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Abstract 
 

The present work is a transient discussion that based on the recent higher position of the shear deformation function proposed by J.L. 

Mantari et al [Composite Structures 94 (2011) 37–49] who develops the idea behind the supported cross-ply laminated shallow shell. It 

explains the recent hint of displacement which based on a parameter ‘‘m’’, when its worth is optimized in order to get closest outcomes 

of the elasticity of the 3D solutions. The transient solutions are obtained using Navier series for thick and thin anti-symmetric and sym-

metric cross ply laminated shallow shell. Results are provided for several designed parameters like the quantity of laminates, curvature 

ratio and the ratio of the thickness on the laminated combined dynamic behavior (Glass/epoxy) and hybrid (Glass/carbon/epoxy) shallow 

shell subjected to sinusoidal distributed load and uniformly distributed load with different types of time dependent loading such as sine 

pulse, triangular pulse and step pulse are studied. The accuracy of the present codes by using Matlab R2017b is verified by comparing 

with other works solution and Ansys 15 software. 
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1. Introduction 

Many practical applications can be very beneficial to the most 

essential structural elements as well as the composite laminated 

curved shell (bridges, aircraft structures, naval vessels and many 

engineering industries). In all these applications, the complex as 

well as composite environment conditions makes the laminated 

curved shells subjected to much complex stress that leads to great-

er hasting vibration during the short time intervals. Therefore, the 

greater significance for analyzing the transient reaction of compo-

site laminated curved shells for the morefull benefit of them to 

ensure a reliable structural application under variety of loading 

conditions. Reddy and A.Khdeir, 1989: developed transient expla-

nation of laminated composite shallow shell usage by creating a 

third-order shear deformation concept. A third -order shear re-

shaping concept or the theory utilized transient explanation of 

solely corroborative cross layer laminated composite shallow shell 

for central deflections and normal stresses under various loads. 

The theory accounts that the cubic distribution of the transverse 

shear stresses requires no shear correction coefficients. The focus 

of this paper is compared the transient behavior of laminated 

spherical shallow shell due to the triangular and sinusoidal loading 

(both in time) only with those obtained using the classical and 

first- order theory. T. Kant and Mallikarjuna 1989, Studied the 

dynamic transient response of multilayered composite sandwich 

plates by using element model depend on Mindlin's theory. The 

objective of their study is to study the stability of 4-noded, 8-

noded serendipity, and 9-noded by applying the time integration 

technique with Lagrangian elements. The effect of the parameters 

(time step, finite element mesh, lamination scheme, and orthotro-

py) on the transient behavior under different dynamic loading are 

considered. Mallik et al 1992, presents that the transient reaction 

of isotropic layered orthotropic and anisotropic composite and 

sandwich shells by using first-order shear deformation theory 

(FOST) based on the Reissner-Mindlin theory. Two types of 

nodes (8nodes and 9 nodes) are used to study the stability of the 

elements by using a special mass matrix diagonal scheme with 

central difference technique. These study are disused the effect of 

the cross shear moduli of all of the following stiffed layers, 

length/thickness and radius/length ratios, time step, finite element 

mesh, orientation of fibers and degree of orthotropic on the transi-

ent response of shells. Nayak et al 2004 studied transient analysis 

of laminated sandwich plates using a four and nine nodes by finite 

element method refined form of third-order shear deformation 

theory. The third - shear order deformation theory sets that the 

cubic classification of the stresses of the cross shear, doesn’t need 

shear emendation coefficients. The governing equations solved by 

using Newmark method. Plates with varying number of these ele-

ments like: layers, aspect ratio, length for thickness ratio and 

boundary conditions are considered for analysis. Using several 

numerical examples is essentially to show the present method 

concourse and fineness. The paper results are much interchanged 

with the results already stated in the literature. Li Jun and 

Huahongxing, 2006, used a reflected-after flow virtual-source 

(RAVS) of an orthotropic cylindrical shell in clouding finite dif-

ferent mean based on the Sander weak shell theory to study of the 

shell’s transient statue is undergone to a step incident wave. Using 

the (RAVS) model leads to get the redundant motions and strain 

reactions of the shell. The thickness as well as the shell radius 

affects the following elements like: non-dimensional radial veloci-

ty, mid-surface strain, number of form radial displacement veloci-

ty (0th - 1th) has been revealed. M. Mukhopadhyay and S. Gos-

wami 2010 discussed the transient linear response analysis of solid 

composite cylindrical shells and huge curved shells by using the 

conventional nine-nodded Lagrangian element. The objective of 

their study is to place the stiffener at anywhere inside the element 

(concentric or eccentric) for getting the transient dynamic reaction 

http://creativecommons.org/licenses/by/3.0/
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of these structures. These structures are analyzed under short dura-

tion air-blast loading, suddenly applied uniformly distributed step 

loading and sinusoidally harmonic loading with different bounda-

ry conditions as well as various laminate orientations. The results 

show that improving the modeling for eccentric stiffeners of the 

solid composite cylindrical shells and huge curved shells. Maleki 

et al 2011, J.L. investigated the static and transient analysis of 

moderately thick laminated cylindrical shell panels by using the 

earlier shear deformation concept. The dominant equations of 

transient response are gotten by involving a quadrate generalized 

differential (GDQ) technique with Newmark method. With vary-

ing symmetric and asymmetrical lamination sequences together 

with various combinations of clamped, simply supported and free 

boundary conditions as well as mixed boundary condition are 

considered. Using several numerical examples is essential to dis-

play the concourse and fineness for their method. A study of Man-

tari et al 2011 about the analysis of Static and free vibration of 

laminated composite as well as the sandwich plates and shells 

through the use of a new higher-order shear of the disfigurement 

theory. For that reason, appears the need for developing a new 

higher order shear disfiguration theory dealing with the elastic 

combined sandwich plates and shells. Dealing with the new dis-

placement scope the parameter ‘‘m’’ which sum is stated to come 

up very likely outcome to solutions to the kind of the 3D elasticity 

bending. This theory calculates the shell thickness and tangential 

stress of the free boundary conditions on the shell boundary sur-

face of the approximately parabolic distribution of the transverse 

shear strains. The prevailing equations of the conditional limits are 

obtained by using of the actual work base. These hypotheses are 

gained when using Navier-type, closed form solutions. Shells and 

plates are undergoing the static bi-sinusoidal, classified and point 

loads. Thick to thin in addition to shallow and deep shells results 

are found. Nguyen Dinh Du and Tran Quo 2014: studied the anal-

ysis of the non-linear dynamic response of FGM thin double 

curved shallow kind of shells by experimenting an ordinary power 

of law distribution (P-FGM) in thermal environment. The ordinary 

power of law distribution (P-FGM) with classical theory tacking 

in account geometrical nonlinearity for simply supported func-

tional girded materials (FGM) double curved shallow shell under 

thermal load. Shallow shell in physical and geometrical properties 

like: temperature, elastic base and eccentrically solids are consid-

ered. Sushree et al 2016: developed higher order shear defor-

mation to the static analysis as well as to the free vibration and 

transient of the flat and curved panel. The home-made code 

Matlab based on FEM and (ANSYS) and of the ANSYS paramet-

ric frame code language (APDL) is used to calculate deflection, 

natural frequency and transient behavior in flat plate. Flat /curved 

panel of different geometries shell i.e. (spherical, cylindrical, el-

lipsoid, hyperboloid and flat) and thickness ratio, aspect ratio, 

curvature ratio, support conditions as well as the modular ratio on 

the static response, frequent responses and the transient behavior 

are all should be into consideration. The results of their work are 

in good agreement with numerical and experimental researches. 

