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Abstract 
 

The idea behind this article is to introduce and study the notions of δ
gλ -compactness, δ

gλ -connectedness and δ
gλ Gi-axioms. These          

notions are characterized using various spaces and different types of continuity. 
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1. Introduction 

The conceptualization of  -closed sets  was made by          

Velicko[10] during 1968. Georgiou et al.[1] dealt with the idea of 

(⋀,  )-closed sets amid 2004. The notation of the so called δ
gλ -

closed sets[4] was made known in the year 2016. This   definition 
was a generalization of  -closed sets.  Consequently, many con-

cepts related to δ
gλ -closed sets are being studied[5][6][7][8][9]. 

This work consists of some interesting axioms like δ
gλ -

compactness, δ
gλ -connectedness and             δ

gλ Gi-axioms. These 

concepts are analyzed through various forms of continuity and 
separation spaces. 

 

2. Some Fundamentals 

 
Definition 2.1: Let (P,  ) be a topological space. Then a subset Z 

of  (P,  )  is known as 

(1) regular closed[3] if Z = cl (int (Z)). 
(2)  -open[10] if Z is the union of regular open sets. The 

collection of all  -open sets in (P,  ) is denoted by   O(P,  ). 
(3) ⋀ -set[1] if ⋀ (Z)=Z, where ⋀ (Z)=∩{O∈ O(P,  )│Z ⊆ 

O}. 
(4) (⋀,  )-closed[1]if Z = T∩C, where T is a ⋀  -set and C 

is a  -closed set. 

(5) δ
gλ -closed set[4] if cl(Z) ⊆ R whenever Z ⊆ R and R is 

(⋀,  )-open in P. 

Definition 2.2 :[7] Let (P,  ) be a topological space. Then a subset 

Z is said to be a δ
gλ -neighborhood of p ∈ P  iff  ∃ a δ

gλ -open set                

Q ∋ p ∈ Q ⊆ Z. 

Definition 2.3: A map ψ : (P,  ) ⟶ (Q,  ) is called 

(1) δ
gλ -continuous[5] if the inverse image of every open 

set in (Q,  ) is δ
gλ -open in (P,  ). 

(2) quasi δ
gλ  -continuous[9] if the inverse image of every 

δ
gλ -open set in (Q,  ) is open in    (P,  ). 

(3) perfectly δ
gλ -continuous[9] if the inverse image of 

every δ
gλ -open set in (Q,  ) is clopen in (P,  ). 

(4) contra 
δ
gλ -continuous[9] if the inverse image of every 

open set in (Q,  ) is δ
gλ -closed in (P,  ). 

(5) totally δ
gλ -continuous[9] if the inverse image of every 

open subset of (Q,  ) is δ
gλ -clopen in (P,  ). 

(6) strongly 
δ
gλ -continuous[9] if the inverse image of 

every subset of (Q,  ) is  δ
gλ -clopen in (P,  ). 

(7) δ
gλ -irresolute[9] if the inverse image of every δ

gλ -open 

set in (Q,  ) is δ
gλ -open in (P,  ). 

Definition 2.4 :[6]A space (P,  ) is known as a δ
gλ T  -space if 

every δ
gλ -closed subset of (P,  ) is  -closed in (P,  ). 

 

3. 
δ
gλ -Compactness 

 
Definition 3.1 :A collection   of a topological space (P,  ) is said 

to cover P (or) to be a covering of P if the union of elements of   
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is equal to P.   is said to be a δ
gλ -open covering of P if its ele-

ments are δ
gλ -open sets of (P,  ). 

 

Definition 3.2 : A non-empty collection {Zi | i∈ I} of δ
gλ -open 

sets in (P,  ) is said to be an δ
gλ -open cover of a subset B of (P, 

 ) if  B ⊆ ⋃{Zi | i∈ I}. 

 

Definition 3.3 : A topological space (P,  ) is called δ
gλ -compact 

if every δ
gλ -open cover of P has a finite subcover. 

 
Definition 3.4 : A subset B of a topological space (P,  ) is called 

δ
gλ -compact relative to P if for every collection {Zi | i ∈ I} of 

δ
gλ -open sets of (P,  ) ∋ B ⊆ ⋃{Zi | i∈ I} ∃ a finite subset I0 of I  

∋ B ⊆ ⋃{Zi | i∈ I0}. 

