International Journal of Engineering & Technology, 7 (4.10) (2018) 812-815

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

On Γ-TS-Acts Over Ternary Γ-Semigroups

Mamidipalli. Vasantha¹, D. Madhusudhana Rao^{2*}, P. Siva Prasad³, B. Srinivasa Kumar⁴, T. Satish⁵

¹Research Scholar, Department of Mathematics, K.L. University, Vaddeswaram, Guntur(Dt) A. P.

² Associate Professor, Department of Mathematics, VSR & NVR College, Tenali, Guntur(Dt), A. P. India.

³ Department of Mathematics, VFSTR deemed to be University, Vadlamudi, Guntur(Dt), A. P.

⁴ Department of Mathematics, K.L. University, Vaddeswaram, Guntur(Dt) A. P.

⁵ Department of Mathematics, SRKR Engineering College, Bhimavaram, W.G. (Dt), A.P. India.

*Corresponding author E-mail: dmrmaths@gmail.com

Abstract

We generalise the notion of acts over ternary semigroups to the Γ -TS-acts for a ternary Γ -semigroup T. Certain intrinsic notions of Γ -TS-acts are studied.

Keywords: Ternary Γ-semigroup, Γ-TS-act, Γ-TS-congruence, Γ-TS-homomorphism, free Γ-TS-act.

1. Introduction

Acts over semi group T, namely T-act, appeared and were used in a variety of applications such as algebraic automata theory, mathematical linguistics. We here generalize this notion to the Γ -TS-acts for a ternary Γ -semi group T. In the year 2008, Chinram. R and Thinpun. K. 1 , investigated on isomorphism theorems for gamma semi groups. In 1991, Howie. J. M. 2 , studied about Automata and Languages. In 2013, Hssin. Z. 3 , investigated and studied about gamma modules with gamma rings of gamma endomorphism. In 2015, Vasantha. M and Madhusudhana Rao. D^4 . introduced the concept of ternary Γ -semi groups and they characterized the ternary Γ -semigroups.

2. Preliminaries

Definition 2.1[4]: Let $P \neq \emptyset$ & $\Gamma \neq \emptyset$ be two set. Then P is known as a *Ternary* **F**-semigroup if there exist a mapping from $P \times \Gamma \times P \times \Gamma \times T$ to P which maps $(g_1, \alpha, g_2, \beta, g_3) \rightarrow [g_1 \alpha g_2 \beta g_3]$ satisfying the condition :

$$\begin{split} & \left[\left[g_1 \alpha g_2 \beta g_3 \right] \gamma g_4 \delta g_5 \right] = \left[g_1 \alpha \left[g_2 \beta g_3 \gamma g_4 \right] \delta g_5 \right] = \\ & \left[g_1 \alpha g_2 \beta \left[g_3 \gamma g_4 \delta g_5 \right] \right] \ \forall \ g_i \in T, \ 1 \le i \le 5 \ \text{and} \ \alpha, \beta, \gamma, \delta \in \Gamma \ . \end{split}$$

Note 2.2[4]: For the convenience we write $r_1 \alpha r_2 \beta r_3$ instead of $[r_1 \alpha r_2 \beta r_3]$

For more preliminaries one can be go through the regerences.

3. Γ-TS-acts

Definition 3.1: Let T be a ternary Γ-semigroup as well as $P \neq \emptyset$ with a mapping $\lambda: T \times \Gamma \times T \times T \times P \rightarrow P$ where

 $(s,\alpha,t,\beta,a) \rightarrow s\alpha t\beta a := \lambda(s,\alpha,t,\beta,a)$ is said to be a *left \(\Gamma \). TS-act* or a *left \(\Gamma \). TS-operand* if $(p\alpha q\beta r)\delta s\gamma a = p\alpha(q\beta r\delta s)\gamma a$ $= p\alpha q\beta(r\delta s\gamma a)$ for all $p,q,r,s \in T,\alpha,\beta,\gamma,\delta \in \Gamma$. This is denoted by $_{\Gamma-TS}P$. Similarly, we can define *lateral \(\Gamma \). TS-act* (demoted by $_{\Gamma-TS}$) and *right \(\Gamma \).*

Throughout this paper Γ -TS-act means left Γ -TS-act.