S.S. Sahoo et al 2017 investigated the free and transient responses 

of carbon/epoxy layered composite of laminated composite curved 

shallow shell structure based on the second order shear defor-

mation. The mentioned responses of the layered composite struc-

ture are evaluated by using MATLAB15.0 programmer. Theoreti-

cal modal and experimental test data are compared with those 

published by other researchers which it based on finite element 

method by using Ansys (APDL code) in order to improve the 

accuracy of this comparison. This work shows the theoretical 

analysis which relies on the new higher order shear disfiguration 

function proposed by [Ref.11] for simply supporting cross-ply 

laminated shallow shell. Equations of motion are derived using 

Hamilton, s principles. Exact solution for transient analysis of 

simply supported anti-symmetric and symmetric cross ply subject-

ed to sinusoidal and uniform distributed load varying with differ-

ent time function (sine impulse, triangular impulse and step im-

pulse) by using new higher order shear deformation with separa-

tions of variables (Navier series) are presented. The effects such as 

number of layers for symmetric and anti-symmetric, curvature 

ratio and thickness ratio are considered on the composite and hy-

brid materials of the laminated shallow shell.  

2. Solution producture 

The New displacement field used in the present study is [Ref.11]: 

 

u̅(x1. x2. z. t) = (1 +
z

R1
) ∗ u((x1 . x2 . t) − z ∗

∂w

∂x1
 + z ∗ m

−2∗(
z

h
)
2

∗

∅1  

 

v̅(x1. x2. z. t) = (1 +
z

R2
) ∗ v((x1. x2. t) − z ∗

∂w

∂x2
 + z ∗ m

−2∗(
z

h
)
2

∗

∅2  

 

w̅(x1 . x2. z. t) = w((x1 . x2 . t)                                                        (1) 

 

Where (m=2.86) and (u̅. v̅andw̅) are the displacements along the 

orthogonal curvilinear coordinates such that the z1 and z2 its 

curves are lines of the main curvature of mid surface z = 0, and z 

curves are straight perpendicular lines to the surface z = 0.The 

parameters R1 and R2 measure the amount of the radii principal of 

the middle curvature surface. All displacement components 

(u,v,w, ∅1 and ∅2) are functions of (x1 , x2) and time t as shown 

in Figure 1 

 

 
Fig. 1: Geometry of Laminated Spherical Shall Panel. [Ref. 10] the Strain-

Displacement Relations Take the form [Ref. 5] 

 

ε1 =
1

A1
∗ (

∂u̅̅ ̅̅

∂z1
+

w

R1
)  . ε2 =

1

A1
∗ (

∂v̅̅̅̅

∂z2
+

w

R2
) . ε4 =

1

A2
∗

(
∂w̅̅̅̅̅

∂z2
+ A2 ∗

∂

∂z
(

v̅

A2
))  

 

ε5 =
1

A1
∗ (

∂w̅̅̅̅̅

∂z1
+ A1 ∗

∂

∂z
(

u̅

A1
)) . ε6 =

A2

A1
∗

∂

∂z1
(

v̅

A2
) +

A1

A2
∗

∂

∂z2
(

u̅

A1
)                                                                                          (2) 

 

Where A1=(1 +
z

R1
) , A2=(1 +

z

R2
) 

 

Substituting Eq. (1) in to Eq. (2) we obtained: 

 

ε1 = ε1
0 + z ∗ ε1

1 + z ∗ m
−2∗(

z

h
)
2

∗ ε1
2  

 

ε2 = ε2
0 + z ∗ ε2

1 + z ∗ m
−2∗(

z

h
)
2

∗ ε2
2  

 

ε4 = (1 − 4 ∗ log(m) ∗ (
z

h
)
2
) ∗ m

−2∗(
z

h
)
2

∗ ε4
3  

 

ε5 = (1 − 4 ∗ log(m) ∗ (
z

h
)
2
) ∗ m

−2∗(
z

h
)
2

∗ ε5
3  
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ε6 = ε6
0 + z ∗ ε6

1 + z ∗ m
−2∗(

z

h
)
2

∗ ε6
2                                             (3) 

 

Where: 

 

ε1
0 =

∂u

∂x1
+

w

R1
 ε1

1 = −
∂2w

∂x1
2  ε1

2 =
∂∅1

∂x1
  

 

ε2
0 =

∂v

∂x2
+

w

R2
 ε2

1 = −
∂2w

∂x2
2  ε2

2 =
∂∅2

∂x2
  

 

ε4
3 = ∅2 ε5

3 = ∅1                                                                           (4) 

 

ε6
0 =

∂v

∂x1
+ 

∂u

∂x2
 ε6

1 = −2 ∗
∂2w

∂x1 ∂x2
 ε6

2 = (
∂∅1

∂x2
+

∂∅2

∂x1
)  

 

Hamilton’s Principles state that the equation of motion of the new 

higher order theory will be obtained by the dynamic result of the 

principle of virtual displacement [Ref.4]. The detailed theoretical 

analysis and mathematical principle can be seen in [Ref 17-23]: 

 

∫ (δU + δV − δK)
t1

t2
∂t = 0                                                            (5) 

 

Where 

 

δU = ∫ ∫ (σ11 ∗ δε1 + σ22 ∗ δε2 + σ44δε4 + σ55zA
∗ δε5 + σ66 ∗

δε6)  ∗ A1 ∗ A2 ∗ dz) dx1dx2                                                        (6) 

 

δU = ∫ (N1 ∗ δε1
0 + M1 ∗ δε1

1 + P1 ∗ δε1
2 + N2 ∗ δε2

0
A

+ M2 ∗

δε2
1 + P2 ∗ δε2

2 + N6 ∗ δε6
0 + M6 ∗ δε6

1 + P6 ∗ δε6
2 + K1 ∗ δ∅1 +

K2 ∗ δ∅2) dx1dx2                                                                          (7) 

 