 

Theorem 3.5 : Every δ
gλ -closed subset of a δ

gλ -compact space P 

is δ
gλ -compact relative to P. 

Proof : Let Z be a δ
gλ -closed subset of  a δ

gλ -compact space P. 

Then P\Z is δ
gλ -open in P. Let S =  {Vi | i ∈ I} be a δ

gλ -open  

cover of Z in P. Then S*= S ⋃ {P\Z}is a δ
gλ -open cover of P. 

Since P is δ
gλ -compact, S* has a finite subcover of P, say P =  Vi1 

⋃ Vi2 ⋃...⋃ Vim ⋃ Zc, where Vik ∈ S. But Z and P\Z are           

disjoint and hence Z ⊆ Vi1 ⋃ Vi2 ⋃...  ⋃ Vim, where Vik ∈ S. This 

implies that any δ
gλ -open cover S of Z contains a finite sub-cover.  

Therefore Z is δ
gλ -compact relative to P. 

 

Theorem 3.6 : A surjective δ
gλ -continuous image of a                     

δ
gλ -compact space is compact. 

Proof : Let ψ : P ⟶ Q be a surjective δ
gλ -continuous function 

from a δ
gλ -compact space P to Q. Let {Vi | i∈ I} be an open cover 

of Q. Since ψ is δ
gλ -continuous, {ψ -1(Vi) | i∈ I} is a δ

gλ -open 

cover of P. Since P is δ
gλ -compact, ∃ a finite subcover                

{ψ -1(V1), ψ -1(V2),..., ψ -1(Vn)} of {ψ -1(Vi) | i∈ I}. Since ψ is 

surjective, {V1, V2,...,Vn} is a finite open cover of Q. Hence (Q, σ) 
is             compact. 

Theorem 3.7 : A surjective, quasi δ
gλ -continuous image of a 

compact space is δ
gλ -compact. 

Proof : Let ψ : (P,  ) ⟶ (Q, σ) be a surjective, quasi                          
δ
gλ -continuous function and {Vi | i∈ I} be a δ

gλ -open cover of Q. 

Since ψ is quasi δ
gλ -continuous, {ψ -1(Vi) | i∈ I} is an open cover 

of P. Since P is compact, ∃ a finite open subcover {ψ -1(V1),                 

ψ -1(V2),..., ψ
 -1(Vn)} of {ψ -1(Vi) | i∈ I}. Since ψ is surjective, {V1, 

V2, ...,Vn} is a finite δ
gλ -open subcover of Q and hence Q is                

δ
gλ -compact. 

 

Corollary 3.8: A surjective, perfectly δ
gλ -continuous image of a 

compact space is δ
gλ -compact. 

Proof : Since every perfectly δ
gλ -continuous function is a quasi 

δ
gλ -continuous function, the result follows. 

 

Theorem 3.9: If ψ : (P,  ) ⟶ (Q, σ) is δ
gλ -irresolute and B ⊆ P is 

δ
gλ -compact relative to P then the image, ψ(B) is δ

gλ -compact 

relative to Q. 

Proof : Let ⋃{Zi | i∈ I} be a δ
gλ -open cover of  ψ(B) i.e., ψ(B) ⊆ 

⋃{Zi | i ∈ I} ⟹ B ⊆ ⋃{ψ -1(Zi) | i ∈ I }. Since B is δ
gλ -compact 

relative to P, {ψ -1(Zi) | i∈ I} has a finite subcover ⋃{ψ -1(Zi) |                  

i ∈ I0}(say) ∋ B ⊆ {ψ -1(Zi) | i ∈ I0} ⟹ ψ(B) ⊆ ⋃{Zi | i ∈ I0} ⟹ 

⋃{Zi | i ∈ I0} is a finite subcover of ⋃{ψ -1(Zi) | i ∈ I }.              

Therefore ψ(B) is δ
gλ -compact relative to Q. 

 

Theorem 3.10 : A topological space P is δ
gλ -compact iff each 

family of δ
gλ -closed subsets of P with the finite intersection  prop-

erty has a non-empty intersection. 
Proof : Given a collection G of subsets of P, let H = {P\G |             
G ∈ G } be the collection of its complements. Then we have,  

G is a collection of  δ
gλ -open sets iff H is a collection of δ

gλ -

closed sets. 

