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Abstract 
 
My idea of this paper is to discuss the MATLAB program for various mathematical modeling in ordinary differential equations (ODEs) 
and partial differential equations (PDEs). Idea of this paper is very useful to research scholars, faculty members and all other fields like 
engineering and biology. Also we get easily to find the numerical solutions from this program. 

 
Keywords: Matlab Program, nonlinear ODE and PDE 

 

1. Introduction 

The MATLAB is the very powerful tool in mathematics and all 
other engineering, as well as medicine. Many of the nonlinear 

ODE and PDE analytical solutions is very difficult. So we find the 
numerical solution and then compare to the real life problems. 
Hence we will use the MATLAB codes for all nonlinear programs 
such as ODE and PDE type problems [1]. Furthermore this 
MATLAB code is very useful to research scholars and faculty 
members for various mathematics department, engineering and 
medicine also [2]. 
In our work, mostly I have discussed many of the papers of math-

ematical modeling and mathematical biological phenomena [3, 4]. 
In this regard, we used many models from biology like, HIV mod-
el, SIR and SIS models, predator prey models, Lotka Volterra 
models, second order nonlinear ODE and PDE etc [5, 6, 7]. Hence 
these all models MATLAB codes are very useful for research 
scholars and beginners of the research areas in all application ori-
ented field of biology, Engineering and pure mathematics etc [8, 
9, 10].  

In the HIV model is the best example of the mathematical model-
ing of biological area [9, 13]. Then its MATLAB code is good for 
other nonlinear ODE. So we will use the same code for all these 
types of problems in the system of equations [11]. Not only the 
nonlinear ODE, we discussed the nonlinear PDE that it gives fan-
tastic Matlab codes [12]. 
Finally, it is given for one beautiful example of the numerical 
simulation of predator prey model that MATLAB code is valuable 
for many mathematical modeling areas and uses it to all other 

simulation like delay also [13]. The PDE MATLAB codes are the 
mathematical modeling of all areas such as valid for numerical 
simulations and many real life problems [14, 15]. Hence I con-
clude that this paper is useful for all researchers and same it will 
be used in many fields [16]. Already I have published many pa-
pers in international journals [5-16]. 
 
 

 

2. Mathematical models of nonlinear equa-

tions of  ODE and PDE 

In this section, we gave some important mathematical models in 
current research area based equations of the biology, engineering 

and other fields. It is collected from different areas of research in 
ODE and PDE as below: 

(i) HIV model 
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(ii) Enzyme Kinetics 
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 (iv) three-species predator–prey problem 
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(v) SIR model 
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(vi) Original Lotka–Volterra equations 
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(vii) Second order nonlinear ODE 
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(viii) SIR new model 
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(ix) Second order nonlinear ODE 
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(x) Second order nonlinear PDE 1
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(xi) Second order nonlinear PDE 2
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3. MATLAB program 

This section we discussed MATLAB code for above mentioned 
equations. Each model obtained the current research. The follow-
ing MATLAB programs are executed for as below: 
(i). function xprime = file name (t, x) 
s = 1;  

r = 0.05;   
max = 1600;  
mu = 0.01; 
 b = 17; 
 a = 1; 
 m1 = 0.000034; 
 m2 = 0.005; 
 N = 10000; 

xprime = [s-mu*x1+r*x1.*(1-(x1+x2+x3)/max)-m1*x4.*x1; 

 m1*x4.*x1-mu*x2-m2*x2;  
m2*x2-b*x3;  
N*b*x3-m1*x4.*x1-a*x4]; 
[t, x] = ode23(‘file name’,[0 1000], [10000; 0; 1; 1]); 
Plot (t, x) 
(ii). function xprime = file name (t, x) 
 mm1 = 1; 
 m2 = 1; 

 m1 = 1; 
xprime = [-m1*x1+m1*m2;  
m1*x1-(mm1+m2)*x2; m2*x2]; 
a = 0.5; 
b = 0.0001; 
c = 0.0001; 
[t1,x1] = ode23 (‘file name’,[0 10],[a; b; c]); 
plot(t1,x1); 

