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Abstract 
 
Various video coding standards like H.264 and H.265 are used for video compression and decompression. These coding standards use 
multiple modules to perform video compression. Motion Estimation (ME) is one of the critical blocks in the video codec which requires 
extensive computation. Hence it is computationally complex, it critically consumes a massive amount of time to process the video data. 

Motion Estimation is the process which improves the compression efficiency of these coding standards by determining the minimum 
distortion between the current frame and the reference frame. For the past two decades, various Motion Estimation algorithms are 
implemented in hardware and research is still going on for realizing an optimized hardware solution for this critical module. Efficient 
implementation of ME in hardware is essential for high-resolution video applications such as HDTV to increase the decoding throughput 
and to achieve high compression ratio. A review and analysis of various hardware architectures of ME used for H.264 and H.265 coding 
standards is presented in this paper. 
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1. Introduction 

Tremendous advancements in video technology and consumer 
electronics for the past few decades led to the requirement of pro-
cessing video data with lesser complexity and optimized perfor-
mance. Telecommunication Standardization Sector of the Interna-

tional Telecommunications Union (ITU-T) Video Coding Experts 
Group (VCEG) and the ISO/IEC Moving Picture Experts Group 
(MPEG) introduced many video coding standards [33]. The latest 
coding standard H.265, widely known as High-Efficiency Video 
Coding (HEVC) is the successor of H.264/MPEG-4 AVC. These 
coding standards are used for various applications such as the 
broadcast of HD TV signals through satellite, Internet and mobile 
network video, cam-coders, Multi-view video, scalable video for 

streaming applications, security applications, real-time conversa-
tions such as video chatting, video conferencing, etc. In any video 
processing application, either the video data is either stored or 
transmitted over the network. Real-time video data is of enormous 
size which increases the traffic in the communication network 
significantly. Hence video data has to be compressed/encoded by 
exploiting the spatial and temporal redundancies. Video coding 
systems, therefore should provide higher coding efficiency; high 
throughput and lower energy consumption as well, because most 

of the video are captured using battery operated devices.   
Among various video coding standards in the literature, nowadays 
H.264 and H.265 are widely used for various applications. Per-
haps, H.265 is computationally complex compared to H.264 with 
the trade-off between high throughput and optimized performance. 
The efficiency of H.265 is double than that of H.264 [33]. Most of 
the features of various modules like Transform, quantization, mo-
tion estimation, motion compensation, intra-prediction and 

deblocking filter (DBF) are common for both the coding stand-
ards. 
Discrete Cosine Transform (DCT) and Inverse Discrete Cosine 
Transform (IDCT) used in H.264 and H.265 are the same, whereas 

H.264 uses 4×4 and 8×8 Transform Unit (TU) sizes and H.265 
uses 4×4, 8×8, 16×16, 32×32 TU sizes for DCT and IDCT. Trans-
form and inverse transform are performed on blocks of pixels and 
hence the colour transitions at the edges of the block are not 
smooth. The sharp colour transitions at the edge of each block will 
affect the visual quality of the decoded video. This degradation in 
the visual quality is compensated by a module called DBF at the 
decoder. It eliminates the blocking artifacts on the block bounda-

ries between two blocks and thus smoothens the image pixels on 
both sides of the boundary. Smoothening of colour transitions at 
the edges of each block improves the visual quality of the recon-
structed video frames. The output of DBF is used as a reference 
frame for subsequent video coding called inter prediction. Inter 
prediction comprises of Motion Estimation (ME) and Motion 
Compensation (MC). 
Motion estimation is a technique which is used to remove the 

temporal redundancy between the video frames and thus providing 
high compression ratio [11]. In motion estimation, both the current 
frame and the reference frame are divided into non-overlapping 
blocks of size N×N. Comparision is performed for each block in 
the current frame with a candidate block within the defined search 
range in the reference frame. The displacement between a block in 
the current frame and the best match in the reference frame is 
called a Motion Vector (MV). This MV describes the position of a 
block in the current frame and this information alone has to be 