The collection G covers P iff the intersection H
H H
 of all ele-

ments of H is non-empty. 
The finite sub-collection {G1, G2, ... , Gn} of G covers P iff the 
intersection of the corresponding elements Hi =                  P \ Gi of 
H is empty. 
Statement (i) is obvious whereas (ii) and (iii) follow from 

DeMorgan's law: )A\(PA\P α
Jα

α
Jα 

  . Now we prove the 

theorem by contra positive approach which is equivalent to the 
following: 

Let G  be any collection of  δ
gλ -open sets in P. If no finite sub-

collection of G covers P, then G does not cover P. Now applying 
(i) to (iii), we observe that this statement is equivalent to the fol-
lowing: 

Given any collection H of δ
gλ -closed sets, if every  finite intersec-

tion of elements of H  is non-empty then intersection of all ele-
ments of H is non-empty.  

Definition 3.11 : A topological space (P,  ) is δ
gλ -Lindelof  if 

every δ
gλ -open cover of P contains a countable subcover. 

 

Theorem 3.12 : Every δ
gλ -compact space is δ

gλ -Lindelof. 

Theorem 3.13 : A surjective, δ
gλ -irresolute image of a                      

δ
gλ -Lindelof space is  δ

gλ -Lindelof. 

Proof : Let ψ : P ⟶ Q is a δ
gλ -irresolute, surjection and P be a 

δ
gλ -Lindelof space. Let {Ri | i ∈ I} be an δ

gλ -open cover of Q. 

Then {ψ -1(Ri) | i ∈ I} is a δ
gλ -open cover of P. Since P is                  

δ
gλ -Lindelof, it has a countable subcover namely {ψ -1(R1),                     

ψ -1(R1),..., ψ
 -1(Rn),...}. Since ψ is surjective, {R1, R2,...,Rn,...} is a 

countable subcover of Q. Hence Q is δ
gλ -Lindelof. 

 

Theorem 3.14 : A surjective δ
gλ -continuous image of a                      

δ
gλ -Lindelof is Lindelof. 

Proof : Let ψ : P ⟶ Q be a surjective, δ
gλ -continuous function 

from a δ
gλ -Lindelof space  P to Q. Let {Ri | i∈ I} be an open      

cover of Q. Since ψ is δ
gλ -continuous, {ψ -1(Ri) | i∈ I} is a             

δ
gλ -open cover of P. Since P is δ

gλ -Lindelof, ∃ a countable                  
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subcover {ψ -1(R1), ψ -1(R2),..., ψ -1(Rn),...} of {ψ -1(Ri) | i∈ I}. 

Since ψ is surjective, {R1, R2,...,Rn,...} is a countable subcover of 
Q. Hence (Q, σ) is Lindelof. 
 

Theorem 3.15 : A surjective, quasi δ
gλ -continuous image of a 

Lindelof space is δ
gλ -Lindelof. 

Proof : Let ψ : (P,  ) ⟶ (Q, σ) be a surjective, quasi                          
δ
gλ -continuous function and {Ri | i ∈ I} be a δ

gλ -open cover of Q. 

Since ψ is quasi δ
gλ -continuous, {ψ -1(Ri) | i ∈ I} is an open cover 

of P. Since P is Lindelof, ∃ a countable subcover {ψ -1(R1),                   

ψ -1(R2),..., ψ
 -1(Rn),...} of {ψ -1(Ri) | i ∈ I}. Since ψ is surjective, 

{R1, R2, ..., Rn,...} is a countable subcover of Q and hence Q is 
δ
gλ -Lindelof. 

 

Corollary 3.16 : A surjective, perfectly δ
gλ -continuous image of a 

compact space is δ
gλ -compact. 

Proof : The proof follows since every perfectly δ
gλ -continuous 

function is a quasi δ
gλ -continuous function. 

4. δ
gλ -Compactness 

Definition 4.1: A subset Z of a topological space (P,  ) is called 
δ
gλ -regular closed if Z = δ

gλ cl( δ
gλ int(Z)). 

δ
gλ -regular open if Z = δ

gλ int( δ
gλ cl(Z)). 

δ
gλ -regular if it is both δ

gλ -regular closed and δ
gλ -regular open. 

Definition 4.2 :[8] Let (P,  ) be a topological space. Then a          

subset Z  of (P,  ) is known as  δ
gλ -Frontier (briefly, δ

gλ Fr(Z)) is 

defined as δ
gλ Fr(Z) = δ

gλ cl(Z)\ δ
gλ int(Z). 

