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Abstract 
 
The presence of disturbances can cause instability to the quadrotor flight and can be dangerous especially when operating near obstacles 
or other aerial vehicles. In this paper, a hybrid controller called state feedback with intelligent disturbance observer-based control (SF-
iDOBC) is developed for trajectory tracking of quadrotor in the presence of time-varying disturbances, e.g. wind. This is achieved by 
integrating artificial intelligence (AI) technique with disturbance observer-based feedback linearization to achieve a better disturbance 
rejection capability. Here, the observer estimates the disturbances acting on the quadrotor, while AI technique using the radial basis func-
tion neural network (RBFNN) compensates the disturbance estimation error. To improve the error compensation of RBFNN, the k-means 
clustering method is used to find the optimal centers of the Gaussian activation function. In addition, the weights of the RBFNN are 
tuned online using the derived adaptation law based on the Lyapunov method, which eliminates the offline training. In the simulation 
experiment conducted, a total of four input nodes and five hidden neurons are used to compensate for the error. The results obtained 
demonstrate the effectiveness and merits of the theoretical development. 
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1. Introduction 

In recent decades, there has been an increase in the applications of 
autonomous flying robots or popularly known as drones. This 
includes military and civilian applications such as for inspection, 
photography, aerial surveillance, delivery, and reconnaissance in 
unsafe environments. A common type of drone is the quadrotor 
that basically is a helicopter with four rotors. It has a simple struc-
ture and great maneuverability with the ability to take off and land 
vertically [1]. Nevertheless, the quadrotor is inherently unstable 
and has a complex dynamic model which brings challenges in the 
controller design process. In addition, it is also very susceptible to 
disturbances such as wind gust. Hence, a decent control algorithm 
is needed for the quadrotor to fly and accomplish the designated 
missions effectively. 
A considerable large number of studies have proposed linear con-
trol design for quadrotor control, including proportional-integral-
derivative (PID) [2,3] and linear quadratic regulation (LQR) [4]. 
To design these controllers, a linearized quadrotor model is re-
quired. A common linearization technique to obtain the linear 
quadrotor model is by using Jacobian linearization about an oper-
ating point (i.e. hovering condition). Although several works have 
shown a satisfactory capability of the controllers that are based on 
the Jacobian linearized model, the performance is limited to the 
neighborhood of the equilibrium point. As a result, other operating 
points may cause the quadrotor to give unsatisfactory performance 
and robustness.  
In contrast, nonlinear control based on feedback linearization 
technique produces a linear model representation of the nonlinear 
quadrotor model over a large set of operating points [5]. This is 
achieved by an appropriate coordinate transformation and nonlin-

ear feedback law. Various linear control algorithms can then be 
implemented in the outer-loop to stabilize the transformed linear 
model. It has been presented in [6–9] that feedback linearization 
can be used to simplify the underactuated and nonlinear quadrotor 
model into decoupled linear systems with the assumption that the 
exact model is known. However, it is almost impossible in 
practice to obtain the precise system representation especially 
when disturbances (e.g. wind) acting on the system exist.  
Adaptive and robust control are the common techniques used to 
improve the robustness of feedback linearization, e.g. [10,11]. 
However, these feedback-based techniques may not react directly 
and fast enough in the presence of strong disturbances. Further-
more, these approaches cause the closed-loop transient response to 
be shaped by the adaptive or robust control components instead of 
the nominal linear model [12]. To overcome these drawbacks, 
researchers have proposed a control technique so-called active 
anti-disturbance control (AADC).  
Unlike the adaptive or robust approaches, AADC directly counter-
acts the disturbances via feedforward compensation based on the 
measured or estimated disturbance values by disturbance observer. 
This has led to the popularity of disturbance observer-based con-
trol (DOBC) for disturbance rejection in various systems. In [13], 
feedback linearization-based controller with a high order sliding 
mode observer is presented for trajectory tracking of a quadrotor 
in the presence of sinusoidal disturbances. In [14], a disturbance 
observer is implemented with feedback linearization for attenuat-
ing constant external disturbances. More recently, a simulation 
study in [15] proposed a linear disturbance observer to improve 
the robustness of feedback linearization on quadrotor control. The 
presented disturbance observer can asymptotically estimate con-
stant disturbances but produces a bounded estimation error when 
estimating time-varying disturbances. Although higher bandwidth 
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can reduce the estimation error, it also makes the system suscepti-
ble to noise and has poor transient performance [16]. 
In recent years, there has been an increasing interest in the 
artificial neural network (ANN) for control applications due to the 
proven approximation capabilities, e.g. [17–19]. Radial basis func-
tion neural network (RBFNN) is a type of ANN that has simple 
network structure that avoids unnecessary and lengthy calculation 
of typical multilayer feed-forward network (MLP). In [20], adap-
tive RBFNN is implemented to estimate mismatched uncertain-
ties. In [21,22], RBFNN is used to approximate the unknown per-
turbations to improve backstepping control of a quadrotor. In 
short, these works have demonstrated the good approximation 
ability of RBFNN. However, a systematic selection of Gaussian 
centers which has a great influence on RBFNN approximation 
ability is not described in those studies. 
The main objective of this paper is to control the quadrotor in the 
presence of constant and time-varying disturbances. Motivated by 
the DOBC feedback linearization in [15], this paper proposes an 
improved disturbance rejection using intelligent disturbance ob-
server based control (iDOBC). Here, the estimation error produced 
when estimating time-varying disturbances is compensated via 
RBFNN. The online weight adaptation of RBFNN is obtained 
using Lyapunov method. In addition, the systematic steps of find-
ing the optimal centers for RBFNN using k-means clustering algo-
rithm is also described. The proposed iDOBC is integrated with 
state feedback (SF) control forming so-called SF-iDOBC for tra-
jectory tracking control of quadrotor. To the best of our 
knowledge, this study is the first to improve the disturbance rejec-
tion of DOBC using RBFNN compensator. 
The rest of this paper is organized as follows. In section 2, 
feedback linearization technique is employed to linearize the non-
linear quadrotor dynamics. Section 3 described the proposed con-
trol system design. Firstly, a nominal state feedback controller for 
the quadrotor trajectory tracking is presented. Then, time-domain 
disturbance observer for estimating the disturbances affecting the 
quadrotor is described. RBFNN is then presented to compensate 
the estimation error.  Here, selection of RBFNN centers using k-
means clustering technique is described. In section 4, numerical 
simulation results and discussion are presented with comparison 
with the closely related work as a benchmark. Finally, the 
conclusion of this paper is given in the last section.  