Note 3.2: If T has identity e, then $e\alpha e\beta a = a \ \forall a \in K$. **Def 3.3:** Let L be a Γ -TS-act. Then $l \in L$ is called to be **zero** of L if $l\alpha b\beta c = b\alpha l\beta c = b\alpha c\beta l = l \ \forall b,c \in T$, $\alpha,\beta \in \Gamma$.

Definition 3.4: Let U beΓ-TS-act. A subset 'S $\neq \emptyset$ ' is known as **Γ**-*TS-sub-act* of U if $aab\beta c \in S$ for all $a, b \in T$, $c \in S$ and $a, \beta \in \Gamma$. **Note 3.5:** A non-empty subset S of aΓ-TS-act A is aΓ-TS-sub-act if and only if TΓΤΓS \subseteq S. Clearly, T itself is a Γ-TS-act.

Note 3.6: A sub-act of the Γ -TS-act A is a left ternary Γ -ideal of the ternary Γ -semigroup T. A subset $K \subseteq A$ is called a right ternary Γ -ideal of T if $T\Gamma T\Gamma K \subseteq K$, a two-sided ternary Γ -ideal of T if $T\Gamma T\Gamma K \subseteq K$ and a ternary Γ -ideal of T if it is two sided ternary Γ -ideal as well as $T\Gamma K\Gamma T \subseteq K$.

Def 3.7: An element a of a Γ -TS-act A is said to be a *fixed* or a *zero* element if $a\alpha s\beta t = a$, for all s, $t \in \Gamma$ and α , $\beta \in \Gamma$.

Theorem 3.8: The non-empty intersection of any family of T-TS-sub-acts of a Γ -TS-act Γ -TS-act of a ternary Γ -TS-sub-act of

$$_{\Gamma-TS}A$$

proof: Let $\left\{S_{\alpha}\right\}_{\alpha\in\Delta}$ be a family of Γ -TS-sub-acts of $_{\Gamma$ -TS}A and $S=\bigcap S_{\alpha}$

Let
$$a,b \in {}_{\Gamma-TS}A$$
, $c \in \text{Sand } \alpha, \gamma \in \Gamma$.
 $c \in S \Longrightarrow c \in \bigcap_{\alpha \in \Delta} S_{\alpha} \Longrightarrow c \in S_{\alpha} \text{ for all } \alpha \in \Delta$

 $c \in S_{\alpha} \& \alpha, \gamma \in \Gamma, S_{\alpha}$ is a Γ -TS-sub-act of $\Gamma_{T-TS} A$ $\Rightarrow aabyc \in S_{\alpha}$ for all $\alpha \in \Delta \Rightarrow aabyc \in \bigcap_{\alpha \in \Delta} S_{\alpha} \Rightarrow aabyc \in S$. Therefore, S is a Γ -TS-sub-act of $\Gamma_{T-TS} A$.

Theorem 3.9: The union of any family of Γ-TS-sub-acts of aΓ-

TS-act $_{\Gamma - TS}A$ is a Γ -TS-sub-act of $_{\Gamma - TS}A$.

Proof: Let $\left\{A_a\right\}_{\alpha\in\Lambda}$ be a family of Γ -TS-sub-acts of a Γ -TS-act $_{\Gamma$ -TS}A .

Let
$$\mathbf{A} = \bigcup_{\alpha \in \Delta} A_{\alpha}$$
. Let $a \in \mathbf{A}$; $b, c \in \mathbf{T}$, α , $\beta \in \Gamma$. $a \in \mathbf{A}$
$$\Rightarrow a \in \bigcup_{\alpha \in \Delta} A_{\alpha} \Rightarrow a \in A_{\alpha} \text{ for some } \alpha \in \Delta$$

$$a \in A_{\alpha}, b, c \in {}_{\Gamma}A_{\Gamma}, \alpha$$
, $\beta \in \Gamma$, A_{α} is a Γ -TS-act of Γ

 $\Rightarrow bac\beta a \in A_{a} \subseteq \bigcup_{\alpha \in \Delta} A_{\alpha} = \mathbf{A} \implies bac\beta a \in \mathbf{A}.$

Therefore, A is a Γ -TS-sub-act of $_{\Gamma$ - $TS}A$.

Definition 3.10: Let $_{\Gamma-TS}U$ and $_{\Gamma-TS}V$ are Γ -T-acts. A mapping $f:_{\Gamma-TS}U \to _{\Gamma-TS}V$ is said to be a *Γ-TS-homomorphism* provided $f(s\alpha t\beta a) = s\alpha t\beta f(a)$ for every $s, t \in T$, $a \in U$ and $a, \beta \in \Gamma$.

