

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.10) (2018) 928-934

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Review on Architectures of Motion Estimation for Video

Coding Standards

Prayline Rajabai C
1
, Sivanantham S

2
*

School of Electronics Engineering, Vellore Institute of Technology

Vellore, Tamil Nadu-632014, India.
*Corresponding author E-mail: ssivanantham@vit.ac.in

Abstract

Various video coding standards like H.264 and H.265 are used for video compression and decompression. These coding standards use
multiple modules to perform video compression. Motion Estimation (ME) is one of the critical blocks in the video codec which requires
extensive computation. Hence it is computationally complex, it critically consumes a massive amount of time to process the video data.

Motion Estimation is the process which improves the compression efficiency of these coding standards by determining the minimum
distortion between the current frame and the reference frame. For the past two decades, various Motion Estimation algorithms are
implemented in hardware and research is still going on for realizing an optimized hardware solution for this critical module. Efficient
implementation of ME in hardware is essential for high-resolution video applications such as HDTV to increase the decoding throughput
and to achieve high compression ratio. A review and analysis of various hardware architectures of ME used for H.264 and H.265 coding
standards is presented in this paper.

Keywords: H.264/AVC; H.265/MPEG; Hardware architecture; Motion Estimation; video coding

1. Introduction

Tremendous advancements in video technology and consumer
electronics for the past few decades led to the requirement of pro-
cessing video data with lesser complexity and optimized perfor-
mance. Telecommunication Standardization Sector of the Interna-

tional Telecommunications Union (ITU-T) Video Coding Experts
Group (VCEG) and the ISO/IEC Moving Picture Experts Group
(MPEG) introduced many video coding standards [33]. The latest
coding standard H.265, widely known as High-Efficiency Video
Coding (HEVC) is the successor of H.264/MPEG-4 AVC. These
coding standards are used for various applications such as the
broadcast of HD TV signals through satellite, Internet and mobile
network video, cam-coders, Multi-view video, scalable video for

streaming applications, security applications, real-time conversa-
tions such as video chatting, video conferencing, etc. In any video
processing application, either the video data is either stored or
transmitted over the network. Real-time video data is of enormous
size which increases the traffic in the communication network
significantly. Hence video data has to be compressed/encoded by
exploiting the spatial and temporal redundancies. Video coding
systems, therefore should provide higher coding efficiency; high
throughput and lower energy consumption as well, because most

of the video are captured using battery operated devices.
Among various video coding standards in the literature, nowadays
H.264 and H.265 are widely used for various applications. Per-
haps, H.265 is computationally complex compared to H.264 with
the trade-off between high throughput and optimized performance.
The efficiency of H.265 is double than that of H.264 [33]. Most of
the features of various modules like Transform, quantization, mo-
tion estimation, motion compensation, intra-prediction and

deblocking filter (DBF) are common for both the coding stand-
ards.
Discrete Cosine Transform (DCT) and Inverse Discrete Cosine
Transform (IDCT) used in H.264 and H.265 are the same, whereas

H.264 uses 4×4 and 8×8 Transform Unit (TU) sizes and H.265
uses 4×4, 8×8, 16×16, 32×32 TU sizes for DCT and IDCT. Trans-
form and inverse transform are performed on blocks of pixels and
hence the colour transitions at the edges of the block are not
smooth. The sharp colour transitions at the edge of each block will
affect the visual quality of the decoded video. This degradation in
the visual quality is compensated by a module called DBF at the
decoder. It eliminates the blocking artifacts on the block bounda-

ries between two blocks and thus smoothens the image pixels on
both sides of the boundary. Smoothening of colour transitions at
the edges of each block improves the visual quality of the recon-
structed video frames. The output of DBF is used as a reference
frame for subsequent video coding called inter prediction. Inter
prediction comprises of Motion Estimation (ME) and Motion
Compensation (MC).
Motion estimation is a technique which is used to remove the

temporal redundancy between the video frames and thus providing
high compression ratio [11]. In motion estimation, both the current
frame and the reference frame are divided into non-overlapping
blocks of size N×N. Comparision is performed for each block in
the current frame with a candidate block within the defined search
range in the reference frame. The displacement between a block in
the current frame and the best match in the reference frame is
called a Motion Vector (MV). This MV describes the position of a
block in the current frame and this information alone has to be

coded. Thus the compression efficiency of a codec is improved
using ME. Motion Compensation (MC) reconstructs the current
frame based on the MV obtained from ME.

