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Abstract 
 

Compound probability models have played important roles in modeling real life events; their ability to withstand skewed datasets has 

been attributed to the extra shape parameters they possess. This paper focused on exploring a two-parameter compound distribution; 

Logistic-X Exponential distribution. The basic mathematical properties of the model were obtained and established. The maximum like-

lihood method of estimation was adopted in estimating the model parameters. The application and potentials of the Logistic-X Exponen-

tial distribution were illustrated with the aid of two real data sets; its performance was also compared with the Logistic distribution and 

Exponential distribution. A simulation study was performed and the behavior of the model parameters was investigated. 
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1. Introduction 

A number of authors have in recent time introduced several com-

pound distributions by inducing well-known standard theoretical 

distributions with additional shape parameter(s). According to [1], 

these extra parameter(s) help(s) to explore the tail properties and 

to also improve the goodness of fit of the generator family. Vari-

ous families of generalized distributions have been introduced in 

the literature, they involve one or more extra shape parameters and 

most of them were developed from the logit of random variables. 

Example of these families include the Beta-G family of distribu-

tions [2], Kumaraswamy-G family of distribution [3] and many 

more as listed in [1], [4 - 6] and their references. This develop-

ment has been demonstrated in the literature to be very helpful in 

deriving probability models with high modeling capability. 

However, this paper attempts to explore the work of [1] who de-

veloped the logistic-X family of distributions. The reason for se-

lecting this particular family in this research is because of its sim-

plicity as it contains only one extra shape parameter. In addition, 

the logistic distribution itself has been found to be very useful 

both in theory and practice of statistics. Its shape is similar to that 

of Normal distribution but it has higher kurtosis. Its application 

can be found in logistic regression which is used to model categor-
ical dependent variables. For a random variable X , the densities 

of the logistic distribution are: 
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respectively, where ( )F x  and ( )f x  are the cdf (cumulative dis-

tribution function) and pdf (probability density function) respec-

tively. 

The logistic distribution was used to develop the Logistic family 

of distributions in [1] and it has been used to derive the Logistic 

Frechet distribution, Logistic Uniform distribution, Logistic lo-

gistic distribution, Logistic Burr XII distribution, Logistic Weibull 

distribution and Logistic Pareto distribution. For the sake of illus-

tration, the Logistic Frechet distribution was fitted to two real data 

sets, it was discovered that it performs better than the other com-

peting distributions. 

Similarly, the Logistic-X Exponential distribution is defined in 

this paper, its statistical properties are explored, simulation studies 

and real life applications are also provided in sections 2, 3, 4 and 5 

respectively. 

2. The logistic-X exponential (LoE) distribu-

tion 

Let ( )g x , ( )G x and ( )G x
−

be the pdf, cdf and survival function 

of the baseline distribution, the densities (cdf and pdf) of the Lo-

gistic-X family of distributions are: 
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Respectively, where  is an additional shape parameter. 

In this context, ( )g x , ( )G x and ( )G x
−

are the pdf, cdf and sur-

vival function of the exponential distribution (the baseline distri-

bution in this research) with parameter  . Mathematically, 

 

( ) xg x e  −=                                                                                  (5) 

 

( ) 1 xG x e −= −                                                                                (6) 

 

( )
_

xG x e −=                                                                                    (7) 

 

To obtain the cdf of the LoE distribution, the expression in Equa-

tion (7) is substituted into that of Equation (3) as: 
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Its pdf is obtained by simply substituting the expressions in Equa-

tions (5) and (7) into that of Equation (4) as: 
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Where   and   are the scale and shape parameters respectively. 

It can be observed from Equation (9) that ( )lim 1
x

F x
→

= . 

Various plots representing the pdf of the LoE distribution are pre-

sented in Figure 1. 

 

 
Fig. 1: PDF Plot for the LoE Distribution. 

 

Figure 1 shows decreasing curves and unimodal curves. Hence, 

the shape of the LoE distribution could be inverted bathtub or 

decreasing depending on the parameter values. 

Various plots representing the cdf of the LoE distribution are pre-

sented in Figure 2. 

 

 
Fig. 2: CDF Plot for the LoE Distribution. 

 

3. Mathematical properties of the LoE distri-

bution 

Explored in this section are some of the basic structural and math-

ematical properties of the LoE distribution. 

Survival Function:  

The mathematical representation of the survival/reliability func-

tion is given by: 
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= −  

 

Thus, the reliability function of the LoE distribution is: 
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However, the expression in Equation (10) can also be: 
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Plots for the survival function are presented in Figure 3. 