Definition 3.11: Let $_{\Gamma-TS}P$ and $_{\Gamma-TS}Q$ are Γ -TS-acts. A mapping $f:_{\Gamma-TS}P \to _{\Gamma-TS}Q$ is said to be a *\(\begin{align*} \epsilon-TS-monomorphism \) provided f is a one-one \Gamma-TS-homomorphism.*

Definition 3.12: Let $_{\Gamma-TS}R$ and $_{\Gamma-TS}S$ be Γ -TS-acts. A mapping $f:_{\Gamma-TS}R \to _{\Gamma-TS}S$ is said to be a Γ -TS-epimorphism provided f is an onto Γ -TS-homomorphism.

Definition 3.13: Let $_{\Gamma-TS}Y$ and $_{\Gamma-TS}Z$ be Γ -TS-acts. A mapping $f:_{\Gamma-TS}Y \to _{\Gamma-TS}Z$ is said to be a *\(\begin{align*} \epsilon -TS-isomorphism \) provided f* is a one-one Γ -TS-homomorphism as well as an onto Γ -TS-homomorphism.

Definition 3.14: A Γ -TS-act B containing (a Γ -TS-isomorphic copy of) a Γ -TS-act A as a subact is called an *extension* of A.

Example 3.15: As a very interesting example of acts, used in computer science as a convenient means of algebraic specification of process algebras, consider the ternary Γ-monoid $(N^{\infty}, \Gamma, [\], \infty)$, where N is the set of natural numbers, Γ is the any set and $N^{\infty} = N \cup \{\infty\}$ with $n < \infty, \forall n \in \mathbb{N}$ and $[m\alpha n\beta p] = \min\{m, n, p\}$ for $m, n, p \in \mathbb{N}^{\infty}$, α , $\beta \in \Gamma$. Then a Γ -TN^{\infty}-actis called a *projection algebra*.

Th 3.16: Let T be a ternary Γ -semi group, $_{\Gamma$ -TS}K is a Γ -TS-act and $f\colon K\to T$ is a Γ -TS-homomorphism. Then A is a ternary Γ -semi group.

Proof: We have a mapping $g: K \times \Gamma \times K \times \Gamma \times K \to K$ where $(a, \alpha, a', \beta, a'') \to a\alpha a'\beta a'' := f(a)\alpha a'\beta a''$ for all $a, a', a'' \in A$ and $\alpha, \beta \in \Gamma$. Let $a, b, c, d, e \in A$ and $\alpha, \beta, \gamma, \delta \in \Gamma$. Then $(a\alpha b\beta c)\gamma d\delta e = (f(a)\alpha b\beta c)\gamma d\delta e = f(f(a)\alpha b\beta c)\gamma d\delta e$ $= f(a)\alpha f(b)\beta f(c)\gamma d\delta e = f(a)\alpha (f(b)\beta f(c)\gamma d\delta e)$ $= a\alpha (b\beta c\gamma d)\delta e = a\alpha (f(b)\beta f(c)\gamma f(d))\delta e$ $= a\alpha f(b)\beta (f(c)\gamma f(d)\delta f(e)) = a\alpha b\beta (c\gamma d\delta e)$

Therefore $(a\alpha b\beta c)\gamma d\delta e = a\alpha (b\beta c\gamma d)\delta e = a\alpha b\beta (c\gamma d\delta e)$ and hence A is a ternary Γ -semigroup.

Definition 3.17: Let $_{\Gamma-TS}U$ is a Γ-TS-act. An equivalence relation ϑ on $_{\Gamma-TS}U$ is said to be a **Γ-TS-congruence** of $_{\Gamma-TS}U$ provided for all $a,a' \in U$, $b,c,\in T,\alpha,\beta \in \Gamma$, $a\rho a' \Rightarrow (a\alpha b\beta c)\rho(a'\alpha b\beta c),(b\alpha a\beta c)\rho(b\alpha a'\beta c),(b\alpha c\beta a)\rho(b\alpha c\beta a')$

Definition 3.18: The set $_{\Gamma-TS}K/\rho=\{l_{\rho}:l\in_{\Gamma-TS}K\}$ with the Γ-action $s\alpha t\beta(l_{\rho})=(s\alpha t\beta l)_{\rho}$ for all $s,t\in T$ and $\alpha,\beta\in \Gamma$ is known as a factor Γ-TS-act of $_{\Gamma-TS}K$ by ρ , and canonical surjection $\pi_{\rho}:_{\Gamma-TS}K\to_{\Gamma-TS}K/\rho$ where $l\to l_{\rho}$ is known as *canonical Γ-TS-epimorphism*.