International Journal of Engineering & Technology 929

ME algorithms are generally classified as full search algorithms
and fast search algorithms. Fast search algorithms are again
categorized as lossy and lossless algorithms. Lossy algorithms are
classified into five types based on i) reduction in search positions,
ii) simplification of the matching criterion, iii) bit-width reduction,
iv) predictive search and v) hierarchical search. Full search and
fast full search algorithms belong to the lossless category [11].
Hardware architectures for motion estimation algorithms are

required for real-time video coding applications with low area and
high throughput [27]. This paper presents a brief review and anal-
ysis of the hardware architectures of Motion estimation imple-
mented for H.264 and H.265 coding standards. This paper is
organized as follows. Motion estimation and compensation tech-
niques used for H.264 and H.265 coding standards are discussed
in Section 2. Section 3 presents about the various hardware archi-
tectures of motion estimation, section 4 presents the comparison of

various hardware architectures of motion estimation, section 5
presents the design challenges of motion estimation and the paper
is concluded in section 6.

2. Motion estimation algorithm

In a video, often two successive frames are similar unless there is

any movement of the object captured by the camera, change in the
camera position or changes in illumination [25]. So in a video data,
successive frames with respect to time can contain same pixel data
which are known as temporally redundant data. This temporal
redundancy is exploited to encode the video data by measuring the
amount of displacement or the variation of a block between two
successive frames. Motion estimation (ME) is the technique to
measure and estimates the amount of the displacement of a block

or an object between the successive images/frames in a video and
provides the motion vector which is used to encode the video data
by removing the temporal redundancy.
Various ME algorithms are proposed and implemented to estimate
the MV. These algorithms follow two different approaches for
motion estimation; i) pixel-based ME and ii) block based ME [4].
Pixel-based motion estimation also called as pel-recursive algo-
rithm calculates the motion vector for every pixel in the image.
Hence it is time-consuming it makes unsuitable for real-time video

processing applications [25]. The Block-based motion estimation
also called as block matching algorithm is faster than the pixel-
based approach.
The motion in a video can be classified into i) translational motion
and ii) rotational motion [30]. In block-based ME technique, the
image frame is partitioned into non-overlapping blocks of size
16×16, 8×8 or 4×4 and the motion vector is calculated for each
block in the image. Finally, a single motion vector is calculated

for the whole image frame and this determines the translational
motion of the video. This technique does not hold good for real-
time video sequences as there can be rotational motion also. How-
ever, block-based ME technique is utilized in most of the video
coding standards due to its effectiveness in compression [30]. The
block matching algorithm for ME varies on the various parameters
like block distortion measure, block size and search range. Block-
based ME techniques are again classified into full search algo-

rithm and fast search algorithm [11]. In full search algorithm, the
motion vector is calculated for all search candidates within the
search window and the search candidate with minimum Sum of
Absolute Difference (SAD) is taken as the best match. Even
though this technique provides optimum results, since all search
candidates are analyzed, it is computationally expensive and time-
consuming which makes the video processing critical in real-
world applications. Fast search ME algorithms are proposed to

reduce the computational cost and time [15, 31]. Few fast search
ME algorithms seen in literature [16, 18, 19, 25, 29, 32, 34, 42]
are
i. Two-Dimensional Logarithmic Search Algorithm (TDL)

ii. Three-Step Search Algorithm (TSS)

iii. New Three-Step Search Algorithm (NTSS)
iv. Four Step Search Algorithm (4SS)
v. Cross Search Algorithm (CSA)

vi. One-at-a-Time Search Algorithm (OTA)
vii. New One-at-a-Time Search Algorithm (NOTA)

viii. Modified Three-Step Search Algorithm (MTSS)
ix. Diamond Search Algorithm (DS)
x. New diamond search algorithm (NDS)

xi. New cross-diamond search algorithm (NCDS)
xii. Hexagonal Search Algorithm (HS)
Though it provides less optimal results compared to full search
algorithms, it reduces the computational overhead to a great extent.
Based on the algorithm characteristics, the fast search ME algo-
rithm is classified into three types [4]. They are i) Search candi-
date reduction, ii) Simplification of matching criteria instead of
the classical SAD and iii) Predictive search. Figure 1 shows the

picture representation of ME. The block with minimum distortion
or SAD is considered as the best match and the resultant motion
vector is then used for the compression of the video data.

MV

Current Frame

Reference Frame

Block in Current Frame

Block in Reference Frame

Search Window in Reference Frame

Fig. 1: Motion Estimation

 (1)

 (2)

Where, C(i,j) represents the pixel value in the current frame and
R(i+k, j+l) represents the same pixel value in the reference frame

with the displacement of the pixel as ‘k’ in the horizontal direction
and ‘l’ in the vertical direction. The video coding standards do not
impose any restriction on using different algorithms or different
hardware architectures for ME [25]. It can vary based on the tar-
geted application. It is seen from the literature that the computa-
tional complexity for ME is more than 50% of the overall video
coding [9]. Though various ME algorithms and hardware architec-
tures are implemented for different coding standards, extensive

works on optimization of these motion estimation algorithms and
hardware architectures are still going on due to the fact of reduc-
ing the computational complexity, hardware resources and the
power consumption of this block. Different coding standards use
different block sizes for ME. Table 1 shows the different block
sizes used for ME in various coding standards. HEVC video cod-
ing standard supports three different Motion Vector Prediction
(MVP) modes for predicting the motion vectors known as inter

mode, skip mode and merge mode [20] to improve the compres-
sion efficiency [17, 41].