coded. Thus the compression efficiency of a codec is improved 
using ME. Motion Compensation (MC) reconstructs the current 
frame based on the MV obtained from ME. 
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ME algorithms are generally classified as full search algorithms 
and fast search algorithms. Fast search algorithms are again 
categorized as lossy and lossless algorithms. Lossy algorithms are 
classified into five types based on i) reduction in search positions, 
ii) simplification of the matching criterion, iii) bit-width reduction, 
iv) predictive search and v) hierarchical search. Full search and 
fast full search algorithms belong to the lossless category [11]. 
Hardware architectures for motion estimation algorithms are 

required for real-time video coding applications with low area and 
high throughput [27]. This paper presents a brief review and anal-
ysis of the hardware architectures of Motion estimation imple-
mented for H.264 and H.265 coding standards. This paper is 
organized as follows. Motion estimation and compensation tech-
niques used for H.264 and H.265 coding standards are discussed 
in Section 2. Section 3 presents about the various hardware archi-
tectures of motion estimation, section 4 presents the comparison of 

various hardware architectures of motion estimation, section 5 
presents the design challenges of motion estimation and the paper 
is concluded in section 6. 

2. Motion estimation algorithm  

In a video, often two successive frames are similar unless there is 

any movement of the object captured by the camera, change in the 
camera position or changes in illumination [25]. So in a video data, 
successive frames with respect to time can contain same pixel data 
which are known as temporally redundant data. This temporal 
redundancy is exploited to encode the video data by measuring the 
amount of displacement or the variation of a block between two 
successive frames. Motion estimation (ME) is the technique to 
measure and estimates the amount of the displacement of a block 

or an object between the successive images/frames in a video and 
provides the motion vector which is used to encode the video data 
by removing the temporal redundancy.  
Various ME algorithms are proposed and implemented to estimate 
the MV. These algorithms follow two different approaches for 
motion estimation; i) pixel-based ME and ii) block based ME [4]. 
Pixel-based motion estimation also called as pel-recursive algo-
rithm calculates the motion vector for every pixel in the image. 
Hence it is time-consuming it makes unsuitable for real-time video 

processing applications [25]. The Block-based motion estimation 
also called as block matching algorithm is faster than the pixel-
based approach.  
The motion in a video can be classified into i) translational motion 
and ii) rotational motion [30]. In block-based ME technique, the 
image frame is partitioned into non-overlapping blocks of size 
16×16, 8×8 or 4×4 and the motion vector is calculated for each 
block in the image. Finally, a single motion vector is calculated 

for the whole image frame and this determines the translational 
motion of the video. This technique does not hold good for real-
time video sequences as there can be rotational motion also. How-
ever, block-based ME technique is utilized in most of the video 
coding standards due to its effectiveness in compression [30]. The 
block matching algorithm for ME varies on the various parameters 
like block distortion measure, block size and search range. Block-
based ME techniques are again classified into full search algo-

rithm and fast search algorithm [11]. In full search algorithm, the 
motion vector is calculated for all search candidates within the 
search window and the search candidate with minimum Sum of 
Absolute Difference (SAD) is taken as the best match. Even 
though this technique provides optimum results, since all search 
candidates are analyzed, it is computationally expensive and time-
consuming which makes the video processing critical in real-
world applications. Fast search ME algorithms are proposed to 

reduce the computational cost and time [15, 31]. Few fast search 
ME algorithms seen in literature [16, 18, 19, 25, 29, 32, 34, 42] 
are 
i. Two-Dimensional Logarithmic Search Algorithm (TDL) 

ii. Three-Step Search Algorithm (TSS) 

iii. New Three-Step Search Algorithm (NTSS) 
iv. Four Step Search Algorithm (4SS) 
v. Cross Search Algorithm (CSA) 

vi. One-at-a-Time Search Algorithm (OTA) 
vii. New One-at-a-Time Search Algorithm (NOTA) 

viii. Modified Three-Step Search Algorithm (MTSS) 
ix. Diamond Search Algorithm (DS) 
x. New diamond search algorithm (NDS) 

xi. New cross-diamond search algorithm (NCDS) 
xii. Hexagonal Search Algorithm (HS) 
Though it provides less optimal results compared to full search 
algorithms, it reduces the computational overhead to a great extent. 
Based on the algorithm characteristics, the fast search ME algo-
rithm is classified into three types [4]. They are i) Search candi-
date reduction, ii) Simplification of matching criteria instead of 
the classical SAD and iii) Predictive search. Figure 1 shows the 

