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Abstract 
 

 
Employees’ health status is one of the key issues that should be considered in ensuring the economic growth of a country. Information on 
employees’ health status is useful in social and economic studies, especially in issues related to work-related disabilities and deaths. The 
estimation of disability probability involves a challenging method as a disabled employee may move from one state to another (from 
temporary to permanent, or vice versa), or from one event to another (from disabled to active, or to death), implying that repeated 

responses may be obtained at different time points in the relevant longitudinal studies. Markov Chain Model can be used to analyze 
repeated measurements, or ordinal responses in a longitudinal data, and to compare between one health states to another. The main 
objective of this study is to estimate the Markov transition probabilities between health states using the Proportional Odds Model (POM) 
based on the dataset obtained from Social Security Organization, Malaysia (SOCSO). The results show that female employees in age 
group 55-59 have the highest probability of remaining in active state (A), while male employees in age group 15-19 have the lowest 
probability of remaining in active state (A), or have the highest risk of transitioning from healthy state to disability or death states. 
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1. Introduction 

Healthy and productive workers is an important factor that should be considered in ensuring the economic growth of a country. Work-
related injuries and disabilities have become an increasing burden to workers’ compensation because the estimation of transition 
probabilities concerning disability involves a challenging method. A disabled employee may move from one state to another (from 
temporary to permanent, or vice versa), or from one event to another (from disabled to active, or to death), implying that repeated 
responses may be obtained at different time points in the relevant longitudinal studies. 
Health-related and social science studies often involved longitudinal or panel data where repeated ordinal responses commonly occur, 
[1].  For this type of data, a sequence of ordinal responses for the same individual is considered, and the main focus is to estimate the 

degree of movement, or the transition, between consecutive time points. Several models were suggested to analyze simultaneously the 
effect of explanatory variables on a response variable, such as multiple linear regression for continuous response, logistic regression for 
categorical response, and Cox’s proportional hazards for censored response. All of these models are categorized under multiple linear 
regression [2, 3].  
Markov Chain Model (MCM) is often used for repeated responses where the effect of previous responses on the current response is taken 
into account. Many authors have used Markov models to analyze the problems. As examples, [4] using Markov Chain to modified the 
current No Claim Discount system in Malaysia, [5] fitted the  various orders to the daily rainfall and [6] to determine the occurrence of 
polluted and non-polluted for air pollution.  Several methods have been suggested to estimate the Markov transition probabilities for 
ordinal response data. [7] proposed the Proportional Odds Model (POM) for analyzing categorical outcomes from quality-of-life 

measures which are subjected to non-ignorable missingness, and [1] also suggested the POM to analyze complete and incomplete 
longitudinal ordinal responses. An application of the MCM for disability data can be found in [8] who estimated the Markov transition 
probabilities using several methods such as the counting method, the ordered logit regression, and the ordered probit regression. 
In this paper, we model the transition probabilities between health states using a MCM based on the dataset obtained from the 
Employment Injury Scheme (EIS) which is covered under the Social Security Organization, Malaysia (SOCSO).  The Markov transition 
probabilities are estimated using the POM, which is a popular method for ordinal responses [9]. 
Of all existing regression models, POM requires the proportional assumption regarding the nature of relationship between the response 
variable and the prediction factors [10]. The result of a POM can be misleading, or have no meaning at all, if the proportional odds 

assumption is not fulfilled. The POM is a sequential model that is used for ordinal responses, and is also known as the cumulative logit 
model [11, 12]. According to [11], the POM and the Partial POM are the best models for sequential ordinal responses compared to other 
logistic regression models due to the nature of data, and the easy interpretation of the results. The POM is also recommended to medical 
researchers by [2] as it helps doctors to easily understand the results of ordinal logistic responses. In our study, the estimates obtained 
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from the POM enable us to determine the age group and gender that has a negative (or posit ive) relationship with the transition 
probabilities, and thus, allowing us to identify the group of workers that have a more (or less) risky health status.  
In the next section, information on the employees’ injury data from SOCSO are provided using a descriptive analysis. The methodology 

for Markov transition model is also presented in the same section. The results are discussed in Section 3, and the conclusions are 
provided in Section 4.   