 

Theorem 4.3 : A subset Z of a topological space (P,  ) is δ
gλ -

regular iff δ
gλ Fr(Z) = ϕ. 

Proof :  Necessity : Let Z be δ
gλ -regular  then (i) Z = 

δ
gλ cl( δ

gλ int(Z)) and (ii) Z = δ
gλ int( δ

gλ cl(Z)). Now, (i) ⟹            

δ
gλ cl (Z) = δ

gλ cl( δ
gλ cl( δ

gλ int(Z))) = δ
gλ cl( δ

gλ int(Z)) = Z and         

(ii) ⟹ δ
gλ int(Z) = δ

gλ int( δ
gλ int( δ

gλ cl(Z))) = δ
gλ int( δ

gλ cl(Z)) = Z. 

Thus δ
gλ Fr(Z) = δ

gλ cl(Z)\ δ
gλ int(Z) = ϕ. 

Sufficiency : Let δ
gλ Fr(Z) = ϕ. This implies δ

gλ cl(Z) = δ
gλ int(Z) 

which means δ
gλ int(Z) = Z = δ

gλ cl(Z). Thus we have 

δ
gλ cl( δ

gλ int(Z)) = δ
gλ cl(Z) = Z and δ

gλ int( δ
gλ cl(Z)) = δ

gλ int(Z) = 

Z. Hence Z is δ
gλ -regular. 

 

Definition 4.4: A topological space (P,  ) is called δ
gλ -connected 

if P cannot be expressed as a union of two disjoint, non-empty, 
δ
gλ -open sets. 

 
Theorem 4.5: For a topological space (P,  ), the following are 

equivalent: 

P is δ
gλ -connected. 

P and ϕ are the only 
δ
gλ -regular subsets of  P. 

Each δ
gλ -continuous function of P into a discrete space Q with 

atleast two points is a constant function. 

Every non-empty proper subset has a non-empty  δ
gλ -Frontier. 

 

Proof :(i) ⟹ (ii) Let R be a δ
gλ -regular subset of P. Then P\R is 

both δ
gλ -open and δ

gλ -closed in P. Since P is the disjoint union of 

δ
gλ -open sets R and P\R, P is not δ

gλ -connected which is a             

contradiction to (i) and hence one of these must be empty. That is  
 
R = ϕ or R = P. 
 

(ii) ⟹ (i) Suppose P = Z ⋃ B, where Z and B are non-empty,  
δ
gλ -open sets. Then Z = P\B is  δ

gλ -closed. Then Z is a                    

non-empty, proper subset that is δ
gλ -regular. This is a contradic-

tion to (ii). Hence P is δ
gλ -connected. 

(ii) ⟹ (iii) Let ψ : (P,  ) ⟶ (Q, σ) be a δ
gλ -continuous function 

and Q be a discrete space with at least two points. Then for each            

q ∈ Q, {q} is both open and closed. Since ψ is δ
gλ -continuous,                         

ψ -1{q} is δ
gλ -open as well as δ

gλ -closed in P and P = ⋃{ψ -1{q}| q 

∈ Q}. By hypothesis ψ -1{q} = ϕ or P for each q ∈ Q. If ψ -1{q} = ϕ, 

for all q ∈ Q then ψ will not be a function. If ψ -1{q} = P, for a    

single point q ∈ Q then there cannot exist another point q1∈ Q ∋  
ψ -1{q1} = P. Hence ∃ only one q ∈ Q ∋ ψ-1{q} = P and ψ -1{q1} = 

ϕ, where q1 ∈ Q and q1 ≠ q. This proves that ψ is a constant               

function. 

(iii) ⟹ (ii) Let R be a δ
gλ -regular subset in P. We wish to prove 

that the only δ
gλ -regular subsets are ϕ and P. Suppose R ≠ ϕ then 

we claim R = P. Let q1, q2 ∈ Q. Define ψ : P ⟶ Q by 

 
 
 

 
Then for any open set S in Q, 

21

2

1

1

q

only

only

otherwise.φ

,qcontainsSifP

qconatinsSifR\P

qcontainsSifR

(V)













  

In all the cases, ψ -1(S) is δ
gλ -open in P. Also, ψ is a non-constant, 

δ
gλ -continuous function. This is a contradiction. Hence the only 

δ
gλ -clopen subsets of P are ϕ and P.  