2. Feedback Linearization of Nonlinear Quad-
rotor Model 

 
Fig. 1: Quadrotor configuration where  and  are the lift forces. 

For the quadrotor configuration shown in Fig. 1, symbols  
and  denote the absolute position with respect to the earth 
frame  and orientation (roll, pitch, yaw) of the quadrotor, respec-
tively. The 6-DOF nonlinear quadrotor dynamics are given as 
follows [6]: 

 
(1) 

 
(2) 

 
(3) 

 
(4) 

 
(5) 

 
(6) 

Here, ,  and  are the control inputs 
of the system, the mass of quadrotor, and the gravitational acceler-
ation, respectively. Symbols  and   (  denote, re-
spectively the moment of inertia along each axis and the disturb-
ing forces on the quadrotor due to the wind, and  

 

 

(7) 

From Eqs. (1) – (6), it can be seen that the quadrotor is an under-
actuated and nonlinear system. Feedback linearization is one of 
the common approaches used to simplify the quadrotor dynamics. 
It involves the transformation of the nonlinear dynamics into the 
equivalent linear system via nonlinear state feedback and coordi-
nate transformation [5]. Fig. 2 illustrates the linearization of quad-
rotor dynamics using feedback linearization approach. Several 
studies have discussed the feedback linearization of quadrotor 
model (e.g. [7][15]). Therefore, the linearization technique is dis-
cussed briefly in this paper. 
For feedback linearizing the quadrotor dynamics, the absolute 
position  and the yaw angle (  are chosen as the outputs. 
Then, the real control signal  is replaced by 

. In this case,  has been delayed by 
the double integrator, while other control signals remain un-
changed [7]. 

 

 

 

 

(8) 

By using the control input , dynamics in Eqs. (1) – (6) can be 
written as  

 
(9) 
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where , 

, and 

 

 

 

 

 

 

 

For the nonlinear system (9), the relative degree  is 
given by  and  and dimension . 
Thus, the input-output decoupling problem is solvable for the 
quadrotor dynamics using the following control input [7]: 

 
(10) 

with  is the vector of control inputs for the 
linearized model, and 

 
 

 

(11) 

 

(12) 

where  and 
.  denotes the -th Lie 

derivative of  along .  

 
Fig. 2: Feedback linearization of the nonlinear quadrotor system. 

In the absence of external disturbances (i.e. ), Eq. (10) 
transforms Eqs. (1) – (6) into four decoupled dynamics given as 

 

 

(13) 

On the other hand, the presence of disturbances (i.e. ) cause 
the linearization to be inexact which produce the nominal part and 
the unknown disturbance part,  given as  

 

 

(14) 

Eq. (14) can be written in the state space equation given as  

 
(15) 

where  and , while 
 

 
 

 
 

 
 

 
 
It is shown in this section that the quadrotor dynamics can be 
transformed using feedback linearization approach into linear 
dynamics with unknown disturbance part. A control algorithm   
that makes the quadrotor track the desired reference trajectory 
while rejecting external disturbance shall be presented in the next 
section. 