2. Data 

The sample data is obtained from SOCSO, which is an organization in Malaysia that acts as a safety net for an employee who becomes 
unemployed, temporarily disabled, permanently disabled, or dead. The data is based on secondary information of the EIS under SOCSO, 

covering the years of 2009 until 2013. The EIS is a suitable dataset for the construction of health transition probabilities as it reports four 
possible outcomes at yearly intervals for the health status: 1. Active/work (A), 2. Temporary disability (TD), 3. Permanent d isability 
(PD), and 4. Death (D). The health status represent the levels of disabilities based on the decisions of panel doctors appointed by SOCSO 
[13]. A more detailed discussion on the issues of disability among workers who contribute under SOCSO can be found in [14, 15]. 

The demographic characteristics of claimants at their entering states in year 2009 (or at 0T ) are shown in Table 1. The descriptive 

analysis show that a total of 263,971 contributors under the EIS submitted their claims in years 2009-2013, and can be categorized into 
gender and age groups. The majority of claimants are male employees (212,416, or 80% of the total claimants), while the remaining are 
female employees. The average age for male claimants is 34 with a standard deviation of 11.65, while the average age of female 
claimants is 35 with a standard deviation of 11.59. 

 
Table 1: Descriptive Statistics at Entering States, 2009 (

0T ) 

N:263,971 

Gender Male 212,416 Gender Female 51,555 

Age Min 34 Age Min 35 

 Median 33  Median 34 

 Mode 23  Mode 21 

 Std.dev.  11.65  Std.dev. 11.59 

 

Table 2: Number of Claimants in Each Year (Age: 15-65) 

 State Year 

  2009 2010 2011 2012 2013 

M 1 169,609 166,825 163,869 162,521 161,526 

 2 31,329 31,881 33,014 33,338 33,764 

 3 11,478 12,683 13,424 13,609 13,443 

 4 - 1,027 1,082 839 735 

F 1 42,188 41,330 40,484 39,716 39,517 

 2 7,193 7,674 8,224 8,730 8,981 

 3 2,174 2,448 2,640 2,805 2,664 

 4 - 103 104 97 89 

 
Table 2 shows the number of claimants according to health status and gender in years 2009 to 2013. State 1 (A) is the state where the 
employees do not make any reports of accidents at work or death. For state 2 (TD), the number of claimants increase from year  to year, 
increasing from 31,329 in year 2009 to 33,764 in year 2013 for male employees, and from 7,193 in year 2009 to 8,981 in year 2013 for 
female employees. The number of claimants for state 3 (PD) also increases throughout the years, except for female employees whose 
number declines in year 2013. For state 4 (D), the number of deaths for both male and female employees decreases from years 2010 to 

2013. It should be noted that information on the number of deaths in year 2009 is not available as this year is considered as the beginning 
year of the study. 

3. Methodology  

Our study is based on a longitudinal data where the transitional frequencies are classified into an ordered categorical response variable. 
The responses are obtained from repeated measures at different time points, and take the values of a set  of several ordered categories 
(values of 1 until 4).  The covariates are discrete variables (age group and gender), and their values stratify the population, where each 

population is homogeneous and is subject to the same temporal changes. 
 We use Markov chain model (MCM) to estimate the transition probabilities between health states as time or age progresses. Let 
 

1( )ij n nP P X j X i    (1) 

 

be the one-step transition probability of a response being in state j   at time 1n    , given that it is in state i   at time n   . Since the 

transition probabilities are annual probabilities, the values satisfy the following conditions:
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fundamental assumption for the one-step transition probability in this study is that the health state of an individual in a specific year 
depends only on the health state in the previous year. Therefore, the Markov transition probabilities are easily inferred because the 
complete sequences of health states from years 2009 to 2013 are observed and known for the entire population. In other words,  the 
transition probabilities can be obtained by observing the changes of health status of each employee in each pair of years (2009-2010, 
2010-2011, 2011-2012, 2012-2013) [16]. 