Definition 3.19: Let $_{\Gamma-TS}S$ and $_{\Gamma-TS}T$ be two Γ-TS-acts. A mapping $l:_{\Gamma-TS}S \to_{\Gamma-TS}T$ is a **Γ**-TS-homomorphism, then the Γ-TS-congruence $\rho=$ kernel l (simply $ker\ f$) on $_{\Gamma-TS}A$ where $a\rho a'$ iff l(a)=l(a') for all $a,a'\in_{\Gamma}S_T$ is known as **kernel Γ-TS-congruence** of l.

Theorem 3.20: Let $k:_{\Gamma-TS}G \to_{\Gamma-TS}H$ is a Γ -TS-homomorphism as well as ρ be a Γ -TS-congruence on $_{\Gamma-TS}G$ \exists $g \rho g' \Rightarrow k(a) = k(g')$, i.e. $\rho \leq \ker k$. Then $k':_{\Gamma-TS}G/\rho \to_{\Gamma-TS}H$ with $k'(g_{\rho}) \coloneqq k(g), \ g \in_{\Gamma-TS}G$, is the unique Γ -TS-homomorphism such that $k'\pi_{\rho} = g$. If $\rho = \ker k'$ is injective. Also if k is surjective, then so is k'.

Proof: The mapping k' is well-defined, because for all $g_{\rho}, g'_{\rho} \in {}_{\Gamma-TS}G$,

 $g_{\rho} = g'_{\rho} \Leftrightarrow g \rho g' \Rightarrow k(g) = k(g') \Rightarrow k'(g_{\rho}) = k'(g'_{\rho}).$ For every $s, t \in T$, $\alpha, \beta \in \Gamma$ and $g \in G$,

$$\begin{aligned} k'(s\alpha t\beta g_{\rho}) &= k'(s\alpha t\beta g)_{\rho} = k(s\alpha t\beta g) \\ &= s\alpha t\beta k(g) = s\alpha t\beta k'(g_{\rho}) \end{aligned} \qquad \text{Hence, } k' \text{ is a } \Gamma\text{-TS-}$$

homomorphism. Also for every $g \in \Gamma_{T-TS}G$,

 $(k'\pi_{\rho})(g)=k'(\pi_{\rho}(g))=k'(g_{\rho})=k(g)$. Now we have to show k' is unique. Let there exists $k'':_{\Gamma-TS}G/\rho\to_{\Gamma-TS}H$ such that $k''\pi_{\rho}=k$. This implies that $k''\pi_{\rho}=k'\pi_{\rho}$. Since π_{ρ} is a Γ -TS-epimorphism, k''=k'. The remainder is an easy for verification. This is called homomorphism theorem for Γ -TS-acts.

Corollary 3.22: Let $l: {}_\Gamma J_T \to {}_\Gamma K_T$ be a Γ -TS-epimorphism. Then ${}_{\Gamma^{-TS}}J/\ker l \cong {}_{\Gamma^{-TS}}K$.

4: Free Γ-TS-acts

Here, the notion of cyclic, free and indecomposable Γ -TS-acts are studied.

Definition 4.1: A non-empty subset P of a Γ -TS-act $\Gamma_{TS}K$ is known as a generating set of $\Gamma_{TS}K$ if every $K \in K$ can be expressed as $K = p\alpha q\beta u$ for some $p,q \in T$, $u \in P$ and $\alpha,\beta \in \Gamma$. In this case, we write $\Gamma K_T = \langle P \rangle = T\Gamma T\Gamma P$, where $T\Gamma T\Gamma P = \{p\alpha q\beta u : p,q \in T,\alpha,\beta \in \Gamma,u \in P\}$. Also P is finitely generated Provided it has a finite generating set of ele-

ments. We say $_{\Gamma - TS}K$ a cyclic $_{\Gamma - TS}K$ provided $_{\Gamma - TS}K = = T\Gamma T\Gamma p$ for some $p \in _{\Gamma - TS}K$.

