 150
M tuples (10 GB) for Cust relation. Figure 7(a) shows the elapsed
time in seconds while | D | varies. It is proved that both
IMRCFDHBD and Fans incHor [25] are independent of | D |. In-

cremental violation detection in horizontal partitions depends only
on | ∆D | and | ∆V |.

4.2 Impact of | ∆D | :

| ∑ | is fixed at 50 where as n is fixed to 10 partitions and |D| is
fixed to 150 M tuples. We varied the size of ∆D is varied from
30M to 150M tuples for Cust relation. The result in Figure 7(b)
shows that IMRCFDHBD exhibits more reduction in elapsed time

compared to Fans incHor [25] and its batch counterparts. The
result in Figure 8(c) proves that IMRCFDHBD shows a little bit
improvement in data shipment optimization compared to Fans
incHor [25]. This is due to the use of combiner function in addi-
tion to MD5.

4.3 Impact of | ∑ | :

n is fixed at 10 partitions where as size of D is fixed at 150M and

size of ∆D is fixed at 90M for Cust relation. | ∑ | is varied from
25 to 125 (Figure 8(a)). However, both incHor and IMRCFDHBD

990 International Journal of Engineering & Technology

use parallel execution and MD5, the latter shows better reduction
in elapsed time due to the use of the combiner and the use of
(CFD#, LHS#) as key in reducer process. It also effectively han-
dles the load imbalance problem incurred by skew distribution of
CFDs.

4.4 Impact of n :

The scale up of IMRCFDHBD is measured while varying n, | D |

and | ∆D | in the same scale. The result in Figure 8(b) proves that
IMRCFDHBD shows better scale up values compared to the in-
cremental algorithm incHor.
We measure scale up by (6).
Scale up = (small system elapsed time on small problem) /

(Large system elapsed time on large problem) (6)

The refined batch algorithm ibatHor and incremental algorithm
incHor developed by Fan et. al. [25] are compared with a pro-
posed approach by varying | ∆D | from 30M to 150M tuples while
| D |, | ∑ | and n are fixed at 90M, 50 and 10 respectively. The
result in Figure 8(d) proves that the algorithm outperforms exis-
tent incremental and batch algorithms.
A comparative analysis of IMRCFDHBD is performed with the
Fans approaches [25]. The results prove that IMRCFDHBD is an

effective incremental algorithm, applicable to big data.

(a) Comparison of elapsed time by varying |D|

(b) Comparison of elapsed time by varying |∆D|

Fig. 7: Comparison of IMRCFDHBD with state-of-the-art incremental

and batch algorithms : PART-A

(a) Comparison of elapsed time by varying |∑|

(b) Scaleup comparison by varying n

 (c) Comparison of data shipment by varying |∆D| incremental and batch

algorithms

(d) Comparison of IMRCFDHBD with refined batch algorithm ibatHor

and incHor by varying | ∆D |

Fig. 8: Comparison of IMRCFDHBD with state-of-the-art incremental and

batch algorithms : PART-B

5. Conclusion

We demonstrated an efficient mapreduce based solution to deal
with the incremental violation detection problem of conditional

functional dependencies in a distributed environment. From the
results, we proved that the IMRCFDHBD is well suited to big data
applications. We also compared it with existing incremental and
batch methods. It cuts down the elapsed time overall. It also scales
well when initial database and updates are in the big data range. It
also minimizes the data shipment compared to the incremental
algorithm incHor. In the near future, our focus would be on im-
proving the algorithm further to deal with vertical partitioning as

well as hybrid partitioning. A thorough study and use of column-
oriented database (e.g., HBase) is required in order to improve the
algorithm. We could apply todays emerging technology called
Spark programming model for further improvement in the scal-
ability and further reduction in the elapsed time. The research in

International Journal of Engineering & Technology 991

the big data domain could flourish with a good encouragement in
the directions mentioned above.

References

[1] Xia ZY & Ge Z (2010), MD5 research, Proceedings of the 2
nd

 Inte-

rnational Conference on Multimedia and Information Technology,

271-273, https://doi.org/10.1109/MMIT.2010.186

[2] Lakshen GA, Vranes S & Janev V (2016), Big data and quality: A

literature review, Proceedings of the 24th TELFOR , 802-805, http-

s://doi.org/10.1109/TELFOR.2016.7818902

[3] Batini C, Rula A, Scannapieco M & Viscusi G (2015), From data

quality to big data quality. Journal of Database Management 26,

60-82.

[4] Zhang D (2013), Inconsistencies in big data, Proceedings of the

12th IEEE International Conference on Cognitive Informatics and

Cognitive Computing, 61-67,

https://doi.org/10.1109/ICCICC.2013- .6622226

[5] Agrawal S, Deb S, Naidu KVM & Rastogi R (2007), Efficient dete-

ction of distributed constraint violations, Proceedings of the IEEE

23
rd

International Conference on Data Engineering, 1320-1324, htt-

ps://doi.org/10.1109/ICDE.2007.369002

[6] Gupta A & Widom J (1993), Local verication of global integrity

constraints in distributed databases, Proceedings of the ACM SIG-

MOD International Conference on Management of Data, Vol. 22,

49-58, https://doi.org/10.1145/170036.170048

[7] Huyn N (1997), Maintaining global integrity constraints in distribu-

ted databases. Constraints 2, 377-399, https://doi.org/10.1023/A:1-

009703814570

[8] Fan W, Geerts F, Ma S & Mller H (2010), Detecting inconsistencie-

s in distributed data, Proceedings of the International Conference

on Data Engineering, 64-75, https://doi.org/10.1109/ICDE.2010.5-

447855

[9] Ramalingam G & Reps TW (1993), A categorized bibliography on

incremental computation, Proceedings of the 20th ACM SIGPLAN

SIGACT Symposium on Principles of Programming Languages,

502-510, https://doi.org/10.1145/158511.158710

[10] Gupta A & Mumick IS (1999), Materialized Views: Techniques,

Implementations, and Applications, MIT Press, Cambridge, MA,

USA, pp.141-338.