picture representation of ME. The block with minimum distortion 
or SAD is considered as the best match and the resultant motion 
vector is then used for the compression of the video data. 
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Fig. 1: Motion Estimation 
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Where, C(i,j) represents the pixel value in the current frame and 
R(i+k, j+l) represents the same pixel value in the reference frame 

with the displacement of the pixel as ‘k’ in the horizontal direction 
and ‘l’ in the vertical direction. The video coding standards do not 
impose any restriction on using different algorithms or different 
hardware architectures for ME [25]. It can vary based on the tar-
geted application. It is seen from the literature that the computa-
tional complexity for ME is more than 50% of the overall video 
coding [9]. Though various ME algorithms and hardware architec-
tures are implemented for different coding standards, extensive 

works on optimization of these motion estimation algorithms and 
hardware architectures are still going on due to the fact of reduc-
ing the computational complexity, hardware resources and the 
power consumption of this block. Different coding standards use 
different block sizes for ME. Table 1 shows the different block 
sizes used for ME in various coding standards. HEVC video cod-
ing standard supports three different Motion Vector Prediction 
(MVP) modes for predicting the motion vectors known as inter 

mode, skip mode and merge mode [20] to improve the compres-
sion efficiency [17, 41]. 
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Table 1: Different block sizes used in motion estimation [4, 9] 

Video Coding 

Standard 

Block size Number of Motion 

Vector 

MPEG-2 16×16 1 

MPEG-4 16×16, 8×8 5 

AVS 16×16, 16×8, 8×16, 8×8 9 

H.264/AVC 16×16, 16×8, 8×16, 8×8, 8×4, 

4×8, 4×4 

41 

H.265 64×64, 32×32, 16×16, 8×8, 

4×4 and its sub-blocks of all 

block sizes 

1360 

3. Hardware architectures for motion estima-

tion 

Several hardware architectures have been proposed to implement 
the ME algorithms to optimize the coding throughput, reducing 
the hardware complexity, improving the performance of the hard-
ware design. These hardware architectures can be broadly 
classified into four categories such as architectures i) without par-
allelism ii) with parallelism iii) with pipelining and parallelism 

and iv) re-configurable architectures. Reconfigurable architectures 
can be configured for multiple coding standards and for various 
applications. High-performance hardware architecture to perform 
motion estimation is necessary to achieve the high throughput 
requirement in real-time video codecs [6, 23]. Low power and 
high-speed architectures can be realized by implementing a dedi-
cated hardwired design for fast search ME algorithm [26]. By 
implementing the ME algorithm in hardware, we have the advan-

tages like i) reduction of computation complexity by employing 
the sub-partition SAD reusing ii) increase in the throughput by 
employing parallelism, i.e., by scheduling the Processing Element 
(PE) to work in parallel iii) Regularizing and simplification of the 
memory access and the control logic. These advantages are to be 
viewed as the principles while designing the hardwired architec-
ture for ME [22]. Resource sharing, pipelining and parallelism can 
be implemented in hardware to increase the throughput by exploit-
ing the ME algorithm. In hardware, ME algorithm is basically 

performed in three stages. The absolute difference for each pixel 
of the current MB is calculated in the first stage then the SAD is 
calculated at the second stage and in the final stage MV is 
identified by finding the minimum SAD [22]. There are many 
Fractional Motion Estimation (FME) architectures proposed to 
implement multi-iteration algorithms which limit the design 
throughput and increase the latency. FME architectures [21, 38] 
implementing single iteration algorithms achieve high throughput 

with the degradation in performance. In general, the hardware 
architectures of motion estimation has three main blocks i) the 
absolute difference unit ii) the adder tree and i) the compare-select 
unit [2]. 