58 International Journal of Engineering & Technology 

 
The Markov transition probabilities are estimated using the Proportional Odds Model (POM). Suppose a response variable   takes the 

ordinal values of 1 until J . The cumulative probabilities can be defined as: 
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Assuming logistic regression, the cumulative probability, jw  , can be parameterized as: 

 

 '
1

log x
w

w
j

j

j

















, 1,...2,1  Jj  

 
(3) 

 

where x  is the vector of explanatory variables,    is the vector of regression coefficients, J  is the maximum ordinal value, and 

121 ...  J  are the intercepts. The POM is also known as a grouped continuous model, as it groups the observations into 

intervals with cut-points )1,...,1( ,  Jjj . Therefore, the transition probability of being in state j , jp , can be obtained using:  
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(4) 

4. Results and Discussion 

In this study, the parameter estimates of POM are obtained using R software, and the results are shown in Table 3. The estimates in Table 
3 can be used to obtain the transition probabilities of being in state 1 (A), state 2 (TD), state 3 (PD), and state 4 (D), given that it is 
previously in state 1 (A), conditioned on two covariates (age group and gender). The transition probabilities of being in states 1,2,3, and 
4, given that it is previously in state 2, or in state 3, are also estimated, but not shown here. 

The log odds for being in state 1 when the predictor variables (covariates) are evaluated at zero, is shown by intercept 1 ( 1 ). The log 

odds for a male employee in age group 15-19 is 0.8062, and the odds is 6913.0
1 8062.0

8062.0


 e

e
. The log odds for being in state 1 and state 

2 (shown by intercept 2, 2 ), for a male employee in age group 15-19, is 2.2749. Therefore, the odds for being in state 2 is 

.2155.0
11 8062.0
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
 e

e

e

e
 The log odds for being in state 1, state 2 and state 3 (shown by intercept 3, 3 ), for a male employee 

in age group 15-19, is 5.15. Therefore, the odds for being in state 3 is .0875.0
11 2749.2

2749.2
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 Finally, the odds for being in 

state 4 is 0057.0
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e
. It should be noted that the odds of being in states 1, 2, 3 and 4, given that it is previously in state 2, or 

in state 3, can be obtained in a similar manner. 
 It can be seen that the response variable (health state) is treated as an ordinal under the assumption that the state levels have a natural 

ordering (from low to high).  The regression estimates in Table 3 shows the log odds of one unit increases in the age group (or gender) on 
the health state, given that other variables are held constant. As an example, a subject in age group 20-24 is estimated to have 0.12 unit 

increases in the log odds while other variables are held constant. The comparison between male and female ( )1,0  femalemale  

shows that there is 0.05 unit increases in the log odds of a female employee, given that other variables are held constant. 

The regression estimates for age group and gender in Table 3 indicates that female employees in age group 55-59 have the highest 

probability of remaining in active state after 5 years (at 1T ) compared to other groups, as shown by the higher values (0.05 for female, 

and 0.29 for age 55-59). On the contrary, male employees in age group 15-19 have the lowest probability of remaining in active state, or 

equivalently, have the highest probability (or highest risk) of transitioning from healthy state to disability or death states after 5 years. 
The estimates of transition probabilities are shown in transition matrices in Tables 4-5, which are arranged according to age group and 
level of disability starting at any state, with the exception of an absorbing state (death). As an example, for a male employee in age group 

20-24 who is initially healthy (state 1), the transition probability for remaining healthy (state 1) after five years (at  ) is 0.6913, for 

moving to TD (state 2) is 0.2155, for transitioning to PD (state 3) is 0.0875, and for being in death state (state 4) is 0.057.  
 

Table 3: Result for transition model (from state 1i  to states 4321 ,,,j  ) 

Parameter Est.  S.E 

Intercept 1, 1  0.8062 0.0122 

Intercept 2, 2  2.2749 0.0126 

Intercept 3, 3  5.1570 0.0202 

Age 
  

20-24 0.1212 0.0136 

25-29 0.2099 0.0136 

1T
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30-34 0.1886 0.0138 

35-39 0.1804 0.0143 

40-44 0.1567 0.0141 

45-49 0.1658 0.0143 

50-54 0.1418 0.0148 

55-59 0.2935 0.0171 

60-64 0.2210 0.0214 

65-69 0.2205 0.0560 

Sex 
  

F 0.0494 0.0060 

M 0.0000 0.0000 

   

Log-likelihood  -606018 

Degrees of freedom 250 

 
The results in Table 4 indicates that a male employee has a higher probability of transitioning from PD to A at all age groups. For women 
employees (Table 5), the age groups of 25-29, 35-49 and 40-44 have the highest probability of transitioning from TD to A compared to 
other age groups.  When observing the risks of moving from one state to another, it can be broadly concluded that age and gender are 

important factors in estimating probability of transition besides level of disability. 