Note 4.2: $_{\Gamma}L_{T}$ is always a generating set of itself. i.e. $_{\Gamma-TS}L=<$ L>.

Theorem 4.3: If S is a nonempty sub set of a Γ-TS-act $_{\Gamma-TS}L$ & $l \in _{\Gamma-TS}L$. Then the following assertions hold:

- (i) $K\Gamma K\Gamma l = K\alpha K\beta l$ for all $\alpha, \beta \in \Gamma$.
- (ii) $K\alpha K\beta l = K\gamma K\delta l$ for all $\alpha, \beta, \gamma, \delta \in \Gamma$.
- (iii) $K\Gamma K\Gamma P = K\alpha K\beta P = \{p\alpha q\beta u : p, q \in K, u \in P \text{ and } \alpha, \beta \in \Gamma\}.$

Proof: (i) Let $\alpha, \beta \in \Gamma$ and $l \in {}_{\Gamma-TS}L$. Clearly, $K\alpha K\beta l \subseteq K\Gamma K\Gamma l$. For the reverse inclusion, take $p,q \in K$ $p\alpha q\beta l = p\alpha q\beta (e\alpha e\beta l) = p\alpha (q\beta e\alpha e)\beta l \in K\alpha K\beta l$ which implies that $K\Gamma K\Gamma l = K\alpha K\beta l$ for all $\alpha,\beta \in \Gamma$. The remaining two assertions follows from (i).

This theorem express a simple characterization to generating sub sets of a Γ -TS-act.

Consider a cyclic Γ -TS-act $_{\Gamma$ -TS} L=< l>as $T\alpha T\beta l$ for any $\alpha,\beta\in\Gamma$ and $l\in_{\Gamma$ -TS} L, $p\in \Gamma$. Then the map $\lambda_{s,a,\alpha,\beta}:_{\Gamma$ -TS} $T\to_{\Gamma$ -TS} L defined by $\lambda_{s,a,\alpha,\beta}(q)=p\alpha q\beta l$ for all $q\in T$ is a Γ -TS-homomorphism. To see this, for every $u,v\in T$ and $\gamma,\delta\in\Gamma$ we have

 $\lambda_{p,a,\alpha,\beta}(u\gamma v\delta t)=p\alpha(u\gamma v\delta t)\beta a=u\gamma v\delta p\alpha t\beta l=u\gamma v\delta \lambda_{p,a,\alpha,\beta}(q)$. Now, we characterize cyclic Γ -TS-acts by means of factor Γ -TS-acts of Γ -TS.

Th 4.4: If a Γ -TS-act $_{\Gamma$ - $TS}L$ is cyclic. Then there exists a Γ -TS-congruence ρ on $_{\Gamma$ - $TS}T$ \exists $_{\Gamma$ - $TS}L \cong _{\Gamma$ - $TS}T/\rho$ and the converse also hold if Γ is a ternary Γ -monoid.

Proof: Let $_{\Gamma-TS}L=< l>$ as $T\alpha T\beta l$ for any $\alpha,\beta\in\Gamma$ and $l\in_{\Gamma-TS}L$, $s\in T$. Then the Γ -TS-homomorphism $\lambda_{s,a,\alpha,\beta}:_{\Gamma-TS}T\to_{\Gamma-TS}L$ is obviously a Γ -TS-epimorphism. By using Corollary 3.22, we get $_{\Gamma-TS}L\cong_{\Gamma-TS}T/\ker\lambda_{s,a,\alpha,\beta}$. Then fix $\rho=\lambda_{s,a,\alpha,\beta}$, then we get the result.

Conversely, if ρ is a Γ -TS-congruence on a Γ -T-monoid $_{\Gamma$ -TS} T with unity e, then for all $t_{\rho} \in _{\Gamma}$ -TS T / ρ and $\alpha,\beta \in \Gamma$, $t_{\rho} = (t\alpha e\beta e)_{\rho} = t\alpha e_{\rho}\beta e_{\rho}$ which shows that $_{\Gamma}$ -TS T / $\rho \cong < e_{\rho} >$.