3.1. Motion estimation architecture without parallelism  

Motion Estimation without parallelism is implemented by Liu et 
al., in [22] as propagate partial SAD hardware architecture. In 

Non-parallel architectures, the ME algorithm is processed in three 
stages as i) Calculation of the absolute difference on each pixel of 
current macroblock ii) Calculation of the SAD for all pixels in a 
current macroblock for every search position iii) Decision of the 
final MV as the search candidate with minimum SAD value. Per-
forming the MV calculation in three stages without employing 
parallelism critically consume a massive amount of time and 
hence non-parallel architectures are suitable only for low-

resolution video applications and when the search range is small 
[22].  Nowadays the users of electronic gadgets expect high-
resolution video and hence the architecture without parallelism 
could not support the principles of the hardwired ME to a great 
extent. For high resolution and higher complexity applications, 
architecture with parallelism outperforms the architecture without 

parallelism. Figure 2 shows a typical SAD Architecture without 
parallelism [28].  
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Fig. 2: SAD architecture without parallelism 

3.2. Motion estimation architecture with parallelism 

The hardware architecture for ME using parallelism was 
implemented in [10, 13, 14, 22, 28, 36, 37]. Nalluri P et al., [28] 
proposed a low complexity SAD architecture for variable block 

size motion estimation for HEVC video coding. Due to the asym-
metric motion partitioning in HEVC, the motion estimation task 
becomes very complex [28]. This architecture employs parallelism 
at different levels to achieve the optimized results. The SAD ar-
chitecture with parallelism is shown in Figure 3. The levels of 
parallelism are limited by the data bus width size from the mem-
ory to the SAD block. For a non-parallel architecture, data read 
from memory are 128 bits for the current block and 128 bits for 
the reference block for the pixel size of 8 bits and the block size of 

4×4. Hence the total bus width size is 256 bits. For a parallel ver-
sion of depth 0, the number of bits for the current block and the 
reference block will increase to 512 bits and hence the total bus 
width size is 1024. The bus width size for any parallel version of 
the SAD architecture is given as 
 
                      (3) 

 
where, ‘w’ represents the data bus width size and ‘p’ represents 

the number of parallel stages. It is inferred from the above equa-
tion that the bus width size increases as the number of parallel 
stage increases which results in the increase in the resource utiliza-
tion. It is also known that increase in the memory data bus width 
decreases the speed of operation and thus this architecture oper-
ates at a very low frequency of 30-60MHz less than the partial 
propagate SAD architecture proposed by Liu et al., [22]. 
The SAD tree architecture implemented in [22] is a highly parallel 

architecture. It is a two-stage SAD tree architecture where the 
absolute difference and the carry of one 4×4 PE is calculated and 
given to a 4:2 compressor based Carry Select Adder (CSA) which 
computes the carry and the sum of a 4×4 SAD module. The carry 
and sum of sixteen 4×4 SAD blocks are stored in buffers and the 
variable block size adder tree calculates the SAD’s. This architec-
ture improves the processing speed by employing two pipeline 
stages and achieves a frequency of 204.8MHz at the price of 88.5k 
gates. The architecture implemented by Tseng et al., [37] reduces 

the number of clock cycles required for processing and hence 
achieves high speed at the cost of high resource utilization. 
Video applications targeted by most of the existing works are for 
the resolutions up to HD or 4k. For ultra-HD or 8k (7680 × 4320) 
applications which need more throughput, more efficient hardware 
architecture is proposed in [9] by Gang et al., They have imple-
mented Fractional Motion Estimation (FME) architecture which 
employs high degree of parallelism and pipelining. A novel Bilin-

ear Quarter pixel Approximation (BQA) technique proposed in 
this architecture reduces the complexity of the interpolation filter. 
In H.265, interpolation filters of 7 tap and 8 tap are used to im-
prove the coding efficiency. The inclusion of interpolation filter 
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provides 21.7% of bitrate reduction in H.265 compared to H.264 
[39] but the computation complexity increases due to the complex 
interpolation filter and factional search process. Pipelining and 
parallelism are employed by exploiting the neighboring pixel cor-
relations. Memory organization is complicated to achieve pipelin-
ing. Even though it supports ultra HD encoding applications, there 
is degradation in the average PSNR and also it utilizes more 
hardware resource as well as power. 
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Fig. 3: SAD architecture with parallelism 

 

A low complexity hardware architecture for motion estimation 
implemented using modified xor function in [2] The modified xor 
function replaces the conventional SAD architecture and it simpli-
fies the calculation of SAD. Parallelism and reuse of the partial 
SAD values of the smaller blocks is employed which increases the 
throughput of the architecture. Though it claims that is architec-
ture is simple with good video quality there is a slight decrease in 
the video quality. A fully pipelined and parallel three-step search 
architecture is implemented in [12]. In this architecture, nine 

Processing Elements (PE) are used in parallel to compute 9 SAD's 
in each step and each step requires 256 clock cycles to calculate 
the SAD's. 