3. Control System Design 

This section presents the nominal control algorithm using state- 
feedback system that allows the quadrotor to track a given trajec-
tory. Then, disturbance observer is derived to estimate the disturb-
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ances affecting the quadrotor flight. Finally, RBFNN is proposed 
in this paper to compensate for the estimation error produced by 
the disturbance observer. K-means clustering method is presented 
to find the optimal centers of the RBFNN. 

3.1. State Feedback Control for Nominal Plant 

State-feedback controller is implemented to enable the quadrotor’s 
trajectory tracking given as 

 
(16) 

Here,  is the feedback gain matrix,  is the feedforward gain, 
and  is the desired output trajectory. The nominal controller in 
Eq. (16) is derived by considering ideal plant (i.e. . By 
substituting Eq. (16) as the input of Eq. (15), the closed-loop dy-
namics is given as 

 

 

(17) 

Therefore, it can be seen that the closed-loop dynamics using 
nominal control in Eq. (16) is influenced by the external disturb-
ances . To remove the disturbances, this paper proposed an im-
proved disturbance observer as presented in the next subsections.  

3.2. Disturbance observer 

The following time-domain disturbance observer from [15] is 
implemented to estimate the disturbances,  in Eq. (15): 

 
(18) 

 
(19) 

where  is the internal variable of the observer,  is the estimat-
ed disturbance, and  is the observer gain matrix to be designed. 
Define the disturbance estimation error as follows: 

 
(20) 

By differentiating   w.r.t. time and substituting with (15) and (18) 
- (20) yields 

 

 

(21) 

The observer gain matrix,  is designed as 

 
(22) 

with , and  is the pseudo-inverse of the matrix . Then, 
(21) becomes 

 
(23) 

Hence, the disturbance estimation error in (23) is BIBO stable if 
the observer gain . The solution of the error dynamics is 
given as 

 

(24) 

where symbol  is the exponential function and  is the time vari-
able. For constant disturbances (i.e. ), the estimation error 

  converges to zero asymptotically.  Meanwhile for bounded 
disturbance derivative  and bounded initial estimation 
error , the disturbance estimation error is also bound-
ed  for . In this paper, RBFNN compensator is 
proposed for compensating the bounded estimation error . 

3.3. RBFNN Compensator 

Because of the inability of the nominal controller in Eq. (16) to 
attenuate disturbances, this paper proposed a new control algo-
rithm for disturbance compensation using disturbance observer 
and RBFNN described as follows: 

 
(25) 

Here,  is the nominal state feedback controller in Eq. (16),  is 
the estimated disturbance in Eq. (19), and  is the compensa-
tion of the bounded disturbance estimation error using RBFNN 
which is derived in this section.  
By substituting the proposed controller in Eq. (25) as the input of 
the linearized quadrotor model in Eq. (15), the closed-loop dy-
namics is given as 

 
(26) 

A reference model representing the ideal closed-loop dynamics is 
introduced as follows: 

 

 

(27) 

where  is the state of the reference model. An error between 
the closed-loop plant and the reference model is formed when both 
dynamics are fed with the same reference signal, . This error is 
defined as 

 
(28) 

By differentiating Eq. (28) and substituting with Eqs. (26) - (27), 
the error dynamics is given as follows: 

 
(29) 

Since  is chosen such that matrix  is Hurwitz, there 
exists a real symmetric positive definite matrix  satisfying 
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(30) 

where  is a positive definite matrix chosen by the designer. 
In this paper, RBFNN is implemented to compensate for the un-
known bounded disturbance estimation error, . The struc-
ture of a typical RBFNN is shown in Fig. 3 with three layers given 
as follows [21]: 
1. Input layer: In this layer,  which is the error between the 

closed-loop plant and the reference model, is selected as the 
input. 