930 International Journal of Engineering & Technology

Table 1: Different block sizes used in motion estimation [4, 9]

Video Coding

Standard

Block size Number of Motion

Vector

MPEG-2 16×16 1

MPEG-4 16×16, 8×8 5

AVS 16×16, 16×8, 8×16, 8×8 9

H.264/AVC 16×16, 16×8, 8×16, 8×8, 8×4,

4×8, 4×4

41

H.265 64×64, 32×32, 16×16, 8×8,

4×4 and its sub-blocks of all

block sizes

1360

3. Hardware architectures for motion estima-

tion

Several hardware architectures have been proposed to implement
the ME algorithms to optimize the coding throughput, reducing
the hardware complexity, improving the performance of the hard-
ware design. These hardware architectures can be broadly
classified into four categories such as architectures i) without par-
allelism ii) with parallelism iii) with pipelining and parallelism

and iv) re-configurable architectures. Reconfigurable architectures
can be configured for multiple coding standards and for various
applications. High-performance hardware architecture to perform
motion estimation is necessary to achieve the high throughput
requirement in real-time video codecs [6, 23]. Low power and
high-speed architectures can be realized by implementing a dedi-
cated hardwired design for fast search ME algorithm [26]. By
implementing the ME algorithm in hardware, we have the advan-

tages like i) reduction of computation complexity by employing
the sub-partition SAD reusing ii) increase in the throughput by
employing parallelism, i.e., by scheduling the Processing Element
(PE) to work in parallel iii) Regularizing and simplification of the
memory access and the control logic. These advantages are to be
viewed as the principles while designing the hardwired architec-
ture for ME [22]. Resource sharing, pipelining and parallelism can
be implemented in hardware to increase the throughput by exploit-
ing the ME algorithm. In hardware, ME algorithm is basically

performed in three stages. The absolute difference for each pixel
of the current MB is calculated in the first stage then the SAD is
calculated at the second stage and in the final stage MV is
identified by finding the minimum SAD [22]. There are many
Fractional Motion Estimation (FME) architectures proposed to
implement multi-iteration algorithms which limit the design
throughput and increase the latency. FME architectures [21, 38]
implementing single iteration algorithms achieve high throughput

with the degradation in performance. In general, the hardware
architectures of motion estimation has three main blocks i) the
absolute difference unit ii) the adder tree and i) the compare-select
unit [2].

3.1. Motion estimation architecture without parallelism

Motion Estimation without parallelism is implemented by Liu et
al., in [22] as propagate partial SAD hardware architecture. In

Non-parallel architectures, the ME algorithm is processed in three
stages as i) Calculation of the absolute difference on each pixel of
current macroblock ii) Calculation of the SAD for all pixels in a
current macroblock for every search position iii) Decision of the
final MV as the search candidate with minimum SAD value. Per-
forming the MV calculation in three stages without employing
parallelism critically consume a massive amount of time and
hence non-parallel architectures are suitable only for low-

resolution video applications and when the search range is small
[22]. Nowadays the users of electronic gadgets expect high-
resolution video and hence the architecture without parallelism
could not support the principles of the hardwired ME to a great
extent. For high resolution and higher complexity applications,
architecture with parallelism outperforms the architecture without

parallelism. Figure 2 shows a typical SAD Architecture without
parallelism [28].

SAD

Control

Unit

64x64 SAD

Unit

32x32 SAD

Unit

16x16 SAD

Unit

8x8 SAD Unit

64x64 and sub

partition SAD

Registers

16x16 and sub

partition SAD

Registers

32x32 and sub

partition SAD

Registers

8x8 and sub

partition SAD

Registers

Final SAD

Output Values

Control Signals from

ME Controller

Status Signals to

ME Controller

4x4 SAD Unit
4x4 SAD

Registers

Four 4x4 Current

Block Pixels

Four 4x4 Reference

Block Pixels
Fig. 2: SAD architecture without parallelism

3.2. Motion estimation architecture with parallelism

The hardware architecture for ME using parallelism was
implemented in [10, 13, 14, 22, 28, 36, 37]. Nalluri P et al., [28]
proposed a low complexity SAD architecture for variable block

size motion estimation for HEVC video coding. Due to the asym-
metric motion partitioning in HEVC, the motion estimation task
becomes very complex [28]. This architecture employs parallelism
at different levels to achieve the optimized results. The SAD ar-
chitecture with parallelism is shown in Figure 3. The levels of
parallelism are limited by the data bus width size from the mem-
ory to the SAD block. For a non-parallel architecture, data read
from memory are 128 bits for the current block and 128 bits for
the reference block for the pixel size of 8 bits and the block size of