Definition 4.5: A Γ-TS-act $_{\Gamma-TS}L$ is said to be decomposable if \exists two Γ -TS-sub-acts $_{\Gamma-TS}M$ and $_{\Gamma-TS}N$ of $_{\Gamma-TS}L$ such that $_{\Gamma-TS}L = _{\Gamma-TS}M \cup _{\Gamma-TS}N$ and $_{\Gamma-TS}M \cap _{\Gamma-TS}N = \emptyset$. In this case, the disjoint union $_{\Gamma-TS}M \cup _{\Gamma-TS}N$ is known as a decomposition of $_{\Gamma-TS}L$. If not, $_{\Gamma-TS}L$ is known as in-decomposable. If we consider Γ -TS-acts with unique 0, then we have to change \emptyset by $\{0\}$ to define decomposable as well as in-decomposable Γ -TS-acts with unique 0.

Theorem 4.6: Every cyclic Γ -TS-act is in-decomposable.

Proof: Suppose that $_{\Gamma-TS}D=\langle d\rangle$ as $T\alpha T\beta d$ for any $\alpha,\beta\in\Gamma$ and $d\in_{\Gamma-TS}D$, $s\in\Gamma$ is cyclic and $D=_{\Gamma-TS}E\cup_{\Gamma-TS}F$ for some Γ -TS-sub-acts $_{\Gamma-TS}E$ and $_{\Gamma-TS}F$ of

 $_{\Gamma-TS}D$. Then $d=elpha eeta d\in {}_{\Gamma}E_{T}$ say, then $_{\Gamma-TS}D=< d>\subseteq$ $_{\Gamma-TS}E$ which is a contradiction.

Theorem 4.7: Let $A_i \subseteq {}_{\Gamma-TS}A, i \in \Delta$ be in-decomposable Γ -TS-sub-acts of a Γ -T-act ${}_{\Gamma-TS}A$ such as $\bigcap_{i \in I}A_i \neq \varnothing$. Then

 $igcup_{i\in I} A_i$ is an in-decomposable $\Gamma ext{-TS} ext{-sub-act of }_{\Gamma ext{-TS}}A$.

Proof: By theorem 3.7, $\bigcup_{i=I} A_i$ is a Γ -TS-sub-act of $\Gamma_{T-TS} A$.

Suppose there exists a decomposition $\bigcup_{i \in I} A_i = \prod_{\Gamma - TS} B \cup \prod_{\Gamma - TS} C$.

Take $a \in \bigcap A_i$ with $a \in {}_{\Gamma}A_T$, say.

Then $a \in A_i \cap_{\Gamma = TS} B$ for all $i \in \Delta$.

Since $A_i = A_i \cap (_{\Gamma - TS}B \bigcup_{\Gamma - TS}C) = (A_i \cap_{\Gamma - TS}B) \bigcup (A_i \cap_{\Gamma - TS}C)$ and A_i is indecomposable, $A_i \cap_{\Gamma - TS}C = \emptyset$ for all $i \in I$.

Thus $\bigcup_{i} A_i = \prod_{\Gamma - TS} B$ It is a contradiction.

Th 4.8: Every Γ -TS-act $_{\Gamma$ - $TS}$ A has a unique decomposition into in-decomposable Γ -TS-sub-acts.

Proof: Let $_{\Gamma-TS}A$. Than by th, 3.6, $T\alpha T\beta a,\ \alpha,\beta\in\Gamma$ is indecomposable. Using th 4.7, we get

 $S_a = \bigcup \{ \Gamma_{-TS} S \subseteq \Gamma_{-TS} A : \Gamma_{-TS} S \text{ is in-decomposable and } a \in \Gamma_{-TS} S \} \text{ is an in-decomposable } \Gamma \text{-TS-sub-act of } \Gamma_{-TS} A \text{ .}$

For $p,q \in {}_{\Gamma-TS}L\ V_a = V_b \text{ or } V_p \cap V_q = \emptyset$.

Indeed, $r \in V_p \cap V_a \Longrightarrow V_p, V_a \subseteq V_r$.

 $s, t \in T, u \in K \text{ and } \alpha, \beta \in \Gamma$,

Thus $p \in V_p \subseteq V_r$, $q \in V_q \subseteq V_r$, i.e. $V_r \subseteq V_p \cap V_q$.

Therefore, $V_p = V_q = V_r$. Denote by L' a representative subset of elements $p \in {}_{\Gamma-TS}L$ w.r.t the equivalence relation \sim defined by $p \sim q$ iff $V_p = V_q$. Therefore, ${}_{\Gamma-TS}L = \bigcup_{p \in L'} V_p$ is the unique decomposition of ${}_{\Gamma-TS}L$ into in-decomposable Γ -TS-sub-acts.