3.3. Reconfigurable architecture for motion estimation 

The reconfigurable architecture allows different configurations 
that can be customized to suit our application [3]. Re-
configurability achieves higher performance and achieves higher 

flexibility [7]. Reconfigurable architectures can be static or dy-
namic. Dynamically reconfigurable architectures are more suitable 
for implementing multimedia applications [3]. 
Thomas et al., [35] proposed a reconfigurable data flow engine for 
HEVC Motion Estimation and Lu et al., [24] proposed a recon-
figurable on-chip motion estimation architecture which supports 
multiple video coding standards. ME architecture implemented in 
[35] and [40] supports Variable Block Size Full Search Motion 

Estimation (VBS-FSME), unlike the algorithms that belong to the 
fast search category. A typical reconfigurable architecture for 
VBS-FSME implemented in [35] is shown in Figure 4 is recon-
figurable with respect to the number of PE's and operates at a fre-
quency of 125MHz. It has three functional units, i)SAD generator 
block which has an array of Processing Elements (PE), ii) SAD 
Comparator block and iii) memory. Figure 5 shows the internal 

architecture of each functional units of the reconfigurable VBS-
FSME architecture.  
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Fig. 4: Architecture of VBS-FSME 
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Fig. 5: Functional units of the reconfigurable VBS-FSME architecture 
 

The PE's elements used in the SAD generator is fixed to 16×16 in 

most of the ME architectures [5, 8] whereas in this architecture, 
the PE's are scalable in two dimensions both horizontally and ver-
tically to achieve optimized performance. The minima compara-
tors used in the SAD comparator block identify the minimum 
distortion using the computed SAD and then give out the corre-
sponding MV. This architecture can process around 27 fps of 
1080p video using a reference frame and with the search window 
of 64×64 pixels and is validated in Xilinx Virtex 5 FPGA. The 
architecture implemented in [40] reduces the memory usage and 

reconfiguration is supported for various search ranges to have a 
trade-off between the area and the performance.  
Though the PE array is reconfigurable only in the horizontal di-
mension, the time consumed to perform ME is less compared to 
other architectures and hence it can support real-time encoding of 
UHD video at a frequency of 282 MHz. Even though the ME ar-
chitecture implemented in [1] achieves high throughput compared 
to [40], the area overhead is huge and hence not suitable for 
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handheld or battery operated application which requires very less 
power consumption. 
ME architecture implemented in [24] reuses the partial 4x4 SAD 
blocks and schedules of the PE blocks appropriately to achieve 
run-time optimization. Simple control logic allows the program-
mability and the reconfigurability of the architecture. The pro-
grammability feature makes the search range flexible and thereby 
enables the usage of this architecture for multiple video coding 

standards. 

4. Comparison of various hardware architec-

tures for motion estimation 

Table 2 shows the comparison of the results of different motion 
estimation architectures proposed by multiple authors for H.264 
and H.265 coding standards. 

Various ME algorithms for H.264 coding standard is implemented 
using Xilinx FPGA in [4] and it is seen that the FBS-DS algorithm 
can support a maximum resolution of HD video at a low frequen-
cy of 129 MHz. DS Algorithm for H.264 is implemented in [26] 
achieves a frequency of 308 MHz which supports only CIF resolu-
tion videos. Only Fast Search algorithms are implemented for 
H.265 coding standards and the maximum frequency achieved is 
188MHz. From Table 2, it is also seen that the area occupancy for 

the implementation of ME algorithms of H.265 coding standard 
which supports of very less resolution itself is more than twice 
than that of H.264. It clearly states that the implementation of ME 
algorithms for H.265 is computationally more complex compared 
to H.264 coding standard even for low resolution videos. Also, the 
hardware implementation for the fast search ME algorithm in [9] 
achieves optimized results in terms of area and frequency for 
H.265 coding standard. 