 

 
Fig. 3: Survival Functions of the LoE Distribution. 

 

Hazard Function 

The mathematical representation of hazard rate function is given 

by the division of the pdf by the survival/reliability function. So, 

the hazard rate function of the LoE distribution is obtained as: 
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Various plots representing the hazard function of the LoE distribu-

tion are displayed in Figure 4. 

 

 
Fig. 4: Hazard Function of the LoE Distribution. 

 

Figure 4 shows that the shapes of the hazard rate function of LoE 

distribution could be decreasing or unimodal (inverted bathtub). 

This suggests that the model can be helpful in describing real life 

phenomena that have decreasing and inverted bathtub failure rates. 
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Reversed Hazard Function (RHF) 

The mathematical representation of the RHF is given by the ratio 

of the pdf to the cdf. Therefore, the expression for the RHF of the 

LoE distribution is: 
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Odds Function (OF) 

Odds function is given by the ratio of the cdf to the survival func-

tion. Thus, the odds function of the LoE distribution is obtained 

as: 
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The Quantile Function (QF) and Median 

QF is usually obtained as the inverse of the cumulative distribu-

tion function. Mathematically, it is given as: 

 

( ) ( )1Q u F u−=  

 

For the LoE distribution, the quantile function is derived as: 
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Where ( )0,1u Uniform  

As a consequence, random samples can be generated for the LoE 

distribution using: 
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Also, the median can be obtained using the appropriate substitu-

tion of 0.5u =  in Equation (15) as: 

 

1
Median


=                                                                                 (16) 

 

Other quantiles can simply be obtained as well by substituting the 

appropriate value of u  in Equation (15). 

Order Statistics 

Given the ( )F x and ( )f x  as in Equations (8) and (9), the pdf of 

the thp  order statistics for a random sample of size n  is obtained 

as follows: 
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( )1
X ; the pdf of the minimum order statistics is: 
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While 
( )n

X ; the pdf of the maximum order statistics is: 
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Estimation 

Let 
1 2
, x ,...., x

n
x denote random samples from the LoE distribution 

having parameters  and  as presented in Equation (9). By the 

method of MLE, the likelihood function is: 
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If ' 'l  represent the log-likelihood function, then: 
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The log-likelihood function is further differentiated partially with 

respect to the two parameters then the results are equated to zero 

as follows: 
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When Equations (22) and (23) are solved simultaneously, the re-

sults are maximum likelihood estimates of the parameters. How-

ever, this can be obtained with the aid of software like R, MAPLE, 

e.t.c when data sets are available since the solution could not be 

obtained in closed form. 

4. Simulation 

The performance of the parameters of the LoE distribution is in-

vestigated by means of simulation studies using R software. Data 

sets were generated from the LoE distribution with a replication 

number of 1,000m =  from which random samples of sizes 

20,50,100,200n =  and 500  were selected. For the purpose of this 

simulation study, three different cases with various true parameter 

values were considered. The true parameter values considered for 

the three cases are 0.9, 1.5 = = , 1.0, 2.5 = =  and 

1.01, 0.5 = = respectively. The mean estimates of the true pa-

rameter values were obtained with the bias and mean square error 

(MSE). Tables 1 to 3 present the results. 