4×4. Hence the total bus width size is 256 bits. For a parallel ver-
sion of depth 0, the number of bits for the current block and the
reference block will increase to 512 bits and hence the total bus
width size is 1024. The bus width size for any parallel version of
the SAD architecture is given as

 (3)

where, ‘w’ represents the data bus width size and ‘p’ represents

the number of parallel stages. It is inferred from the above equa-
tion that the bus width size increases as the number of parallel
stage increases which results in the increase in the resource utiliza-
tion. It is also known that increase in the memory data bus width
decreases the speed of operation and thus this architecture oper-
ates at a very low frequency of 30-60MHz less than the partial
propagate SAD architecture proposed by Liu et al., [22].
The SAD tree architecture implemented in [22] is a highly parallel

architecture. It is a two-stage SAD tree architecture where the
absolute difference and the carry of one 4×4 PE is calculated and
given to a 4:2 compressor based Carry Select Adder (CSA) which
computes the carry and the sum of a 4×4 SAD module. The carry
and sum of sixteen 4×4 SAD blocks are stored in buffers and the
variable block size adder tree calculates the SAD’s. This architec-
ture improves the processing speed by employing two pipeline
stages and achieves a frequency of 204.8MHz at the price of 88.5k
gates. The architecture implemented by Tseng et al., [37] reduces

the number of clock cycles required for processing and hence
achieves high speed at the cost of high resource utilization.
Video applications targeted by most of the existing works are for
the resolutions up to HD or 4k. For ultra-HD or 8k (7680 × 4320)
applications which need more throughput, more efficient hardware
architecture is proposed in [9] by Gang et al., They have imple-
mented Fractional Motion Estimation (FME) architecture which
employs high degree of parallelism and pipelining. A novel Bilin-

ear Quarter pixel Approximation (BQA) technique proposed in
this architecture reduces the complexity of the interpolation filter.
In H.265, interpolation filters of 7 tap and 8 tap are used to im-
prove the coding efficiency. The inclusion of interpolation filter

International Journal of Engineering & Technology 931

provides 21.7% of bitrate reduction in H.265 compared to H.264
[39] but the computation complexity increases due to the complex
interpolation filter and factional search process. Pipelining and
parallelism are employed by exploiting the neighboring pixel cor-
relations. Memory organization is complicated to achieve pipelin-
ing. Even though it supports ultra HD encoding applications, there
is degradation in the average PSNR and also it utilizes more
hardware resource as well as power.

SAD

Control

Unit

64x64 SAD

Unit

32x32 SAD

Unit

16x16 SAD

Unit

8x8 SAD Unit

64x64 and

sub partition

SAD

Registers

16x16 and

sub partition

SAD

Registers

32x32 and

sub partition

SAD

Registers

8x8 and sub

partition SAD

Registers

Final SAD

Output

Values

Control Signals from

ME Controller

Status Signals to

ME Controller

64x64 and

sub partition

SAD

Registers

16x16 and

sub partition

SAD

Registers

32x32 and

sub partition

SAD

Registers

8x8 and sub

partition SAD

Registers

4x4 SAD

Unit

4x4 SAD

Unit

4x4 SAD

Unit

4x4 SAD

Unit

Four 4x4 Current

Block Pixels

Four 4x4

Reference Block

Pixels

SAD Block

Parallelism at 4x4 Block Level

Fig. 3: SAD architecture with parallelism

A low complexity hardware architecture for motion estimation
implemented using modified xor function in [2] The modified xor
function replaces the conventional SAD architecture and it simpli-
fies the calculation of SAD. Parallelism and reuse of the partial
SAD values of the smaller blocks is employed which increases the
throughput of the architecture. Though it claims that is architec-
ture is simple with good video quality there is a slight decrease in
the video quality. A fully pipelined and parallel three-step search
architecture is implemented in [12]. In this architecture, nine

Processing Elements (PE) are used in parallel to compute 9 SAD's
in each step and each step requires 256 clock cycles to calculate
the SAD's.

3.3. Reconfigurable architecture for motion estimation

The reconfigurable architecture allows different configurations
that can be customized to suit our application [3]. Re-
configurability achieves higher performance and achieves higher

flexibility [7]. Reconfigurable architectures can be static or dy-
namic. Dynamically reconfigurable architectures are more suitable
for implementing multimedia applications [3].
Thomas et al., [35] proposed a reconfigurable data flow engine for
HEVC Motion Estimation and Lu et al., [24] proposed a recon-
figurable on-chip motion estimation architecture which supports
multiple video coding standards. ME architecture implemented in
[35] and [40] supports Variable Block Size Full Search Motion

Estimation (VBS-FSME), unlike the algorithms that belong to the
fast search category. A typical reconfigurable architecture for
VBS-FSME implemented in [35] is shown in Figure 4 is recon-
figurable with respect to the number of PE's and operates at a fre-
quency of 125MHz. It has three functional units, i)SAD generator
block which has an array of Processing Elements (PE), ii) SAD
Comparator block and iii) memory. Figure 5 shows the internal

architecture of each functional units of the reconfigurable VBS-
FSME architecture.