[11] Bailey J, Dong G, Mohania M & Wang XS (1998), Incremental

view maintenance by base relation tagging in distributed databases.

Distributed and Parallel Databases 6 , 287-309, https://doi.org/1-

0.1023/A:1008683116381

[12] Blakeley JA, Larson PA & Tompa FW (1986), Efficiently updating

materialized views, Proceedings of the ACM SIGMOD Internation-

al Conference on Management of Data, Vol. 15, 61-71,

https://doi.org/10.1145/16856.16861

[13] Gupta A, Mumick IS & Subrahmanian VS (1993), Maintaining vi-

ews incrementally, Proceedings of the ACM SIGMOD Internation-

al Conference on Management of Data, Vol. 22, 157-166, https://-

doi.org/10.1145/170036.170066

[14] Roussopoulos N (1991), An incremental access method for

view cache: concept, algorithms, and cost analysis. ACM

Transactions on Database Systems 16, 535-563,

https://doi.org/10.1145/111197.111215

[15] Kementsietsidis A, Neven F, Craen D & Vansummeren S (2008),

Scalable multi-query optimization for exploratory queries over

federated scientic databases, Proceedings of the VLDB endowment,

Vol. 1, 16- 27, https://doi.org/10.14778/1453856.1453864

[16] Kossman D (2000), The state of the art in distributed query proces-

sing. ACM Computing Surveys(CSUR) 32, 422-469, https://doi.or-

g/10.1145/371578.371598

[17] Bernstein PA & Chiu DMW (1981), Using semi-joins to solve

relational queries. Journal of the ACM 28 , 25-40, https://doi.org/-

10.1145/322234.322238

[18] Mackert LF & Lohman GM (1986), R* optimizer validation and

performance evaluation for distributed queries, Proceedings of the

12th International Conference on Very Large Data Bases,149-159.

[19] DeHaan D & Tompa FW (2007), Optimal top-down join enumera-

tion, Proceedings of the ACM SIGMOD International Conference

on Management of Data, 785-796, https://doi.org/10.1145/124748-

0.1247567

[20] Wang X, Burns RC, Terzis A & Deshpande A (2008), Network a-

ware join processing in global-scale database federations, Procee-

dings of the 24
th

 International Conference on Data Engineering,

586-595, https://doi.org/10.1109/ICDE.2008.4497467

[21] Frey PW, Goncalves R, Kersten ML & Teubner J (2010), A spin-

ning join that does not get dizzy, Proceedings of the IEEE 30
th
 In-

ternational Conference on Distributed Computing Systems, 283-

292.

[22] Kallman R, Kimura H, Natkins J, Pavlo A, Rasin A, Zdonik S, Jo-

nes EPC, Madden S, Stonebraker M, Zhang Y, Hugg J & Abadi

DJ (2008), H-store: A high-performance, distributed main memory

transaction processing system, Proceedings of the VLDB endowm-

ent, Vol. 1, 1496-1499, https://doi.org/10.14778/1454159.1454211

[23] Dean J & Ghemawat S (2008), MapReduce: Simplied data proces-

sing on large clusters. Communications of the ACM 51, 107-

113 , https://doi.org/10.1145/1327452.1327492

[24] Nykiel T, Potamias M, Mishra C, Kollios G & Koudas N (2010),

MRShare: Sharing across multiple queries in MapReduce, Procee-

dings of the VLDB endowment, Vol. 3, 494-505.

[25] Fan W, Li J, Tang N & Yu qa W (2014), Incremental Detection of

Inconsistencies in Distributed Data. IEEE Transactions on Knowl-

edge and Data Engineering 26, 1367-1383, https://doi.org/10.1109

/TKDE.2012.138

[26] Imawan A, Putri FK, An S, Jeong HY & Kwon J (2015), Scalable

extraction of timeline information from road traffic data using

MapReduce, Proceedings of the IEEE International Conference

on Data Science and Advanced Analytics, 1-8, https://doi.org/1-

0.1109/DSAA.2015.7344850

[27] Ali M & Kumar J (2016), Implementation of Image Processing

System using Handover Technique with Map Reduce Based on

Big Data in the Cloud Environment. The International Arab Jour-

nal of Information Technology 13, 326-331.

[28] Somasekhar G & Karthikeyan K (2015), The Pre Big Data Match-

ing Redundancy Avoidance Algorithm with Mapreduce. Indian

Journal of Science and Technology 8, 1-7, http://dx.doi.org/10.1-

7485/ijst%2F2015%2Fv8i33%2F77477

[29] Somasekhar G & Karthikeyan K (2017), Fast Matrix Multiplicati-

on with Big Sparse Data. Cybernetics and Information Technolo-

gies 17, 16-30, https://doi.org/10.1515/cait-2017-0002

[30] Kolb L, Thor A & Rahm E (2012), Multipass Sorted Neighbourh-

ood Blocking With MapReduce. Computer Science-Research and

Development 27, 45-63.

[31] Gao K, Wang Q & Xi L (2014), Reduct Algorithm based Executi-

on Times Prediction in Knowledge Discovery Cloud Computing

Environment.The International Arab Journal of Information Tech-

nology 11, 268-275.

https://doi/