Where: 

(Ni,Mi,Pi,Qi and Ki) are the result of the following integration: 

 

{Ni. Mi. Pi} = ∫ σi ∗ {1. z. z ∗ m
(−2∗(

z

h
)
2
}
∗ A1 ∗ A2 ∗ dz . (i =

(
h

2
)

−(
h

2
)

1.2.6)                                                                                             (8) 

 

{Qi. Kj} = ∫ σi

(
h

2
)

−(
h

2
)

{1. (1 − 4 ∗ log(m) ∗ (
z

h
)
2
) ∗ m

−2∗(
z

h
)
2

} ∗ A1 ∗  

 

A2 ∗ dz (i = 4.5). (j = 1.2)                                                           (9) 

 

δK = −∫ ∫ ∫ ρ
zA

t1

t2
(üδu + v̈δv + ẅδw) ∗ A1A2dzdAdt            (10) 

 

The virtual work done by applied forces is: 

 

δV = −∫ ∫ ∫ q ∗
zA

t1

t2
δwA1A2dzdAdt                                          (11) 

 

Now, substation Eq. (11), Eq. (10) & Eq. (6) in to Eq. (5) we ob-

tained 

 

∫ {∫ (𝑁1𝜕𝜀1
0 + 𝑀1𝜕𝜀1

1 + 𝑃1𝜕𝜀1
2 + 𝑁2𝜕𝜀2

0 + 𝑀2𝜕𝜀2
1 + 𝑃2𝜕𝜀2

2 +
𝐴

𝑡2

𝑡1

𝑁6𝜕𝜀6
2 + 𝑀6𝜕𝜀6

1 + 𝐾2𝜕𝜀4
3 + 𝑃6𝜕𝜀6

2 + 𝐾1𝜕𝜀5
3 − 𝑞𝜕𝑤 + (𝐼1�̈� +

𝐼3∅1̈ − 𝐼2
𝜕�̈�

𝜕𝑥1
)𝛿𝑢 + (𝐼1�̈� + 𝐼3∅2̈ − 𝐼2

𝜕�̈�

𝜕𝑥2
)𝛿𝑣 + (𝐼2

𝜕�̈�

𝜕𝑥1
+ 𝐼5

𝜕∅1̈

𝜕𝑥1
) +

𝐼2
𝜕�̈�

𝜕𝑥2
+ 𝐼5

𝜕∅2̈

𝜕𝑥2
) − 𝐼3(

𝜕2�̈�

𝜕𝑥1
2 +

𝜕2�̈�

𝜕𝑥2
2 ) + 𝐼1𝑤)𝛿𝑤 + (𝐼3�̈� + 𝐼4∅1̈ −

𝐼5
𝜕�̈�

𝜕𝑥1
)𝛿∅1 + (𝐼3�̈� + 𝐼4∅2̈ − 𝐼5

𝜕�̈�

𝜕𝑥2
)𝛿∅2)𝑑𝑥1𝑑𝑥2}𝑑𝑡 = 0           (12) 

 

The governing equations of motion can be derived from Eq. (12) 

by integrating the displacement gradients by parts and setting the 

coefficients of(𝜕𝑢. 𝜕𝑣. 𝜕𝑤. 𝜕∅1 𝑎𝑛𝑑𝜕∅2) to zero separately, and 

the following equation can be obtained: 

 

𝛿𝑢:
𝜕𝑁1

𝜕𝑥1
+

𝜕𝑁6

𝜕𝑥2
+ 𝑔1 = 𝐼1�̈� − 𝐼2

𝜕�̈�

𝜕𝑥1
+ 𝐼4∅1̈   

𝛿𝑣:
𝜕𝑁2

𝜕𝑥2
+

𝜕𝑁6

𝜕𝑥1
+ 𝑔2 = 𝐼1�̈� − 𝐼2

𝜕�̈�

𝜕𝑥2
+ 𝐼4∅2̈  

 

𝛿𝑤:−
𝑁1

𝑅1
−

𝑁2

𝑅2
+ 2

𝜕2𝑀6

𝜕𝑥1𝜕𝑥2
+

𝜕2𝑀1

𝜕𝑥1
2 +

𝜕2𝑀2

𝜕𝑥2
2 + 𝑞 = 𝐼2

𝜕�̈�

𝜕𝑥1
+ 𝐼2

𝜕�̈�

𝜕𝑥2
−

𝐼3 (
𝜕2𝑤̈

𝜕𝑥1
2 +

𝜕2𝑤̈

𝜕𝑥2
2) + 𝐼5 (

𝜕∅1
̈

𝜕𝑥1
+

𝜕∅2
̈

𝜕𝑥2
) + 𝐼1�̈�                                     (13) 

 

𝛿∅1:
𝜕𝑃1

𝜕𝑥1
+

𝜕𝑃6

𝜕𝑥2
− 𝐾1 + 𝑚1 = 𝐼4�̈� − 𝐼5

𝜕�̈�

𝜕𝑥1
+ 𝐼6∅1̈  

 

𝛿∅2:
𝜕𝑃2

𝜕𝑥2
+

𝜕𝑃6

𝜕𝑥1
− 𝐾2+𝑚2 = 𝐼4�̈� − 𝐼5

𝜕�̈�

𝜕𝑥2
+ 𝐼6∅2̈  

 

The result forces are given by: 

 

[

𝑁1

𝑁2

𝑁6

] = ∑ ∫ {

𝜎11

𝜎22

𝜎66

}
𝑧𝑘+1

𝑧𝑘 𝑑𝑧.𝑛
𝑘=1 [

𝑀1

𝑀2

𝑀6

] = ∑ ∫ {

𝜎11

𝜎22

𝜎66

}
𝑧𝑘+1

𝑧𝑘 𝑧𝑑𝑧𝑛
𝑘=1   

 

And 

 

[
𝐾1

𝐾2
] = ∑ ∫ {

𝜎44

𝜎55
} 𝑓(𝑧)

𝑧𝑘+1

𝑧𝑘 𝑑𝑧𝑛
𝑘=1 . [

𝑃1

𝑃2

𝑃6

] =

∑ ∫ {

𝜎11

𝜎22

𝜎66

}
𝑧𝑘+1

𝑧𝑘  𝑓(𝑧)𝑑𝑧𝑛
𝑘=1                                                              (14) 

 

The plane stress reduced stiffness is: 

 

𝑄11 =
𝐸1

1−𝜇12∗𝜇21
𝑄12 =

𝜇12𝐸1

1−𝜇12∗𝜇21
 𝑄22 =

𝐸2

1−𝜇12∗𝜇21
  

 

Q66=G12, Q44=G23 and Q55=G13                                           (15) 

 

The resulted relationship of the kth lamina concludes that the 

changeable stress-strain connection with the orthotropic lamina in 

an easy stress state will be as follows: 