SAD Generator SAD Comparator

Memory

Current Frame
Reference

Frame
MV

SADs SADs

Fig. 4: Architecture of VBS-FSME

A CBs

Memory

RF Line Buffer

MUX

PE PEPE PE

PE PEPE PE

Current Frame

Stream

Reference Frame

Stream

H

A

P

P P P P

(a) SAD Generator

|A-B|

Adder Tree

Accum Registers Block

P Abs

P Pixels P Pixels

1

accum

1 SAD

(b) Processing Element

4-to-1

Adder

8x8 Minima

Comparator

8x8 SADs

4-to-1

Adder

4-to-1

Adder

16x16 Minima

Comparator

32x32 Minima

Comparator

64x64 Minima

Comparator

64

8x8 MVs

16

16x16 MVs

4

32x32 MVs

1

64x64 MVs

MVs

16x16 SADs

32x32 SADs

64x64 SADs

(c) SAD Comparator

Fig. 5: Functional units of the reconfigurable VBS-FSME architecture

The PE's elements used in the SAD generator is fixed to 16×16 in

most of the ME architectures [5, 8] whereas in this architecture,
the PE's are scalable in two dimensions both horizontally and ver-
tically to achieve optimized performance. The minima compara-
tors used in the SAD comparator block identify the minimum
distortion using the computed SAD and then give out the corre-
sponding MV. This architecture can process around 27 fps of
1080p video using a reference frame and with the search window
of 64×64 pixels and is validated in Xilinx Virtex 5 FPGA. The
architecture implemented in [40] reduces the memory usage and

reconfiguration is supported for various search ranges to have a
trade-off between the area and the performance.
Though the PE array is reconfigurable only in the horizontal di-
mension, the time consumed to perform ME is less compared to
other architectures and hence it can support real-time encoding of
UHD video at a frequency of 282 MHz. Even though the ME ar-
chitecture implemented in [1] achieves high throughput compared
to [40], the area overhead is huge and hence not suitable for

932 International Journal of Engineering & Technology

handheld or battery operated application which requires very less
power consumption.
ME architecture implemented in [24] reuses the partial 4x4 SAD
blocks and schedules of the PE blocks appropriately to achieve
run-time optimization. Simple control logic allows the program-
mability and the reconfigurability of the architecture. The pro-
grammability feature makes the search range flexible and thereby
enables the usage of this architecture for multiple video coding

standards.

4. Comparison of various hardware architec-

tures for motion estimation

Table 2 shows the comparison of the results of different motion
estimation architectures proposed by multiple authors for H.264
and H.265 coding standards.

Various ME algorithms for H.264 coding standard is implemented
using Xilinx FPGA in [4] and it is seen that the FBS-DS algorithm
can support a maximum resolution of HD video at a low frequen-
cy of 129 MHz. DS Algorithm for H.264 is implemented in [26]
achieves a frequency of 308 MHz which supports only CIF resolu-
tion videos. Only Fast Search algorithms are implemented for
H.265 coding standards and the maximum frequency achieved is
188MHz. From Table 2, it is also seen that the area occupancy for

the implementation of ME algorithms of H.265 coding standard
which supports of very less resolution itself is more than twice
than that of H.264. It clearly states that the implementation of ME
algorithms for H.265 is computationally more complex compared
to H.264 coding standard even for low resolution videos. Also, the
hardware implementation for the fast search ME algorithm in [9]
achieves optimized results in terms of area and frequency for
H.265 coding standard.