[t10, x10] = ode23 (‘file name’,[0 10],[a; b; c]); 
Plot (t10, x10) 
(iii). function xprime = file name (t, x);  
r = 4;  
a = 5; 
x  prime = [-r*x1.*x2;  
r*x1.*x2-a*x2; 
a*x2]; 

[t, x] = ode45 (‘file name’,[0 100], [0.7; .1; 0]); 
Plot (t, x) 
(iv). function x prime = file name (t, x); 
 x prime = [-x1+x1.*x2;  
-x2+2*x2.*x3-x1.*x2;  
2*x3-x3.*x3-x2.*x3]; 
[t, x] = ode23 (‘file name’,[0 100],[0; .4; 2]); 
Plot (t, x) 
(v). n = 1000;  

delt =1/n; 
tf = 4; 
nf = (tf+1)*n+1; 
for  
I = 1 : n 
x1 = 0; 
x2 = 0; 
x3 = 0; 

end 
x1(n+1) = 4;  
x2(n+1) = 0.1; 
x3(n+1) = 0;  
for  
i = n+1 : nf-1 
y = delt*[-r*x1*x3+x1(i-n);  
r*x2*x3-a*x3; 

 a*x3-x1(i-n)];  
x2(i+1) = x2+y1; 
x3(i+1) = x3+y2;  
x1(i+1) = x1+y3; 
end 
t = -1:delt : tf; 
Plot (t, x1, t , x2 ,t , x3)  
(vi). function xprime = file name (t, x) 

a = 1.04; 
b = 1.25; 
c = 1.45; 
d = 1.23; 
xprime = [a*x1-b*x1.*x2; 
 -c*x2+d*x1.*x2]; 
[t, x] = ode(‘file name’,[0 100],[1 ; 1]);  
plot(t, x)  

(vii). function pdex 
 a1= 0; 
 x = linspace (0,10); 
 t = linspace (0,10000);  
function [a, b, c] = pdex (x, t, v , dvdx) 
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a = [2; 2]; 
b = [2; 2] .* dudx; 
a1 = 0.7; 
b1 = 90;   
c1 = 2;  
f = -a1^2*v1*v2;   
f1 = -(a1^2)*v1*v2/(b1*c1); 
c  = [f; f1];  

function v = pdex 
v = [2; 2]; 
function [c1, c2, c3, c4] = pdex (xl, vl, xr, vr, t)  
a1 = 0.6; 
b1 = 67; 
c1 = 2;  
a2 = 0.4;  
b2 = 0.2; 

c2 = 100;  
d2 = 0.04;  
v = 0.0001; 
c1 = [v1-1; -a2*(1-b2)*v2]; 
c2 = [0; 1];  
c3 = [a1^2*(c2-1)*v1+d2*(v1-v0) v2)-1]; 
c4 = [1; 0]; 
(viii). function main = odex 

x0 = [0 ; 0.1, 1]; 
tspan = [0 1000];  
tic [t, x] = ode45 (tf, tspan, x0, options); 
plot(t, x) 
return 
function [dxdt]= tf (t, x)  
a = 10.45; 
b = 10.50; 
c = 10.70; 

d = 10.019;  
dxdt1 = (1-a)*b-c*x1*x2-b*x1; 
dxdt2  = c*x1*x2-(b+d)*x2; 
dxdt3  =a*b+d*x2-b*x3;  
dxdt  = dxdt; 
 return 
(ix). function pdex  
m = 0;  

x = linspace (0, 10);  
t = linspace (0, 10000);  
plot (x, v)  
function [d, e, f] = pdex (x, t, v, dvdx)  
d  = 9; 
e  = dvdx; 
la = 4;  
h =la*exp(v); 

f = h;  
function v = pdex  
v = 12;  
function [c1,c2,c3,c4] = pdex (xl, vl, xr, vr, t)  
c1 = vl; 
c2 = 0.004; 
c3= vr-0.007;  
c4 = 0.001; 