2. Hidden neuron:  The hidden layer consists of  number of 
neurons with the nonlinear Gaussian activation function giv-

en as 

 

(31) 

where   and  are the 
width and centers of Gaussian functions, respectively. 
3. Output layer: Output of RBFNN is the approximated disturb-

ance estimation error,  calculated using the weighted sum 
method given as follows: 

 
(32) 

with  is the weight vector. 
As other AI techniques, RBFNN requires learning algorithm to 
achieve the designated tasks which is to find the optimal selection 

of the center , and weights , .  The k-means 
clustering algorithm was used in this paper to find the optimal 
center . Meanwhile, Lyapunov based approach was proposed 
for the online weight update. These algorithms are presented in the 
next subsections. 
Based on the universal approximation ability of RBFNN [23], 
there exists an optimal RBFNN to learn the unknown disturbance 
estimation error,  over a compact region  such that 

 
(33) 

where  is the RBFNN approximation error. Here, the optimal 
weight vector  is defined as 

 

(34) 

Assumption 1: RBFNN approximation error  is zero. This as-
sumption will hold for comparatively less complex functions with 
a sufficiently large number of adjustable weight [24]. 
 
By substituting (32) and (33) into (29) yields 

 
(35) 

where . The adaptation law for updating the RBFNN 
estimation weight vector  is given as 

 
(36) 

 
with  is an adaptation gain to be designed. Block diagram of 
the proposed control scheme is shown in Fig. 4.  

3.3.1. Stability Analysis 

Theorem 1: For the nonlinear quadrotor system (1) - (6) which is 
linearized using (10) and yields (15), consider control law (25) 
with (19) and (32), and adaptation law (36). If Assumption 1 is 
satisfied, then, the proposed controller SF-iDOBC guarantees the 
disturbance rejection, or 

 
(37) 

 

Fig. 4: Structure of the implemented radial basis function neural network 
(RBFNN). 

Fig. 3: Block diagram of the proposed control scheme. 
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Proof: 
Consider the following Lyapunov candidate: 

 
(38) 

where  is the trace operator of matrix algebra. Differentiating 
(38) w.r.t. time and substituting with (30) and (35) yields: 

 

(39
) 

By noting that , and , 
then Eq. (39) becomes 

 

(40
) 

By substituting adaptation law in Eq. (36), Eq. (40) becomes 

 
(41) 

Therefore, based on Assumption 1, . This completes the 
proof. 

3.3.2. K-Means Clustering for Centers Selection 

To use RBFNN as a compensator, the required parameters are the 
weight vector, and also the centers and width of the Gaussian 
function in Eq. (31). In this paper, the weight vector is updated 
online via adaptation law in Eq. (36).  
The Gaussian activation function in Eq. (31) depends on the center 
vector  and the width value . These two parameters are im-
portant in determining the effectiveness of the neural network. 
Generally, the Gaussian function is more sensitive when the center 

 is close to the RBFNN input . Meanwhile, the width of the 
Gaussian function  represents the covering scope for the input 
[25].  
In this paper, k-means clustering algorithm is used to find the 
optimal centers and width of the Gaussian which more accurately 
reflect the distribution of the dataset (input ).  
Proposed by MacQueen [26], k-means clustering algorithm is a 
technique commonly used to automatically partition a dataset into 

 groups. The following steps describe the algorithm to find the 
RBFNN centers and widths offline: 
 

Step 1) Error between the closed-loop plant and the reference 
model,  is selected as the input data (referred to as the 
dataset) for clustering. The dataset is obtained by simu-
lating the plant in Fig. 4 using the nominal controller 

 for a period of time. 
Step 2) Initialize  cluster centers from the randomly selected 

dataset obtained in step 1. 
Step 3) Calculate the Euclidean distances between each of the 

datasets with the centers. Assign each of the datasets to 
the nearest cluster center. 

Step 4) Once all of the datasets are assigned, calculate the mean 
(average) position of the datasets that are assigned to the 
cluster. These are the new cluster centers. 

Step 5) Repeat step 3 and step 4. Stop when none of the cluster 
center assignment in step 3 change. 

Step 6) The width of each center is obtained by averaging the 
distance between all dataset in the cluster and the cluster 
center. 

4. Simulation Results and Discussion 

In this section, the performance analysis of the proposed SF-
iDOBC is presented. Parameters from [6] are adopted for the 

quadrotor model where , 

and 

 The gains for the state feedback control law and 

disturbance observer are , 

, ,  and . To 
simulate the effect of disturbances on the quadrotor, Dryden wind 
gust model [27] is used in the simulation environment. The gener-
ated disturbance forces are shown in Fig. 5. 

To compensate for the disturbance estimation error  and , 
RBFNN with four inputs, five hidden neurons, and one output (4-
5-1) are used respectively. Meanwhile, RBFNN with two inputs, 
five hidden neurons, and one output (2-5-1) is used for compensat-

ing the disturbance estimation error . Adaptation gain of the 

RBFNN is , and matrix  is obtained using (30) by 

setting  and . The centers of 
the Gaussian functions obtained using the k-means clustering 
method are given as follows: 
 

 
 

 
 
and the corresponding widths are given as 
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Fig. 5: Wind disturbances. 
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Two simulation experiments have been carried out to verify the 
effectiveness of the proposed controller. The performance of the 
controller is compared with the controller proposed in [15] using 
state feedback with disturbance observer (SF-DOBC). Quantita-
tive performances are measured using integral absolute error (IAE) 
given as 

 

(42) 

where  is the period of the simulation, and  is the error between 
the desired and actual value.  