 
Table 1: Result of the Simulation Study when 0.9, 1.5 = =  

n Parameters Means Bias MSE 

20 
0.9 =  

1.5 =  

1.1627 

1.6207 

0.2627 

0.1207 

0.1597 

0.1287 

50 
0.9 =  

1.5 =  

1.1375 

1.5466 

0.2375 

0.0466 

0.0905 

0.0408 

100 
0.9 =  

1.5 =  

1.1217 

1.5236 

0.2217 

0.0236 

0.0654 

0.0178 

200 
0.9 =  

1.5 =  

1.1164 

1.5105 

0.2164 

0.0105 

0.0551 

0.0085 

500 
0.9 =  

1.5 =  
1.1127 
1.5022 

0.2127 
0.0022 

0.0483 
0.0031 

 
Table 2: Simulation Study at 1.0, 2.5 = =  

n Parameters Means Bias MSE 

20 
1.0 =  

2.5 =  

1.0196 

2.7006 

0.0196 

0.2006 

0.0251 

0.3560 

50 
1.0 =  

2.5 =  

1.0110 

2.5776 

0.0110 

0.0776 

0.0098 

0.1128 

100 
1.0 =  

2.5 =  

1.0041 

2.5393 

0.0041 

0.0393 

0.0047 

0.0494 

200 
1.0 =  

2.5 =  

1.0021 

2.5175 

0.0021 

0.0175 

0.0024 

0.0236 
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500 
1.0 =  

2.5 =  
1.0006 

2.5037 

0.0006 

0.0037 

0.0009 

0.0087 

 
Table 3: Simulation Study at 1.01, 0.5 = =  

n Parameters Means Bias MSE 

20 
1.01 =  

0.5 =  

1.3421 

0.5401 

0.3321 

0.0401 

1.4324 

0.0143 

50 
1.01 =  

0.5 =  
1.1357 
0.5155 

0.1257 
0.0155 

0.3279 
0.0045 

100 
1.01 =  

0.5 =  
1.0538 
0.5078 

0.0438 
0.0078 

0.1259 
0.0020 

200 
1.01 =  

0.5 =  
1.0234 
0.5035 

0.0134 
0.0035 

0.0627 
0.0009 

500 
1.01 =  

0.5 =  
1.0014 
0.5007 

-0.0086 
0.0007 

0.0221 
0.0003 

 

Remark: It can be seen from Tables 1, 2 and 3 that as the sample 

size increases, the biasedness and the mean square error reduces 

for all the cases considered. It can also be affirmed that as the 

sample size increases, the means of the estimates approaches (or 

tend towards) the true parameter values. 

5. Applications 

Two real data sets are used for illustration purposes in this section; 

comparison was made between the LoE distribution, Logistic 

distribution and the Exponential distribution. The distribution with 

the best fit was selected based on the log-likelihood and the 

Akaike Information Criteria (AIC) values obtained by these distri-

butions using the maxLik function [7] in R software. 

First Data Set: The dataset used in [8] and [9] was adopted here. 

This dataset has 76 observations; it is summarized and presented 

in Table 4. 

 
Table 4: Summary of the First Data Set 

n Min Max Mean Variance Skewness Kurtosis 

76 0.0251 9.0960 1.9590 2.4774 1.9796 8.1608 

 

The performance of the three competing distributions based on the 

first data set is presented in Table 5. 

 
Table 5: Performance Rating Based on the First Data Set (with Standard 

Error in Parenthesis) 

Distributions Estimates 
Log-

likelihood 
AIC Rank 

Logistic 

Exponential 

( )

( )

0.65415 0.06137

2.07876 0.20300









=

=

 -124.2725 252.545 1 

Logistic ( )0.72782 0.06928


=  -176.0827 354.1654 3 

Exponential ( )0.51040 0.05855


=  -127.1143 256.2287 2 

 

Based on the results in Table 5, it can be seen that the LoE distri-

bution has the highest log-likelihood value and the lowest AIC 

value. Hence, it can be selected as the best distribution out of the 

three distributions. 

Second Data Set: The dataset used by [6, 10, 11] and [12] is 

adopted here. This dataset consists of 63 observations and it re-

lates to the strength of 1.5cm glass fibres. The dataset is summa-

rized and presented in Table 6. 

 
Table 6: Summary of the Second Data Set 

n Min Max Mean Variance Skewness Kurtosis 

63 0.550 2.240 1.507 0.1051 -0.8999 3.9238 

 

The performance of the three competing distributions based on the 

second data set is presented in Table 7. 

 
Table 7: Performance Rating Based on the Second Data Set (Standard 

Error in Parenthesis) 

Distributions Estimates 
Log-

likelihood 
AIC Rank 

Logistic 
Exponential 

( )

( )

0.65523 0.01753

7.92596 0.90077









=

=

 -22.78996 49.57993 1 

Logistic ( )1.01272 0.09894


=  -121.1714 244.3428 3 

Exponential ( )0.66365 0.08361


=  -88.83032 179.6606 2 

 

Based on the results in Table 7, it can be seen that the LoE distri-

bution poses the highest log-likelihood value and has the lowest 

AIC value. Hence, it can be selected as being better than the Lo-

gistic and the Exponential distributions. 

6. Conclusion 

The Logistic-X Exponential distribution has been successfully 

defined and explored. Its shape could either be unimodal or de-

creasing (depending on the parameter values). Mathematical prop-

erties which include the survival function, hazard function, re-

versed hazard function, quantile function, odds function, median 

and distribution of order statistics have been derived and estab-

lished. The method of MLE was used to estimate the unknown 

parameters. The simulation studies reveal that the biasedness and 

MSE of the parameter estimates reduces as the sample size in-

creases. Applications to real data sets show that the LoE distribu-

tion is more suitable for modeling than the duo of Logistic distri-

bution and the Exponential distribution based on the selection 

criteria used. 
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