 

[
 
 
 
 
𝜎11

𝜎22

𝜎66

𝜎44

𝜎55]
 
 
 
 

=

[
 
 
 
 
𝑄11

𝑄12

𝑄16

0
0

𝑄12

𝑄22

𝑄26

0
0

𝑄16

𝑄26

𝑄66

0
0

0
0
0

𝑄44

0

0
0
0
0

𝑄55]
 
 
 
 

[
 
 
 
 
𝜀1

𝜀2

𝜀6

𝜀4

𝜀5]
 
 
 
 

                                               (16) 

 

By substituting the stress–strain relations into the definitions of 

force and moment resultants of the present theory given in Eq. (7) 

the following constitutive equations are obtained: 

 

[
 
 
 
 
 
 
 
 
𝑁1

𝑁2

𝑁6

𝑀1

𝑀2

𝑀6

𝑃1

𝑃2

𝑃6 ]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
𝐴11 𝐴12 𝐴16

𝐴12 𝐴22 𝐴26

𝐴16 𝐴26 𝐴66

𝐵11 𝐵12 𝐵16

𝐵12 𝐵22 𝐵26

𝐵16 𝐵26 𝐵66

𝐵11 𝐵12 𝐵16

𝐵12 𝐵22 𝐵26

𝐵16 𝐵26 𝐵66

𝐸11 𝐸12 𝐸16

𝐸12 𝐸22 𝐸26

𝐸16 𝐸26 𝐸66

𝐸11 𝐸12 𝐸16

𝐸12 𝐸22 𝐸26

𝐸16 𝐸26 𝐸66

𝐹11 𝐹12 𝐹16

𝐹12 𝐹22 𝐹26

𝐹16 𝐹26 𝐹66

𝐸11 𝐸12 𝐸16

𝐸12 𝐸22 𝐸26

𝐸16 𝐸26 𝐸66

𝐹11 𝐹12 𝐹16

𝐹12 𝐹22 𝐹26

𝐹16 𝐹26 𝐹66

𝐻11 𝐻12 𝐻16

𝐻12 𝐻22 𝐻26

𝐻16 𝐻26 𝐻66 ]
 
 
 
 
 
 
 
 

∗

[
 
 
 
 
 
 
 
 
 
 
𝜀1

0

𝜀2
0

𝜀6
0

𝜀1
1

𝜀2
1

𝜀6
1

𝜀1
2

𝜀2
2

𝜀2
6]
 
 
 
 
 
 
 
 
 
 

             (7) 

 

[
𝐾1

𝐾2
] = [

𝐿44 𝐿45

𝐿45 𝐿55
] [

𝜀5
3

𝜀4
3]                                                               (18) 

 

Where 

 

𝐴𝑖𝑗= ∫ 𝑄𝑖𝑗
ℎ/2

−ℎ/2
𝑑𝑧 𝑖 = 1.2.4.5.6  

 

𝐵𝑖𝑗 . 𝐷𝑖𝑗 . 𝐸. 𝐹𝑖𝑗 . 𝐻𝑖𝑗= ∫ 𝑄𝑖𝑗(𝑧. 𝑧
2. 𝑧𝑚

−2(
𝑧

ℎ
)
2

. 𝑧2𝑚
−2(

𝑧

ℎ
)
2

. 𝑧2𝑚
−4(

𝑧

ℎ
)
2

)
ℎ/2

−ℎ/2
𝑑𝑧  

 

i=1, 2, 6                                                                                        (19) 
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(24) 

𝐿𝑖𝑗 = ∫ 𝑄𝑖𝑗
ℎ/2

−ℎ/2
∗ ((1 − 𝑙𝑜𝑔(𝑚) ∗ (

𝑧

ℎ
)
2
) ∗ 𝑚

−2∗(
𝑧

ℎ
)
2

)

2

𝑑𝑧  

 

𝐼1. 𝐼2. 𝐼3. 𝐼4. 𝐼5. 𝐼6 =

∫ 𝜌𝑘
ℎ

2

−
ℎ

2

(1. 𝑧. 𝑧2 . 𝑧𝑚
−2∗(

𝑧

ℎ
)
2

. 𝑧2𝑚
−2∗(

𝑧

ℎ
)
2

. 𝑧2𝑚
−4∗(

𝑧

ℎ
)
2

) 𝑑𝑧             (20) 

 

The Navier solution exists if the following stiffness's are zero for 

symmetric and anti-symmetric simply supported cross ply: Ai6 

=Bi6 =Di6 =Ei6 =Hi6=A45=L45=Fi6=0 (i=2, 6). The simply 

supported boundary conditions are assumed to be of the form: 

 

At x1=0, a: v=w=N1=M1=P1=∅2=0                                           (21) 

 

And 

 

At x1=0, b: u=w=N2=M2=P2=1∅1=0                                         (22) 

 

Now, we used the separation of variables technique in order to 

calculated transient behavior for laminated spherical shallow shell. 

This method assume solution to equations of motion in the form: 

 

𝑢(𝑥1. 𝑥2) = ∑ ∑ 𝐴𝑚𝑛

∞

𝑛=1

𝑐𝑜𝑠(𝛼𝑥1) 𝑠𝑖𝑛 (𝛽𝑥2)𝑇𝑚𝑛(𝑡)

∞

𝑚=1

 

 

𝑣(𝑥1. 𝑥2) = ∑ ∑ 𝐵𝑚𝑛

∞

𝑛=1

𝑠𝑖𝑛(𝛼𝑥1) 𝑐𝑜𝑠 (𝛽𝑥2)

∞

𝑚=1

𝑇𝑚𝑛(𝑡) 

 

𝑤(𝑥1. 𝑥2) = ∑ ∑ 𝐶𝑚𝑛
∞
𝑛=1 𝑠𝑖𝑛(𝛼𝑥1) 𝑠𝑖𝑛(𝛽𝑥2) 𝑇𝑚𝑛(𝑡)∞

𝑚=1           (23) 

 

∅1(𝑥1. 𝑥2) = ∑ ∑ 𝐷𝑚𝑛

∞

𝑛=1

𝑐𝑜𝑠(𝛼𝑥1) 𝑠𝑖𝑛 (𝛽𝑥2)𝑇𝑚𝑛(𝑡)

∞

𝑚=1

 

 

∅2(𝑥1. 𝑥2) = ∑ ∑ 𝐸𝑚𝑛

∞

𝑛=1

𝑠𝑖𝑛(𝛼𝑥1) 𝑐𝑜𝑠 (𝛽𝑥2)𝑇𝑚𝑛(𝑡)

∞

𝑚=1

 

 