4.1 Simulation Experiment 1: Quadrotor Hovering 

Hover is one of the basic maneuvers for a quadrotor. In this simu-
lation experiment, the quadrotor is required to maintain a fixed 
position in the presence of time-varying wind disturbances gener-
ated by using Dryden wind gust model as shown in Fig. 5. To 
achieve this objective, the proposed controller in Eq. (25) is im-
plemented on the quadrotor model. As a benchmark, performance 
of the quadrotor using the controller is compared with the results 
obtained by using SF-DOBC. The desired hovering position is set 

at  and . Results of the 
simulation experiments are shown in Fig. 6 – Fig. 7. 

 
Fig. 7: Quadrotor hovering at the desired position. 

In Fig. 6, the trajectories of the quadrotor using SF-DOBC and 
SF-iDOBC are shown. Clearly, the quadrotor can maintain the 
desired position using SF-DOBC and SF-iDOBC. However, quad-
rotor with SF-DOBC shows a larger deviation from the hovering 
position as it cannot reject the wind disturbances quite well. On 
the other hand, quadrotor with SF-iDOBC shows only a slight 
deviation from the desired position. This indicates the capability 
of the proposed controller to reject the disturbances as verified by 
quantitative analysis using IAE tabulated in Table 1. Notice that 

the performance of both controllers for heading  control was 
identical as shown in Fig. 7. This is because of no aerodynamic 
moment disturbance is considered. 

 
Fig. 8: Time response of quadrotor heading. 

Table 1: Quantitative comparison between SF-DOBC and SF-iDOBC for 
quadrotor hovering problem. 

Controller IAE 
    

SF-DOBC 0.374 0.794 0.177 1.571 
SF-iDOBC 0.038 0.058 0.027 1.571 
Reduction (%) 89.839 92.695 84.746 0.000 

4.2 Simulation Experiment 2: Quadrotor Trajectory 
Tracking 

To further verify the proposed controller capability, a time-
varying trajectory tracking of the quadrotor is presented. Here, the 
practical ability of the quadrotor to track the desired time-varying 
trajectory while rejecting wind disturbances is emphasized. The 

Fig. 6: Position trajectory of the quadrotor using SF-DOBC and the proposed SF-iDOBC. 
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wind disturbances are generated using Dryden wind model in Fig. 

5. From the initial position at , the 
quadrotor needs to track a trajectory given as follows: 
 

 
 
Fig. 8 - Fig. 9 show the simulation results of the quadrotor trajec-
tory tracking in the presence of wind disturbances using SF-
DOBC and SF-iDOBC, respectively. 
In Fig. 8, the quadrotor trajectory using SF-DOBC has some devi-
ation from the desired trajectory caused by the wind disturbances. 
In contrast, quadrotor trajectory using SF-iDOBC is smoother and 
has less deviation from the desired trajectory as shown in Fig. 9. 
This result further verifies the capability of the proposed controller 
over the closely related controller (SF-DOBC) as supported by 
quantitative performance analysis using IAE index tabulated in 
Table 2. 

Table 2: Quantitative comparison between SF-DOBC and SF-iDOBC for 
quadrotor trajectory tracking problem. 

Controller IAE 
   

SF-DOBC 14.261 13.501 0.179 
SF-iDOBC 13.985 12.727 0.039 

Reduction (%) 1.935 5.733 78.212 

5. Conclusion  

The aim of this paper is to control the quadrotor in the presence of 
time-varying disturbances, e.g. wind. An improved iDOBC is 
developed, where the RBFNN is proposed to compensate the 
bounded estimation error produced by the standard disturbance 
observer. The optimal centers for RBFNN’s Gaussian function are 
found offline using the k-means clustering algorithm. Meanwhile, 
the weight vector of the RBFNN is tuned online using the derived 
adaptation law. It has been proven via a Lyapunov function that 
the developed control strategy guarantees the stability of the sys-
tem. Finally, the effectiveness of the proposed SF-iDOBC is veri-
fied by some simulation results. It is found that the quadrotor with 
SF-iDOBC performs better in the presence of wind disturbances 
as compared with the benchmark. The possibility of a real-time 
implementation of the designed controller will be further investi-
gated in the future. 
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