(x). function pdex  
a = 0;  
x = linspace (0,1); 
t = linspace (0,1000);  
function [d, e, f] = pdex(x, t, v, dvdx) 
d = [2; 2];  
e = [2; 2] .* dvdx;  
x = v1 * v2; 

x1=v1*v3; 
a = 0.0011; 
b = 0.012; 
h=0.24; 
la =0.00019; 

g  = (-la*x-x1);  
g1 = (-b*x); 
g2 = (-a*b*x)-h + h*v2;  
f=[g1; g2];  
function v = pdex 
v  = [0; 100];  
function[c1,c2,c3,c4] = pdex(xl, v1, xr, vr, t)  
c1 = [v1-1; 0];  

c2 = [0; 1];  
c3 = [v1; v2-1]; 
c4 = [0,0]; 
(xi). function pdex 
a = 4; 
x = linspace (0,1);  
t =  linspace (0,1000); 
function [d, e, f] = pdex (x, t, v, dvdx) 

d = 2; 
e = dvdx;  
q = 0.7; 
b = 100; 
y = -q^2*b*v1/(b+b*v1+v1^2);  
f = y; 
function v = pdex  
v = 2; 

function [c1, c2, c3, c4]=pdex (xl, vl, xr, vr, t)  
c1 = 0.0018; 
c2 = 24; 
c3 = vr-21; 
c4 = 0.00419; 

4. Numerical Example 

This section I have discussed MATLAB code for predator prey 
model and to find the numerical solution of the system. It gives 
the population species in Fig 1. & predator prey for Fig 2, error for 
Fig 3, Fig 10. Also the population of predator prey percentages is 
in Fig 4-9 & Fig 11-14. 
File name 
Parameters    = structure (); 
Initial States = structure ();    

Ts = 0;                       
nlgr = idnlgrey(); 
disp ('parameter estimation'); 
p true = [0; 1; 0; 1]; 
disp(' initial values'); 
x true = [0.2; 4]; 
z = id data(y, 0.1, 'File Name', 'predator -prey system'); 
Set (); 

fprintf(‘1.4f   1.4', [p true]); 
Similarly, we develop the remaining all diagrams by using the 
same way to use MATLAB codes in the same systems. Hence it is 
a code for all the populations and predictions in different percent-
ages in this program. 
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Fig. 1: Estimation of population of species 1 and 2 
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Fig. 2: Estimation of population of predators and preys in 21.78% 
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Fig. 3: Estimation of population of prediction error for output #1 and #2 
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Fig. 4: Estimation of population predators and populations preys in 

97.97% 
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Fig. 5: Estimation of population of predator prey in 47.78% 
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Fig. 6: Estimation of population of predator prey in 97.35% 
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Fig. 7: Estimation of population of predator prey in 97.92% 
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Fig. 8: Estimation of population of predator prey in 21.78% 

 

0 5 10 15 20

0.5

1

1.5

2

2.5

Population, predators. (1-step pred)

P
o
p
u
la

t
io

n
,
 
p
r
e
d
a
t
o
r
s

 

 
z; measured

nlgr; fit: 98.08%

0 5 10 15 20

0.5

1

1.5

2

2.5

Population, preys. (1-step pred)

Time (Year)

P
o
p
u
la

t
io

n
,
 
p
r
e
y
s

 

 
z; measured

nlgr; fit: 97.97%

 
Fig. 9: Estimation of population of predator prey in 97.97% 
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Fig. 10: Estimation of population of predator prey error 
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Fig. 11: Estimation of population of predator prey in 47.48% 
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Fig. 12: Estimation of population of predator prey in 97.35% 
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Fig. 13: Estimation of population of predator prey in 51.53% 
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Fig. 14: Estimation of population of predator prey in 97.92% 

5. Conclusion  

My work of this paper is to create the MATLAB program for var-
ious mathematical modeling of ODEs and PDEs such as very im-
portant to pure and applied mathematics. This MATLAB code is 
very useful to find the numerical solutions and approximate solu-
tions of nonlinearity problems. 
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