Where 𝛼 = 𝑛 ∗
𝜋

𝑎
 𝛽 = 𝑚 ∗

𝜋

𝑏
 Amn, Bmn, Cmn, Dmn, Emn are arbitrary 

constants. The orthogonality condition of principle modes can be 

established with the result as shown below:  

 

(𝜔𝑚𝑛
2 − 𝜔𝑟𝑠

2 ) ∫ ∫ {(𝐼1𝐴𝑚𝑛 − 𝛼𝐼2𝐶𝑚𝑛 + 𝐼4𝐷𝑚𝑛)𝐴𝑟𝑠 +
𝑎

0

𝑏

0
(𝐼1𝐵𝑚𝑛 − 𝛽𝐼2𝐶𝑚𝑛 + 𝐼4𝐸𝑚𝑛)𝐵𝑟𝑠 + ((𝛼𝐼2𝐴𝑚𝑛 + 𝛽𝐼2𝐵𝑚𝑛 −
𝐼3(𝛼

2𝐶𝑚𝑛 + 𝛽2𝐶𝑚𝑛) + 𝐼5(𝛼𝐷𝑚𝑛 + 𝛽𝐸𝑚𝑛) + 𝐼1𝐶𝑚𝑛))𝐶𝑟𝑠 +
(𝐼4𝐴𝑚𝑛 − 𝛼𝐼5𝐶𝑚𝑛 + 𝐼6𝐷𝑚𝑛)𝐷𝑟𝑠 + (𝐼1𝐵𝑚𝑛 − 𝛽𝐼5𝐶𝑚𝑛 +
𝐼6𝐸𝑚𝑛)𝐸𝑟𝑠} 𝑑𝑥1𝑑𝑥2 = 0  
 

The general distributed loads are expanded in a series of principal 

modes as shown 

 

𝑔1 = ∑ 𝑓𝑚𝑛
∞
𝑚.𝑛=1 (𝑡)(𝐼1𝐴𝑚𝑛 − 𝛼𝐼2𝐶𝑚𝑛 + 𝐼4𝐷𝑚𝑛)   

 

𝑔2 = ∑ 𝑓𝑚𝑛
∞
𝑚.𝑛=1 (𝑡)(𝐼1𝐵𝑚𝑛 − 𝛽𝐼2𝐶𝑚𝑛 + 𝐼4𝐸𝑚𝑛)  

 

𝑞 = ∑ 𝑓𝑚𝑛
∞
𝑚.𝑛=1 (𝑡)((𝛼𝐼2𝐴𝑚𝑛 + 𝛽𝐼2𝐵𝑚𝑛 − 𝐼3(𝛼

2𝐶𝑚𝑛 +

𝛽2𝐶𝑚𝑛) + 𝐼5(𝛼𝐷𝑚𝑛 + 𝛽𝐸𝑚𝑛) + 𝐼1𝐶𝑚𝑛))   

 

𝑚1 = ∑ 𝑓𝑚𝑛
∞
𝑚.𝑛=1 (𝑡)(𝐼4𝐴𝑚𝑛 − 𝛼𝐼5𝐶𝑚𝑛 + 𝐼6𝐷𝑚𝑛)   

 

𝑚2 = ∑ 𝑓𝑚𝑛
∞
𝑚.𝑛=1 (𝑡)(𝐼1𝐵𝑚𝑛 − 𝛽𝐼5𝐶𝑚𝑛 + 𝐼6𝐸𝑚𝑛)   

 

The generalized forces 𝑓𝑚𝑛(𝑡) are determined by making use of 

orthogonality condition. Multiplying Eq. (25a) by Amn, (25b) by 

Bmn, Eq. (25c) by Cmn, Eq.25d) by Dmn, Eq. (25e) by Emn and add-

ing the results, integrating over the plane area, and taking into 

account Eq. (24) leads to the result: 

𝑓𝑚𝑛(𝑡) = ∫ ∫
(𝑔1𝐴𝑚𝑛+𝑔2𝐵𝑚𝑛+𝑞𝐶𝑚𝑛+𝑚1𝐷𝑚𝑛+𝑚2𝐸𝑚𝑛)𝑑𝑥1𝑑𝑥2

𝑁𝑚𝑛

𝑎

0

𝑏

0
   

 

Where substituting Eq. (16) into equations of motion, taking into 

account Eq. (25), gives: 

 

�̈�𝑚𝑛 + 𝜔𝑚𝑛
2 𝑇𝑚𝑛 = 𝑓𝑚𝑛                                                                (27) 

 

For any (m, n). The solution to above Eq. (20) is given by:  

 

𝑇𝑚𝑛 = 1/𝜔𝑚𝑛 ∫ 𝑓𝑚𝑛(𝜏)𝑠𝑖𝑛𝜔𝑚𝑛(𝑡 − 𝜏)𝑑𝜏
𝑡

0
                                (28) 

 

a) For the load of the sinusoidal spatial distribution, q(𝑥1. 𝑥2. 𝑡) 

=q0sinα 𝑥1sinβ𝑥2F (t), (m=n=1), the actual solution of the 

unknown functions may be stated as: 

 

(

 
 

𝑢
𝑣
𝑤
∅1

∅2)

 
 

=

∑ (
𝑞0

𝑁𝑚𝑛(𝑘)𝜔𝑚𝑛(𝑘)
)5

𝑘=1

(

  
 

𝐴𝑚𝑛(𝑘) 𝑐𝑜𝑠(𝛼𝑥1) 𝑠𝑖𝑛(𝛽𝑥2)

𝐵𝑚𝑛 𝑠 𝑖𝑛(𝛼𝑥1) 𝑐𝑜𝑠(𝛽𝑥2)

𝑠𝑖𝑛(𝛼𝑥1) 𝑠𝑖𝑛(𝛽𝑥2)

𝐷𝑚𝑛 𝑐𝑜𝑠(𝛼𝑥1) 𝑠𝑖𝑛(𝛽𝑥2)

𝐸𝑚𝑛 𝑠 𝑖𝑛(𝛼𝑥1) 𝑐𝑜𝑠(𝛽𝑥2) )

  
 

∫ 𝐹(𝜏)
𝑡

0
𝑠𝑖𝑛𝜔𝑚𝑛  

 

∗ (𝑘)(𝑡 − 𝜏)𝑑𝜏                                                                            (29) 

 

b) For line distribution of load, q(x1. x2. t) =q0∗ δ(x1 − x1
∗) ∗ F 

(t), (m=n=1), a line load along x2 coordinate at x1 = x1
∗  the 

formal solution to the unknown functions may be expressed 

as: 

 

(

 
 

𝑢
𝑣
𝑤
∅1

∅2)

 
 

=

∑ (
16∗𝑞0

𝑚𝑛𝜋2)
∞
𝑚=𝑛=1 ∑

(

 
 
 
 
 