Def 4.9: A set K of generating elements of a Γ -TS-act $_{\Gamma$ -TS}L is known as a *basis* of $_{\Gamma$ -TS}L provided every element $p \in _{\Gamma$ -TS}L can be uniquely expressed as $p = s\alpha t \beta u$ for some

Theorem 4.10: Let $l: {}_{\Gamma-TS}K \to {}_{\Gamma-TS}B$ be a Γ -TS-homomorphism, then

- (i) If $_{\Gamma-TS}L$ is finitely generated then so is $h(_{\Gamma-TS}L)$.
- (ii) If $_{\Gamma-TS}L = \langle P \rangle$ and $i:_{\Gamma-TS}L \rightarrow_{\Gamma-TS}M$ is a Γ -TS-homomorphism, then h(s) = i(s) for every $s \in P$ implies l = g.
- (iii) If h is a Γ -TS-epimorphism and $_{\Gamma$ -TS} L = < P >, then $_{\Gamma$ -TS} M = < h(P) >.
- (iv) If h is a Γ -TS-isomorphism and $_{\Gamma TS}L$ is a free Γ -TS-act, then so is $_{\Gamma TS}M$.

Proof: we just prove (iv), let P be a basis of $_{\Gamma-TS}L$ and then $_{\Gamma-TS}L=<$ P >. It follows from (iii) that $_{\Gamma-TS}M=<$ h(P) >, i.e. h(P) is a generating set of $_{\Gamma-TS}M$. Therefore, for all

 $b \in {}_{\Gamma-TS}M \text{ there exist } s,t \in T,\alpha,\beta \in \Gamma \text{ and } u \in P \text{ such that } b = s\alpha t\beta f(u) \text{ . Suppose that } b = s'\alpha't'\beta'f(u') \text{ , for } s',t' \in T,\alpha',\beta' \in \Gamma \text{ and } u' \in P \text{ . Then } b = s\alpha t\beta f(u) = s'\alpha't'\beta'f(u') \text{ . This implies that } h(s\alpha t\beta u) = h(s'\alpha't'\beta'u') \text{ and hence } s\alpha t\beta u = s'\alpha't'\beta'u' \text{ because } h \text{ is one-one. Since S is a basis. Therefore } s = s',t = t',\alpha = \alpha',\beta = \beta',h(u) = h(u') \text{ . Hence, } h(P) \text{ is a basis of } {}_{\Gamma-TS}M \text{ .}$

Th 4.11: If $_{\Gamma-TS}K$ is a free Γ -TS-act, then $|\Gamma|=1$.

Proof: Let $_{\Gamma - TS}K$ is a free Γ -TS-act with a basis P.

Consider $\alpha, \beta, \alpha', \beta' \in \Gamma$, $s,t \in T$ and $u \in S$ By using theorem 3.3(ii), $s\alpha t\beta u \in T\Gamma T\Gamma u$ and then $s\alpha t\beta u = s'\alpha' t'\beta' u'$ for some $s',t'\in T,\alpha',\beta'\in \Gamma$ and $u,u'\in S$. Since P is a basis, $\alpha=\alpha',\beta=\beta'$.

5. Conclusion

This type of ternary structures and their generalizations, the so called Γ -TS-act rise certain hopes in view of their possible applications in Organic Chemistry. the well-known generalization of ternary semi group T is ternary γ -semi group.

Acknowledgement

Our thanks to all who supported to us for preparation of the paper.

References

- [1] Chinram. R and Thinpun. K., Isomorphism theorems for gamma semigroups and ordered gamma semi groups, Tha. Journal of Mathematics, 7(2), (2008), 231-241.
- [2] Howie, J. M., Automata and Languages, Oxford University press, Oxford (1991).
- [3] Hssin. Z., Gamma modules with gamma rings of gamma endomorphism, International Journal of Science and Technology, 6(3), (2013), 346-354.
- [4] Madhusudhana Rao. D., Vasantha. M., and Venkateswara Rao.M., Structure and Study of Elements in ternary Γ-Semigroups, International Journal of Engineering Research, Volume No 4, Issue No 4, (1st April 2015), pp:197-202.