Table 2: Comparison of hardware architectures for motion estimation

Author Coding

Standard

Algorithm Area Technology Max supported resolution Frequency

MHz

[4] H.264

FTSS
1
 78154µm

2
 Xilinx FPGA - -

SEA
2

3302274µm
2
 Xilinx FPGA QCIF–176×144 100

VBS
3
 – DS

4
 1103 LUTs FPGA - 135

FBS
5
 - DS 1576 LUTs FPGA HD-1920×1080 129

F2SS
6

457.5 90nm CIF @30fps 129

[9] H.265 FS
7

199.2k 0.18µm 7680×4320 @30fps 188

[20] H.265 FS 291.27k 65nm Xilinx Virtex 5 FPGA NA 171.9

[26] H.264 DS 3.5k Xilinx Virtex 5 CIF @128fps 308

[22] H.264 FS-parallel 88.5k 0.18µm NA 204.8

[22] H.264 FS-Non-parallel 84.1k 0.18µm NA 231.6

[2] H.264 - 6157 LUT FPGA Cyclone IV CIF @30fps 293

[24] H.264 NA 116.3k 0.18µm NA 345

[8] H.264 - 210k 0.18µm 720×576 @30fps 260

[27] - ASA
8

38.2k Xilinx Virtex 5 1280×720 243
1
 FTSS - Fast Three-Step Search Algorithm

2
 SEA Successive Elimination Algorithm

3
 VBS Variable Block Size

4
 DS Diamond Search

5
 FBS Fixed Block Size

6
 F2SS Fast Two Stage Search Algorithm

7
 FS Fast search

8
 ASA - Adaptive Search Algorithm

5. Design challenges of motion estimation

Motion Estimation is a computationally complex module and var-
ious ME algorithms are proposed to achieve optimized results.
Most of these algorithms are implemented in software and few in
hardware. The hardware architectures are designed to reduce the
area, power and to achieve high speed. However, due to high data
dependencies of the algorithm and high computational require-
ment, implementation of hardware architecture with low power,
reduced area is very complex and challenging for real-time appli-

cations [8, 40]. Optimization with respect to area can be achieved
by reusing the PEs. Novel memory access and address generation
schemes can be thought for power optimization and to reduce the
computational complexity. Power optimization can be achieved
by designing ME architectures with systolic arrays. Novel sched-
uling methodologies for processing in a PE can help to achieve
high speed. Apart from area reduction, power optimization and
high processing speed, the implemented architecture should also

maintain a high compression ratio and achieve good video quality.
High compression ratio and excellent video quality can be
achieved by tweaking the essential aspects of ME such as the
block size, search area and distortion metric. Usage of the variable
block size, provision of search area flexibility and distortion met-
ric correction, however increases the computational complexity
and hence the area overhead.

Hardware architectures of ME employ the PE array of various
sizes. In some architectures the size of the PE array is fixed
whereas in few architectures PE arrays are reconfigurable based
on the trade-off between various criteria of the targeted applica-

tions such as area requirement, throughput requirement and the
number of cycles to compute the SAD to have minimum latency
in ME. The non-reconfigurable architectures achieves high
throughput compared to the reconfigurable architectures as the
time required to calculate the MV is high in reconfigurable archi-
tectures. Whereas the area occupancy of the reconfigurable
architectures are much less compared to the non-reconfigurable
architectures. Also, reconfigurable architectures provide the flexi-

bility in configuring the search area, the data dependency limits
the throughput of the architectures for real-time applications.
Real-time applications require less processing time to support
high-resolution videos with excellent quality. Thus, designing a
flexible reconfigurable ME hardware architecture to support real-
time applications with high throughput, optimized for area and
power is a great challenge.

6. Conclusion

This paper presents the fundamentals of Motion Estimation algo-
rithms for various coding standards like H.264 and H.265. It also
presents a brief review of the hardware architectures of motion
estimation which is used to improve the coding efficiency in
H.264 and H.265 coding standards. Various design challenges in

International Journal of Engineering & Technology 933

the implementation of ME architectures for these coding standards
are also discussed. It is seen that for UHD applications the area
overhead of the ME architecture is around 200k and the frequency
achieved is 188MHz which is very less. Hence research is still
going on to optimize the architecture with novel memory access
schemes, parallelism and pipelining. It is also seen that the recon-
figurable SoC fabric with pipelining and parallelism achieves the
maximum flexibility with optimized run-time results for various

applications.

References

[1] Alcocer, E., Gutierrez, R., Lopez-Granado, O., Malumbres, M.P.,

“Design and implementation of an efficient hardware integer mo-

tion estimator for an HEVC video encoder”, Journal of Real-Time

Image Processing, (2016), pp. 1-11.

[2] AlQaralleh, E.A., Abu-Sharkh, O.M., “Low-complexity motion es-

timation design using modifed xor function”, Multimedia Tools and

Applications, Vol.75, No.24, (2016), pp.16809-16834.

[3] Cervero, T., Lopez, S., Callico, G., Tobajas, F., De Armas, V.,

Lopez, J., Sarmiento, R., “Survey of reconfgurable architectures for

multimedia applications”, In Proc. of SPIE: VLSI Circuits and Sys-

tems IV, Vol.7363, (2009), pp. 736303/1 – 736303/12.

[4] Chakrabarti, I., Batta, K.N.S., Chatterjee, S.K., “Motion estimation

for video coding- efficient algorithms and architectures”, Springer

Book Series: Studies in Computational Intelligence, Vol. 590,

(2015), pp. 85-108.

[5] Chen, C.Y., Chien, S.Y., Huang, Y.W., Chen, T.C., Wang, T.C.,

Chen, L.G., “Analysis and architecture design of variable block-

size motion estimation for h. 264/avc”, IEEE Transactions on Cir-

cuits and Systems I: Regular Papers, Vol.53, No.3, (2006), pp.578-

593.