(𝐴𝑚𝑛(𝑘)/𝑁𝑚𝑛(𝑘)𝜔𝑚𝑛(𝑘)) 𝑐𝑜𝑠(𝛼𝑥1) 𝑠𝑖𝑛 (𝛽𝑥2)

(
𝐵𝑚𝑛

𝑁𝑚𝑛(𝑘)𝜔𝑚𝑛(𝑘)𝑠 𝑖𝑛(𝛼𝑥1) 𝑐𝑜𝑠(𝛽𝑥2)
)

(
1

𝑁𝑚𝑛(𝑘)𝜔𝑚𝑛(𝑘)
) 𝑠𝑖𝑛(𝛼𝑥1) 𝑠𝑖𝑛(𝛽𝑥2)

(𝐷𝑚𝑛/𝑁𝑚𝑛(𝑘)𝜔𝑚𝑛(𝑘)) 𝑐𝑜𝑠(𝛼𝑥1) 𝑠𝑖𝑛(𝛽𝑥2))

(𝐸𝑚𝑛/𝑁𝑚𝑛(𝑘)𝜔𝑚𝑛(𝑘)) 𝑠 𝑖𝑛(𝛼𝑥1) 𝑐𝑜𝑠 (𝛽𝑥2) )

 
 
 
 
 

5
𝑘=1 ∗

∫ 𝐹(𝜏)
𝑡

0
𝑠𝑖𝑛𝜔𝑚𝑛(𝑘)(𝑡 − 𝜏)                                                          (30) 

 

Note that the solution in Eq. (29 and 30) is normalized with re-

spect to Cmn (k), the coefficients in expansion of w.  

Where: 

 

𝑁𝑚𝑛 = ∫ ∫ [(𝐼1𝐴𝑚𝑛
2 − 𝛼𝐼2𝐶𝑚𝑛𝐴𝑚𝑛 + 𝐼4𝐷𝑚𝑛𝐴𝑚𝑛 ) + ((𝐼1𝐵𝑚𝑛

2 −
𝑎

0

𝑏

0

𝛽𝐼2𝐶𝑚𝑛𝐵𝑚𝑛 + 𝐼4𝐸𝑚𝑛𝐵𝑚𝑛) + (−𝛼𝐼2𝐶𝑚𝑛𝐴𝑚𝑛 − 𝛽𝐼2𝐶𝑚𝑛𝐵𝑚𝑛 +
(𝐼3𝛼

2 + 𝐼3𝛽
2)𝐶𝑚𝑛

2 − 𝛼𝐼5𝐷𝑚𝑛𝐶𝑚𝑛 − 𝛽𝐼5𝐸𝑚𝑛𝐶𝑚𝑛 + 𝐼1𝐶𝑚𝑛
2 ) +

(𝐼6𝐷𝑚𝑛
2 − 𝛼𝐼5𝐶𝑚𝑛𝐷𝑚𝑛 + 𝐼4𝐷𝑚𝑛𝐴𝑚𝑛) + (𝐼6𝐸𝑚𝑛

2 − 𝛽𝐼5𝐶𝑚𝑛𝐸𝑚𝑛 +
𝐼4𝐸𝑚𝑛𝐵𝑚𝑛)]𝑑𝑥1𝑑𝑥2                                                                     (31) 

3. Validation 

To verify our derived solution for transient response of laminated 

simply supported shells and our programming, obtained results are 

compared with other researches and Ansys. Figure 2 shows a 

comparison between the central deflection obtained from present 

work by using MATLAP (R2017b) programming and that ob-

tained by Reddy [Ref.1] for antisymmetric cross ply (0/90) spheri-

cal shells under sinusoidal distributed sine loading and sinusoidal 

distributed triangular loading only. A comparison shows very 
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close results. Transient deflection obtained from present work for 

anti-symmetric cross ply (0/90) thick and thin spherical shells 

under sinusoidal and uniform distributed step loading, respectively 

with Ansys software, are shown in Figure 3. The differences 

among the results obtained of the present theory and Ansys (FEM) 

are within 2%. For numerical study, ANSYS programming is used 

as stepped below:  

1) Choosing the element type (8Node shell 281). 2- Entering 

the material properties. 3- Interring the layers angles and 

their thicknesses. 4- Creating the model. 5- Meshing the ar-

ea with different sizes for convergent result. 6- Define the 

boundary conditions. 8- Solving the model. 9- Reading and 

plotting the results. 10- Finishing the solution. 

Geometrical dimensions and the material properties of the spheri-

cal shells used for comparison are, (a=b=20, Rx=Ry=5a, h=2) and 

E1 =19.2Mpsi, G12 = G13 = 0.82Mpsi, G23 = 0.523Mpsi, µ12 = µ13 

=0.24, µ23 = 0.0192, E2= 1.56Mpsi, 𝜌 = 0.00012
𝐼𝑏 𝑠2

𝑖𝑛4
 [Ref.1].and 

load amplitude q0=2000psi, time duration for all load-time func-

tions td=0.005sec. 

4. Results and discussion 

The central deflection, dimensionless normal stresses and trans-

verse shear stresses for anti-symmetric cross ply simply sported 

under sinusoidal as well as uniformly distributed loading(UDL) 

and different parameters (i.e. a/h, R/a and number of layers) under 

three types of pulses (sine, triangular and step) are studied. The 

material properties considered in the present investigation are as 

following [Ref. 14]: 

Composite: (a). E1 = 44.8Gpa E2=12.1Gpa, G12 = G13 =4.47Gpa, 

G23 =4.35Gpa, µ12 = µ13 = µ23 = 0.26 and 𝜌 = 2060 𝑘𝑔/𝑚3), this 

material is assumed (M1) and Hybrid: (b). E1 =102.1Gpa, E2= 

13.1Gpa, G12 = G13 = 4.44Gpa, G23 = 4.34Gpa, µ12 = µ13 =0.3, µ23 

= 0.3, = 1712𝑘𝑔/𝑚3 ), is assumed (M2). The volume fractions 

for composite materials that is consist from (Glass/epoxy) is (0.6 

and 0.4) and for hybrid materials that is consist from 

(Glass/Carbon/epoxy) with (0.3, 0.3 and 0.4), respectively with 

load q0=13.7Mpa, and the geometry of spherical shell is (a/b=1, 

a/h=10, R/a=5). The transient deflection presented in the figures is 

evaluated at (x, y, z) = (a/2, b/2, z). The stresses are dimensionless 

as follows: 

 

𝜎1 =
𝜎11(

𝑎

2
.
𝑏

2
.
ℎ

2
)

𝑞0
, 𝜎2 =

𝜎22(
𝑎

2
.
𝑏

2
.
ℎ

2
)

𝑞0
, 𝜎4 =

𝜎44(
𝑎

2
.0.0)

𝑞0
  

 

With types of loads, sine, triangular and step loading in time do-

main are used. 