 

Table 2: Comparison of hardware architectures for motion estimation 

Author Coding 

Standard 

Algorithm Area Technology Max supported resolution Frequency 

MHz 

[4] H.264 

 

FTSS
1
 78154µm

2
 Xilinx FPGA - - 

SEA
2 

3302274µm
2
 Xilinx FPGA QCIF–176×144 100 

VBS
3
 – DS

4
 1103 LUTs FPGA - 135 

FBS
5
 - DS 1576 LUTs FPGA HD-1920×1080 129 

F2SS
6 

457.5 90nm CIF @30fps 129 

[9] H.265 FS
7 

199.2k 0.18µm 7680×4320 @30fps 188 

[20] H.265 FS 291.27k 65nm Xilinx Virtex 5 FPGA NA 171.9 

[26] H.264 DS 3.5k Xilinx Virtex 5 CIF @128fps 308 

[22] H.264 FS-parallel 88.5k 0.18µm NA 204.8 

[22] H.264 FS-Non-parallel 84.1k 0.18µm NA 231.6 

[2] H.264 - 6157 LUT FPGA Cyclone IV CIF @30fps 293 

[24] H.264 NA 116.3k 0.18µm NA 345 

[8] H.264 - 210k 0.18µm 720×576 @30fps 260 

[27] - ASA
8 

38.2k Xilinx Virtex 5 1280×720 243 
1
 FTSS - Fast Three-Step Search Algorithm 

2
 SEA Successive Elimination Algorithm 

3
 VBS Variable Block Size 

4
 DS Diamond Search 

5
 FBS Fixed Block Size 

6
 F2SS Fast Two Stage Search Algorithm 

7
 FS Fast search 

8
 ASA - Adaptive Search Algorithm 

 

5. Design challenges of motion estimation 

Motion Estimation is a computationally complex module and var-
ious ME algorithms are proposed to achieve optimized results. 
Most of these algorithms are implemented in software and few in 
hardware. The hardware architectures are designed to reduce the 
area, power and to achieve high speed. However, due to high data 
dependencies of the algorithm and high computational require-
ment, implementation of hardware architecture with low power, 
reduced area is very complex and challenging for real-time appli-

cations [8, 40]. Optimization with respect to area can be achieved 
by reusing the PEs. Novel memory access and address generation 
schemes can be thought for power optimization and to reduce the 
computational complexity.  Power optimization can be achieved 
by designing ME architectures with systolic arrays. Novel sched-
uling methodologies for processing in a PE can help to achieve 
high speed. Apart from area reduction, power optimization and 
high processing speed, the implemented architecture should also 

maintain a high compression ratio and achieve good video quality. 
High compression ratio and excellent video quality can be 
achieved by tweaking the essential aspects of ME such as the 
block size, search area and distortion metric. Usage of the variable 
block size, provision of search area flexibility and distortion met-
ric correction, however increases the computational complexity 
and hence the area overhead. 

Hardware architectures of ME employ the PE array of various 
sizes. In some architectures the size of the PE array is fixed 
whereas in few architectures PE arrays are reconfigurable based 
on the trade-off between various criteria of the targeted applica-

tions such as area requirement, throughput requirement and the 
number of cycles to compute the SAD to have minimum latency 
in ME. The non-reconfigurable architectures achieves high 
throughput compared to the reconfigurable architectures as the 
time required to calculate the MV is high in reconfigurable archi-
tectures. Whereas the area occupancy of the reconfigurable 
architectures are much less compared to the non-reconfigurable 
architectures. Also, reconfigurable architectures provide the flexi-

bility in configuring the search area, the data dependency limits 
the throughput of the architectures for real-time applications. 
Real-time applications require less processing time to support 
high-resolution videos with excellent quality. Thus, designing a 
flexible reconfigurable ME hardware architecture to support real-
time applications with high throughput, optimized for area and 
power is a great challenge. 

6. Conclusion  

This paper presents the fundamentals of Motion Estimation algo-
rithms for various coding standards like H.264 and H.265. It also 
presents a brief review of the hardware architectures of motion 
estimation which is used to improve the coding efficiency in 
H.264 and H.265 coding standards. Various design challenges in 
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the implementation of ME architectures for these coding standards 
are also discussed. It is seen that for UHD applications the area 
overhead of the ME architecture is around 200k and the frequency 
achieved is 188MHz which is very less. Hence research is still 
going on to optimize the architecture with novel memory access 
schemes, parallelism and pipelining. It is also seen that the recon-
figurable SoC fabric with pipelining and parallelism achieves the 
maximum flexibility with optimized run-time results for various 

applications. 
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