[6] Chen, T.C., Chien, S.Y., Huang, Y.W., Tsai, C.H., Chen, C.Y.,

Chen, T.W., Chen, L.G., “Analysis and architecture design of an

hdtv720p 30 frames/s h.264/avc encoder”, IEEE Transactions on

Circuits and Systems for video technology, Vol.16, No.6, (2006),

pp.673-688.

[7] Compton, K., Hauck, S., “Reconfigurable computing: a survey of

systems and software”, ACM Computing Surveys, Vol.34, No.2,

(2002), pp.171-210.

[8] Deng, L., Gao, W., Hu, M.Z., Ji, Z.Z., “An efficient hardware im-

plementation for motion estimation of avc standard”, IEEE Trans-

actions on Consumer Electronics, Vol.51, No.4, (2005), pp.1360-

1366.

[9] He, G., Zhou, D., Li, Y., Chen, Z., Zhang, T., Goto, S., “High-

throughput power-efficient vlsi architecture of fractional motion es-

timation for ultra-hd hevc video encoding”, IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, Vol.23, No.12,

(2015), pp.3138-3142.

[10] Hsia, S.C., Hong, P.Y., “Very large scale integration (vlsi) imple-

mentation of low- complexity variable block size motion estimation

for h. 264/avc coding”, IET Circuits, Devices & Systems, Vol.4,

No.5, (2010), pp.414-424.

[11] Huang, Y.W., Chen, C.Y., Tsai, C.H., Shen, C.F., Chen, L.G.,

“Survey on block matching motion estimation algorithms and archi-

tectures with new results”, Journal of VLSI Signal Processing Sys-

tems for Signal, Image and Video Technology, Vol.42, No.3,

(2006), pp.297-320.

[12] Jong, H.M., Chiueh, T.D., et al., “Parallel architectures for 3-step

hierarchical search block-matching algorithm”, IEEE Transactions

on Circuits and Systems for Video Technology, Vol.4, No.4, (1994),

pp.407-416.

[13] Jou, S.Y., Chang, S.J., Chang, T.S., “Fast motion estimation algo-

rithm and design for real time qfhd high efficiency video coding”,

IEEE Transactions on Circuits and Systems for Video Technology,

Vol.25, No.9, (2015), pp.1533-1544.

[14] Kao, C.Y., Lin, Y.L., “A memory-efficient and highly parallel ar-

chitecture for variable block size integer motion estimation in h.

264/avc”, IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, Vol.18, No.6, (2010), pp.866-874.

[15] Kerfa, D., Belbachir, M.F., “Star diamond: an efficient algorithm

for fast block matching motion estimation in h264/avc video codec”,

Multimedia Tools and Applications, Vol.75, No.6, (2016), pp.3161-

3175.

[16] Koga, T., “Motion compensated interframe coding for video-

conferencing”, In Proc. of National Conference on Telecommunica-

tion, (1981), pp. G5.3.1-5.

[17] Kudo, S., Kitahara, M., Shimizu, A., “Motion vector prediction

methods considering prediction continuity in hevc”, In Proc. of

IEEE Picture Coding Symposium, (2016), pp. 1-5.

[18] Lam, C.W., Po, L.M., Cheung, C.H., “A new cross-diamond search

algorithm for fast block matching motion estimation”, In Proc. of

IEEE International Conference on Neural Networks and Signal

Processing, (2003)., Vol.2, pp.1262-1265.

[19] Li, R., Zeng, B., Liou, M.L., “A new three-step search algorithm

for block motion estimation”, IEEE Transactions on Circuits and

Systems for Video Technology, Vol.4, No.4, (1994), pp.438-442.

[20] Lin, J.L., Chen, Y.W., Huang, Y.W., Lei, S.M., “Motion vector

coding in the hevc standard”, IEEE Journal of Selected Topics in

Signal Processing, Vol.7, No.6, (2013), pp.957-968.

[21] Lin, Y.K., Lin, C.C., Kuo, T.Y., Chang, T.S., “A hardware efficient

h. 264/avc motion-estimation design for high-definition video”,

IEEE Transactions on Circuits and Systems I: Regular Papers,

Vol.55, No.6, (2008), pp.1526-1535.

[22] Liu, Z., Goto, S., Ikenaga, T., “Optimization of propagate partial

sad and sad tree motion estimation hardwired engine for h. 264”, In

Proc. of IEEE International Conference on Computer Design,

(2008), pp. 328-333.

[23] Liu, Z., Song, Y., Shao, M., Li, S., Li, L., Ishiwata, S., Nakagawa,

M., Goto, S., Ikenaga, T., “A 1.41 w h. 264/avc real-time encoder

soc for hdtv1080p”, In Proc. of IEEE Symposium on VLSI Circuits,

(2007), pp.12-13.

[24] Lu, L., McCanny, J.V., Sezer, S., “Reconfigurable system-on-a-

chip motion estimation architecture for multi-standard video cod-

ing”, IET Computers & Digital Techniques, Vol.4, No.5, (2010),

pp.349-364.