(ii) ⟹ (iv) Let Z be a non-empty, proper subset of P. Suppose 
δ
gλ Fr(Z) = ϕ. Then Z is both δ

gλ -open and δ
gλ -closed which is a 

contradiction to (ii). 
(iv) ⟹ (ii) Suppose that Z is a non-empty, proper subset of P 

which is both δ
gλ -closed and  δ

gλ -open. This implies Z is                 

δ
gλ -regular and hence by Theorem 4.3, δ

gλ Fr(Z) = ϕ, which is a 

contradiction. 
 

Theorem 4.6 : A surjective, δ
gλ -continuous image of a                      

δ
gλ -connected space is connected. 

Proof : Let ψ : (P,  ) ⟶ (Q, σ) be a surjective, δ
gλ -continuous 

function. Suppose Q is not connected. Then Q = Z ⋃ K, where Z 

and K are two disjoint, non-empty, δ
gλ -open subsets of Q. Since ψ 

is surjective & δ
gλ -continuous, P = ψ -1(Z) ⋃ ψ -1(K) where                 

otherwise.

Up

,q

,q
(p)

2

1 






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ψ -1(Z) and ψ -1(K) are disjoint, non-empty and δ
gλ -open sets in           

(P,  ). But this is a contradiction to the fact that P is δ
gλ -connected. 

Hence Q is connected. 
 

Theorem 4.7 : If ψ : P ⟶ Q is a surjective, contra δ
gλ -continuous 

function and P is δ
gλ -connected then Q is connected. 

Proof : Let S be a clopen subset of Q. Since ψ is contra                      
δ
gλ -continuous, ψ -1(S) is δ

gλ -regular. As P is δ
gλ -connected,                

ψ -1(S) = ϕ or P. Since ψ is surjective, S = ϕ or Q. Hence Q is                
connected. 
 

Theorem 4.8 : Let ψ : (P,  ) ⟶ (Q, σ) be a surjective,                       
δ
gλ -irresolute function. If P is δ

gλ -connected then Q is                            

δ
gλ -connected. 

Proof : Let S be a δ
gλ -regular subset of Q. Since ψ is                          

δ
gλ -irresolute, ψ -1(S) is δ

gλ -regular in P. As P is δ
gλ -connected,                

ψ -1(S) = ϕ or P. Since ψ is surjective, S = ϕ or Q. Hence Q is               
δ
gλ -connected. 

 

Theorem 4.9 : Let ψ : P ⟶ Q be a δ
gλ -open, δ

gλ -closed                  

(resp.   -open,  -closed) injection. If Q is δ
gλ -connected then P is 

also δ
gλ -connected. 

Proof : Let Z be a δ
gλ -regular set in P. Since ψ is δ

gλ -open and  

δ
gλ -closed, ψ(Z) is δ

gλ -regular in Q. Since Q is δ
gλ -connected, 

ψ(Z) = ϕ or Q. Since ψ is an injection, Z = ϕ or P. Hence P is                      
δ
gλ -connected. 

 

Theorem 4.10 : If ψ : P ⟶ Q is a totally δ
gλ -continuous function 

from a δ
gλ -connected space P to Q then Q has the indiscrete                

topology. 

Proof : Let S be open in Q. Since ψ is a totally δ
gλ -continuous 

function, ψ-1(S) is  δ
gλ -regular in P. Since P is δ

gλ -connected,               

ψ -1(S) = ϕ or P. Since ψ is an injection,  S = ϕ or Q. Hence Q has 
the indiscrete topology. 
 

Theorem 4.11 :  If ψ : P ⟶ Q is a strongly δ
gλ -continuous             

bijective function and Q is a topological space with atleast two 

points then P is not δ
gλ -connected. 

Proof : Let q ∈ Q. Then ψ -1({q}) is a non-empty proper subset of 

P which is δ
gλ -regular, as ψ is strongly δ

gλ -continuous. Therefore 

P is not δ
gλ -connected. 

 
Theorem 4.12 : If a topological space (P,  ) is almost weakly 

Hausdorff and connected then it is δ
gλ -connected. 

Proof : Suppose P is not δ
gλ -connected. Then P = Z ⋃ B, where Z 

and B are non-empty, disjoint,  δ
gλ -open sets of P. Since P is al-

most weakly Hausdorff, Z and B are open in P[9]. This contradicts 

the connectedness of P. Hence P is δ
gλ -connected. 