 

1 −  𝐹(𝑡) = {
𝑠𝑖𝑛 (

𝜋𝑡

𝑡𝑑
)  0 ≤ 𝑡 ≤  𝑡𝑑 

0 𝑡 > 𝑡𝑑 
}   

 

2 − 𝐹(𝑡) = {
1 − 𝑡/𝑡𝑑 0 ≤ 𝑡 ≤  𝑡𝑑 

0 𝑡 > 𝑡𝑑 
}   

 

3 − 𝐹(𝑡) = {
1 0 ≤ 𝑡 ≤  𝑡𝑑 

0 𝑡 > 𝑡𝑑 
}  

 

Figures 4 through 9 show the effect thickness ratio (thick and thin 

shells) on the center deflection and dimensionless normal stresses 

and transverse shear stresses in antisymmetric cross ply (0/90) 

subjected to sinusoidal and uniform distributed loading for three 

pulses in time domain between M1 and M2. The influence of larg-

er thickness ratio (a/h) is to increase amplitude and reduce period, 

since stiffness and mass is reduced. From the results, it’s observed 

that the UDL shape leads to the largest magnitude of the response 

peaks for both materials (M1&M2). The effect of stretching-

bending stiffness coupling is decreased with increasing (a/h) ratio 

and this effect vanishes more rapidly for thin shells (a/h=100) than 

moderately thick (a/h=20) ones. The maximum value of dimen-

sionless stresses (2&4) are in M2 more than M1 about 

(30%&22.2%) respectively, because of orthotropy ratio (E1/E2) 

and passion's ratio for M2 is larger than that for M1, while (G12 

&G23) for M2 are smaller than those for M1. Maximum deflection 

and normal stresses for shell with (a/h=100), made from materials 

(M1&M2) are given in Table 1: 

 
Table 1: Maximum Central Displacement and Stress Components for Two 

Layered (0/90) Spherical Shell under Center Point Load and Line Distrib-

uted Step Loading Respectively (R/A=10, A/H=100 and T=0.027sec) 
Between M1&M2 

UDL SSL 
Maximum Amplitude 

M M1 M2 M1 

3.167 3.562 1.967 2.197 W(mm) 

772.88 913.89 479.8 563.73 11/q0 

2805.89 2056.3 1730 1268.4 22/q0 

15.394 12.45 9.501 7.681 44/q0 

 

Effect of curvature ratio on the center deflection and dimension-

less normal stresses and transverse shear stresses in anti-

symmetric cross ply (0/90) subjected to sinusoidal and uniformed 

the pressure loading for three pulses (sine and triangular) in time 

domain between M1 and M2, are described in Figures 10 to 13. 

Because the curvature ratio is a measure of the shallowness of 

panel shell from deep to shallow, it has been seen from the figures 

that the transient deflection, dimensionless normal stresses and 

shear stresses value are increasing as the curvature ratio increases 

for each of the pulses because the effect of the stretching- bending 

energy increases, which causes decreasing stiffness of the shell. 

Table 2 & Table 3 show the maximum deflection and normal 

stresses and shear stresses accrued at (t=0.0266sec) under sinusoi-

dal and uniformly distributed sine loading respectively in materi-

als (M1&M2) are given below: 

 
Table 2: Maximum Central Displacement and Stress Components for Two 
Layered (0/90) Spherical Shell under Line Distributed Sine Loading 

(A/H=10 and T=0.0266sec) Between M1&M2 

R/a 
M1 M2 

W(mm) 11/q0  22/q0 W(mm) 11/q0 22/q0 

5 0.01144 41.645 15.304 0.0108 18.145 54.416 

10 0.01382 20.236 37.547 0.0115 18.958 56.144 

20 0.01403 20.165 37.093 0.01173 19.032 55.981 
50 0.01408 20.017 36.622 0.01178 18.971 55.591 

100 0.01409 19.952 36.435 0.01179 18.941 55..419 

 
Table 3: Maximum Central Displacement and Stress Components for Two 

Layered (0/90) Spherical Shell under Center Point Sine Loading (A/H=10 
and T=0.01sec) between M1&M2 

R/a 
M1 M2 

W(mm)  11/q0  22/q0 W(mm)  22/q0 22/q0  

5 0.02129 32.232 60.769 0.01764 29.291 88.343 
10 0.02241 32.806 60.869 0.0188 30.613 91.176 

20 0.02282 32.691 60.133 0.01916 30.726 90.891 

50 0.02293 32.452 59.368 0.01924 30.636 90.258 
100 0.02294 32.344 59.061 0.01926 30.581 89.971 

 

Central displacement, in plane direct stress components and shear 

stress for cross laminated shell under (sinusoidal and uniform 

distributed) loading function sine, triangular and step pulses are 

shown in Figures.14-19, investigating the effect of changing num-

ber of cross layers (0/90) for two material (M1) and (M2), from 

which it is obvious that for same material ,increasing no. of layers 

decreases transverse displacement, in-plane direct stress second 

component and shear stress, but increasing in-plane direct stress 

first component, increasing and decreasing ratios are smaller when 

no. of layers are three and more this behavior is related to the 

stiffness for anti-symmetric laminated shells more than symmetric 

shells, also all these parameters have smaller value for (M2) than 

(M1) when no. of layers exceed three, because improved mechan-

ical properties for M2 (i.e. larger orthotropic ratio E1/E2). 

Figure 20, shows the relative comparison of the minimum transi-

ent response between composite (M1) and Hybrid (M2) for (a/h=5, 

R/a=5 and anti-symmetric cross ply (0/90)) under uniformly dis-

tributed sine pulse. This comparison gives a good measure of the 

improved mechanical properties such as the modular ratio and 



International Journal of Engineering & Technology 5477 

 
strength properties for hybrid material (M2). More accurate shear 

stress distribution is providing by this new function as shown in 

Figure 21, the distribution of maximum dimensionless transverse 

shear stress for anti-symmetric cross ply (0/90) under sinusoidal 

distrusted sine pulse and uniformly distributed sine pulse loading 

for both materials (M1and M2) (a/h=10, R/a=5) through thickness 

of shallow shell. 