[25] Metkar, S., Talbar, S., “Motion estimation techniques for digital

video coding”, Springer Briefs in Applied Sciences and Technology,

(2013), pp. 33-45.

[26] Mukherjee, R., Mahajan, V., Dhar, A.S., Chakrabarti, I., “High per-

formance visi design of diamond search algorithm for fast motion

estimation”, Journal of Circuits, Systems and Computers, Vol.25,

No.09, (2016), pp.16501-16514.

[27] Mukherjee, R., Saha, P., Chakrabarti, I., Dutta, P.K., Ray, A.K.,

“Fast adaptive motion estimation algorithm and its efficient vlsi

system for high definition videos” Expert Systems with Applica-

tions, Vol.101, (2018), pp.159-175.

[28] Nalluri, P., Alves, L.N., Navarro, A., “A novel SAD architecture

for variable block size motion estimation in hevc video coding”, In

Proc. of IEEE International Symposium on System on Chip, (2013),

pp.1-4.

[29] Ndili, O., Ogunfunmi, T., “Algorithm and architecture co-design of

hardware-oriented, modified diamond search for fast motion esti-

mation in h. 264/avc”, IEEE Transactions on Circuits and Systems

for Video Technology, Vol.21, No.9, (2011), pp.1214-1227.

[30] Ng, K.H., Po, L.M., Cheung, K.W., Wong, K.M., “Block-matching

translational and rotational motion compensated prediction using

interpolated reference frame”, EURASIP Journal on Advances in

Signal Processing, Vol.2010, (2010), pp.1-9.

[31] Paramkusam, A.V., Reddy, V., “A novel fast search motion estima-

tion boosted by multilayer concept”, Multimedia Tools and Appli-

cations, Vol.75, No.4, (2016), pp.2169-2188.

[32] Po, L.M., Ma, W.C., “A novel four-step search algorithm for fast

block motion estimation”, IEEE Transactions on Circuits and Sys-

tems for Video Technology, Vol.6, No.3, (1996), pp.313-317.

[33] Sullivan, G.J., Ohm, J., Han, W.J., Wiegand, T., “Overview of the

high efficiency video coding (hevc) standard”, IEEE Transactions

on Circuits and Systems for Video Technology, Vol.22, No.12,

(2012), pp.1649-1668.

[34] Tham, J.Y., Ranganath, S., Ranganath, M., Kassim, A.A., “A novel

unrestricted center-biased diamond search algorithm for block mo-

tion estimation”, IEEE transactions on Circuits and Systems for

Video Technology, Vol.8, No.4, (1998), pp.369-377.

[35] Thomas, D., Momcilovic, S., Pratas, F., Sousa, L., “Reconfigurable

data flow engine for hevc motion estimation”, In Proc. of IEEE In-

ternational Conference on Image Processing, (2014.), pp.1223-1227.

[36] Tsai, A.C., Bharanitharan, K., Wang, J.F., Lee, K.I., “Effective

search point reduction algorithm and its vlsi design for hdtv h.

264/avc variable block size motion estimation”, IEEE Transactions

on Circuits and Systems for Video Technology, Vol.22, No.7,

(2012), pp.981-988.

934 International Journal of Engineering & Technology

[37] Tseng, C.F., Lai, Y.T., Lee, M.J., “A vlsi architecture for three-step

search with variable block size motion vector”, In Proc. of IEEE 1st

Global Conference on Consumer Electronics, (2012), pp. 628-631.

[38] Tsung, P.K., Chen, W.Y., Ding, L.F., Tsai, C.Y., Chuang, T.D.,

Chen, L.G., “Single-iteration full-search fractional motion estima-

tion for quad full HD H.264/AVC encoding”, In Proc. of IEEE In-

ternational Conference on Multimedia and Expo, (2009), pp.9-12.

[39] Ugur, K., Alshin, A., Alshina, E., Bossen, F., Han, W.J., Park, J.H.,

Lainema, J., “Motion compensated prediction and interpolation

filter design in h. 265/hevc”, IEEE Journal of Selected Topics in

Signal Processing, Vol.7, No.6, (2013), pp.946-956.

[40] Vayalil, N.C., Kong, Y., “VLSI architecture of full-search variable-

block-size motion estimation for HEVC video encoding”, IET Cir-

cuits, Devices & Systems, Vol.11, No.6, (2017), pp.543-548.

[41] Wang, C.C., Li, G.L., “Hardware-friendly advanced motion vector

prediction method and its architecture design for high effciency

video coding”, Multimedia Tools and Applications, Vol.76, No.23,

(2017), pp.25285-25296.

[42] Zhu, S., Ma, K.K., “A new diamond search algorithm for fast

block-matching motion estimation”, IEEE Transactions on Image

Processing, Vol.9, No.2, (2000), pp.287-290.