Theorem 4.13: Every topological space which is both δ
gλ T   and 

connected is δ
gλ -connected. 

Proof : Obvious. 

5. 
δ
gλ Gi - Axioms (i = 1, 2) 

Definition 5.1 : Let (P,  )  be a topological space. It is said to be a                      
δ
gλ G1-space if for any point p ∈ P and any connected subset M of 

P with p ∉ M, ∃ δ
gλ -open sets R and S ∋ p ∈ R, M ⊆ S, R ⋂ M = 

ϕ and {p} ⋂ S = ϕ. 

 
Example 5.2 : Let P = {x, y, z, d} and   = {P, ϕ, {x}}. Then               

(P,  ) is a δ
gλ G1-space as for z ∈ M and a connected set M =             

{x, y} with z ∉ {x, y}, ∃ δ
gλ -open sets R = {z} and S = {x, y} ∋ z 

∈ {z}, {x, y} ⊆ {x, y}, {z} ⋂ {x, y} = ϕ.  

 

Theorem 5.3 : If every connected subset of P is δ
gλ -closed then 

for any two disjoint connected subsets M and N of P, ∃ δ
gλ -open 

sets R and S ∋ M ⊆ R, N ⊆ S, R ⋂ N = ϕ and M ⋂ S = ϕ. 

Proof : Let M and N be any two disjoint connected subsets of P. 

Then by hypothesis, M and N are δ
gλ -closed. This implies P\M 

and P\N are δ
gλ -open sets containing N and M respectively, as M 

and N are disjoint. Now let R = P\N and S = P\M. Then N ⋂ R = S 

⋂ M = ϕ. 

 

Theorem 5.4 : If for any two disjoint connected subsets M and N 

of P, ∃ δ
gλ -open sets R and S ∋ M ⊆ R, N ⊆ S, R ⋂ N = ϕ and S 

⋂ M = ϕ then P is δ
gλ G1. 

 
Definition 5.5 :Let (P,  ) be a topological space and (Q, σ) be its 

subspace. Then a subset Z of Q is δ
gλ -open in Q if Z can be           

written as Z = Q ⋂ K where K is δ
gλ -open in P. 

 

Theorem 5.6 : Every  -open subspace Q of a δ
gλ G1-space P is 

δ
gλ G1. 

Proof : Let Z be a connected subset in Q. Then Z is connected in 

P as well. Let q ∈ Q ⊆ P ∋ q ∉ Z. Then by hypothesis, ∃ δ
gλ -open 

sets R and S ∋ q ∈ R, Z ⊆ S, R ⋂ Z = ϕ and {q} ⋂ S = ϕ. By the 

definition of subspace topology, Q ⋂ R and Q ⋂ S are δ
gλ -open 

sets in Q ∋ q ∈ Q ⋂ R, Z ⊆ Q ⋂ S and (Q ⋂ R) ⋂ Z = {q} ⋂           

(Q ⋂ S) = ϕ. Hence Q is a δ
gλ G1-space. 

 

Theorem 5.7 : A bijective, continuous and δ
gλ -irresolute image of 

a δ
gλ G1-space is a δ

gλ G1-space. 

 
Proof : Let ψ : P ⟶ Q be a continuous function and M be a            

connected subset in P ∋ p ∉ M. then ψ(M) is connected in Q. 

Since ψ is one to one and onto, ψ(p) ∉ ψ(M). Now since Q is  
δ
gλ G1, ∃ δ

gλ -open sets R and S in Q ∋ ψ(p) ∈ R, ψ(M) ⊆ S and R 

⋂ ψ(M) = {ψ(p)} ⋂ S = ϕ. Since ψ is  δ
gλ -irresolute, ψ -1(R) and ψ 

-1(S) are δ
gλ -open sets in P with p ∈ ψ -1(R) , M ⊆ ψ -1(S) and ψ -

1(R) ⋂ M = {p} ⋂ ψ -1(S) = ϕ. Hence P is a δ
gλ G1-space. 