5. Conclusions 

Based on the validation and parametric study the following con-

clusions have been drawn and discussed below:  

a) The validation study of the (NHOSD) under sine and trian-

gular pulses has excellent agreement with solution used in 

[Ref.1], for time dependent deflection response of the anti-

symmetric simply supported cross ply composite curved 

shallow shell structure also transient deflection which it is 

obtained by present work for sinusoidal and uniform pres-

sure step loading has been compared with Ansys software 

and the percentage error is (2%).  

b) Transient response of thick and thin cross ply shells under 

different dynamic load is developed using J.L. Mantari et al 

[Ref. 11] function and give close results obtained by other 

theories. 

c) The effect bending stretching and twisted curvature cou-

pling are very large on the transient deflection and dimen-

sionless stresses when increasing the thickness ratio and 

curvature ratio [Ref.1]. Its effect is found in M1 more than 

M2. 

d) The results show the hybrid material (M2) better than com-

posite (M1) because the mechanical properties are improved 

that the effect increased the stiffness of the shallow shell. 
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Fig. 2: Validation of the Center Deflection as A Function of Time, for 

Antisymmetric Cross Ply (0/90) Shells Under Sinusoidal Distributed Load 
And Two Types of Pulses (A) Sine (B)Triangular. 
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Fig. 3: Validation of the Center Deflection as A Function of Time, for 

Antisymmetric Cross Ply (0/90) Shells Under (A) Sinusoidal Distributed 

Step Pulse Loading (B) Uniformly Distributed Step Pulse Loading. 
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Fig. 4: Effect Thickness Ratio on the Center Deflection, Dimensionless 

Normal Stresses and Transverse Shear Stresses as A Function of Time For 
Two Layered (0/90) Shells Subjected to Sinusoidal Distributed Sine Pulse 

Load between (A)-Composite (M1) (B)-Hybrid (M2). 
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Fig. 5: Effect Thickness Ratio on the Center Deflection, Dimensionless 
Normal Stresses and Transverse Shear Stresses as A Function of Time 

for Two Layered (0/90) Shells Subjected to Sinusoidal Distributed 

Triangular Pulse Load between (A)-Composite (M1) (B)-Hybrid(M2). 
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Fig. 6: Effect Thickness Ratio on the Center Deflection, Di-

mensionless Normal Stresses and Transfer Shear Stresses as A 

Function of Time for Two Layered (0/90) Shells Subjected to 
Line Distributed Step Load Between (A)-Composite. (M1) (B)-

Hybrid. (M2) 
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Fig. 7: Effect Thickness Ratio on the Center Deflection, 

Dimensionless Normal Stresses and Transverse Shear 

Stresses as A Function of Time for Two Layered (0/90) 
Shells Subjected to Uniformly Distributed Sine Pulse Load 

between (A)-Composite (M1) (B)-Hybrid (M2). 
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Fig.8: Effect Thickness Ratio on the Center Deflection, Dimensionless 

Normal Stresses and Transverse Shear Stresses as A Function of Time For 

Two Layered (0/90) Shells Subjected to Uniformly Distributed Triangular 
Pulse Load between (A)-Composite (M1) (B)-Hybrid (M2). 
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Fig. 9: Effect Thickness Ratio on the Center Deflection, Dimensionless 
Normal Stresses And Transverse Shear Stresses as A Function of Time For 

Two Layered (0/90) Shells Subjected to Uniformly Distributed Step Pulse 

Load between (A)-Composite (M1) (B)-Hybrid (M2). 
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Fig. 10: Effect Curvature Ratio on the Center Deflection, Dimensionless 
Normal Stresses and Transverse Shear Stresses as A Function of Time For 

Two Layered (0/90) Shells Subjected to Sinusoidal Distributed Triangular 

Pulse Load between (A)-Composite (M1) (B)-Hybrid (M2). 
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Fig. 11: Effect Curvature Ratio on the Center Deflection, Dimensionless 

Normal Stresses and Transverse Shear Stresses as A Function of Time For 

Two Layered (0/90) Shells Subjected to Sinusoidal Distributed Step Pulse 
Load between (A)-Composite (M1) (B)-Hybrid (M2). 
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Fig. 12: Effect Curvature Ratio on the Center Deflection, Dimensionless 

Normal Stresses and Transverse Shear Stresses as A Function of Time For 

Two Layered (0/90) Shells Subjected to Uniformly Distributed Triangular 
Pulse Load between (A)-Composite (M1) (B)-Hybrid (M2). 
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Fig. 13: Effect Curvature Ratio on the Center Deflection, Dimensionless 

Normal Stresses and Transverse Shear Stresses as A Function of Time For 
Two Layered (0/90) Shells Subjected to Uniformly Distributed Step Pulse 

Load between (A)-Composite (M1) (B)-Hybrid (M2). 
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Fig. 14: Effect Number of Layered on the Center Deflection, Dimension-
less Normal Stresses and Transverse Shear Stresses as A Function of Time 

for Two Layered (0/90) Shells Subjected to Sinusoidal Distributed Sine 

Pulse Load between (A)-Composite (B)-Hybrid. 
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Fig. 15: Effect Number of Layered on the Center Deflection, Dimension-

less Normal Stresses and Transverse Shear Stresses as A Function of Time 

for Two Layered (0/90) Shells Subjected to Sinusoidal Distributed Trian-

gular Pulse Load Between (A)-Composite(M1) (B)-Hybrid(M2). 
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Fig. 16: Effect Number Of Layered On The Center Deflection, Dimen-
sionless Normal Stresses And Transverse Shear Stresses As A Function Of 

Time For Two Layered (0/90) Shells Subjected To Sinusoidal Distributed 

Step Pulse Load Between (A)-Composite (B)-Hybrid. 
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Fig. 17: Effect Number of Layered on the Center Deflection, Dimension-

less Normal Stresses and Transverse Shear Stresses as A Function of Time 
for Two Layered (0/90) Shells Subjected to Uniformly Distributed Sine 

Pulse Load between (A)-Composite (B)-Hybrid. 
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Fig. 18: Effect Number of Layered on the Center Deflection, Dimension-
less Normal Stresses and Transverse Shear Stresses as A Function of Time 

for Two Layered (0/90) Shells Subjected to Uniformly Distributed Trian-

gular Pulse Load Between (A)-Composite(M1) (B)-Hybrid(M2). 
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Fig. 19: Effect Number of Layered on Center Deflection and the Dimen-
sionless Normal Stresses and Transverse Shear Stresses as A Function of 

Time for Two Layered (0/90) Shells Subjected to Uniformly Distributed 

Step Pulse Load between (A)-Composite (M1) (B)-Hybrid (M2). 
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Fig. 20: The Relative Comparison of the Minimum Transient Response 
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between Composite (M1) and Hybrid (M2) for (A/H=5, R/A=5) And Anti-

symmetric Cross Ply (0/90)) Under Uniformly Distributed Sinepulse Load-
ing. 
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Fig. 21: The Distributed Maximum Dimensionless Transverse Shear 

Stresses for Antisymmetric Cross Ply (0/90) Under Sinusoidal Distrusted 
and Uniformly Distributed Sine Pulse Loading for Both Materials (M1and 

M2) (A/H=10, R/A=5) Through Thickness of Shell. 
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