Definition 5.8 : A topological space (P,  ) is called δ
gλ G2-space 

if for every connected set F and a point p ∉  F, ∃  δ
gλ -open sets R 

and S ∋  p ∈  R, F ⊆ S and R ⋂ S = ϕ. 
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Example 5.9 : Let P and � be defined as in Example 5.2. Then    

(P, �) is a δ
gλ G2-space as for z ∈  F and a connected set F = {x, y} 

with z ∉  {x, y}, ∃  δ
gλ -open sets R = {z} and S ={x, y} ∋  z ∈  {z}, 

{x, y} ⊆ {x, y}, {z} ⋂ {x, y} = ϕ.  

 

Theorem 5.10 : Every δ
gλ G2-space is a δ

gλ T2-space. 

Proof : Let (P, �) be a δ
gλ G2-space and p ≠ q ∈  P. Then p ∉  {q}, 

which is a connected set. By hypothesis, ∃  δ
gλ -open sets R and S 

∋  p ∈  R, {q} ⊆ S and R ⋂ S = ϕ. Therefore ∃  δ
gλ -open sets R 

and S ∋  p ∈  R, q ∈  S. Hence (P, �) is a δ
gλ T2-space. 

 

Theorem 5.11 : A �-open subspace of a δ
gλ G2-space is δ

gλ G2. 

Proof : Similar to Theorem 5.6. 
 

Theorem 5.12 : If a topological space (P, �) is δ
gλ G2 then for any 

point p ∈  P and any connected subset M not containing p,  
δ
gλ cl(R) ⋂ M = ϕ, where R is a δ

gλ -open neighborhood of p. 

Proof : Let M be a connected subset of P ∋  p ∉  M. Since P is a 
δ
gλ G2-space, ∃  disjoint, δ

gλ -open sets R and S ∋  p ∈  R, M ⊆ S. 

This implies R ⊆ P\S and hence δ
gλ cl(R) ⊆ δ

gλ cl(P\S) = P\S, as 

P\S is δ
gλ -closed. Further δ

gλ cl(R) ⋂ M = ϕ, as M ⊆ S. 

6. Conclusion  

Some conditions for preserving δ
gλ -compactness are derived. 

Results relating δ
gλ -compactness with compactness are obtained. 

δ
gλ -connectedness is related to connectedness through almost 

weakly Hausdorff space and δ
gλ T� -space, even though δ

gλ -open 

sets and open sets are independent of each other. It is interesting to 

note that any surjective, δ
gλ -irresolute image of a δ

gλ -connected 

space is δ
gλ -connected. The nature of δ

gλ G1-space is preserved by 

a bijective, continuous and δ
gλ -irresolute function. 

References  

[1] Georgiou, D. N., Jafari, S. and Noiri, T., Properties of                  (⋀, 

 )-closed sets in topological spaces, Bollettino dell'Unione 

Matematica Italiana, Serie 8, 7-B(2004), 745-756. 

[2] Sivakamasundari, K., Some gG-axioms, Research Highlights, 

21(2011), 227-231. 

[3] Stone, M., Application of the theory of Boolean rings to general 

topology, Trans. Amer. Math. Soc.,41(1937), 374-481. 

[4] Vaishnavy, S. and Sivakamasundari, K., A New Generalization of 

 -Closed Sets Using Two Different Operators, International Journal 

of Engineering Sciences and Research Technology, 5(9)(2016), 

791-795. 

[5] Vaishnavy, S. and Sivakamasundari. K., Special properties and 

Continuity aspects on 

δ
gλ

-closed sets, Global Journal of Pure and 

Applied Mathematics , 13(1)(2017), 56-61. 

[6] Vaishnavy, S. and Sivakamasundari, K., Separation Axioms on 
δ
gλ

-Closed Sets, International Journal of Computer and          

Mathematical Sciences, 6(6)(2017), 6-12. 

[7] Vaishnavy, S. and Sivakamasundari, K., 

δ
gλ

-Neighborhood in 

Topological Spaces, International Journal of Engineering Technol-

ogy Science and Research, 4(6)(2017), 344-347. 

[8] Vaishnavy, S. and Sivakamasundari, K., Some Concepts              

related to 

δ
gλ

-closed sets, Proceedings of National Conference on 

Mathematical Modelling NCMM 2017, 101-106. 

[9] Vaishnavy, S. and Sivakamasundari, K., Continuity aspects on 

δ
gλ

-

closed sets, International Journal of Pure and Applied Mathematics 

(Accepted). 

[10] Velicko, N. S., H-closed topological spaces, Amer. Math. Soc. 

Transl., 78(1968),  102-118. 