5. Conclusion 

In this study, we have developed the Markov Chain Model (MCM) for the probability of transition between health states using the 
Proportional Odds Model (POM), which is a convenient and easy method to model ordered categorical outcomes.  The estimates 
obtained from the POM enable us to determine the age group and gender that has a negative (or positive) relationship with the transition 
probabilities, and thus, allowing us to identify the group of workers that are exposed to a more (or less) risky health status. The parameter 

estimates were obtained using R software based on the Employment Injury Scheme (EIS) data from SOCSO, Malaysia. The results 
indicate that female employees in age group 55-59 have the highest probability of remaining in active state, while male employees in age 
group 15-19 have the lowest probability of remaining in active state, or have the highest risk of transitioning from healthy state to 
disability or death states after 5 years (at 

1T ). For future study, the estimated transition probabilities will be used for projecting the 

health expectancy and healthcare cost of disabilities and deaths among workers for a longer time horizon and a comparison model can be 
made in estimating the transition probabilities. As examples, a study conducted by [17] and [18] which comparing between logistic 
regression, artificial neural network, and Neuro-fuzzy to predict students’ academic achievement and survival of cardiac surgery patients 
accordingly. 

 
Table 4: Probabilities of transitions for male 

Age Health at  
Health at  

1 2 3 4 

15-19 1 0.6913 0.2155 0.0875 0.0057 

 
2 0.9604 0.0316 0.0076 0.0004 

 
3 0.9771 0.0117 0.0109 0.0002 

 
4 0.0000 0.0000 0.0000 1.0000 

20-24 1 0.7165 0.2000 0.0784 0.0051 

 
2 0.9579 0.0336 0.0081 0.0004 

 
3 0.9617 0.0195 0.0184 0.0003 

 
4 0.0000 0.0000 0.0000 1.0000 

25-29 1 0.7342 0.1889 0.0723 0.0046 

 
2 0.9550 0.0359 0.0087 0.0005 

 
3 0.9604 0.0201 0.0191 0.0004 

 
4 0.0000 0.0000 0.0000 1.0000 

30-34 1 0.7300 0.1915 0.0737 0.0047 

 
2 0.9443 0.0443 0.0108 0.0006 

 
3 0.9548 0.0229 0.0218 0.0004 

 
4 0.0000 0.0000 0.0000 1.0000 

35-39 1 0.7284 0.1925 0.0743 0.0048 

 
2 0.9425 0.0457 0.0112 0.0006 

 
3 0.9460 0.0273 0.0262 0.0005 

 
4 0.0000 0.0000 0.0000 1.0000 

40-44 1 0.7237 0.1955 0.0759 0.0049 

 
2 0.9370 0.0500 0.0123 0.0007 

 
3 0.9483 0.0262 0.0251 0.0005 

 
4 0.0000 0.0000 0.0000 1.0000 

45-49 1 0.7255 0.1944 0.0753 0.0049 

 
2 0.9329 0.0532 0.0132 0.0007 

 
3 0.9541 0.0233 0.0222 0.0004 

 
4 0.0000 0.0000 0.0000 1.0000 

50-54 1 0.7207 0.1974 0.0769 0.0050 

 
2 0.9276 0.0574 0.0143 0.0008 

 
3 0.9457 0.0274 0.0264 0.0005 

 
4 0.0000 0.0000 0.0000 1.0000 

55-59 1 0.7502 0.1786 0.0669 0.0043 

0T 1T
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2 0.9395 0.0481 0.0118 0.0006 

 
3 0.9626 0.0190 0.0180 0.0003 

 
4 0.0000 0.0000 0.0000 1.0000 

60-64 1 0.7364 0.1875 0.0715 0.0046 

 
2 0.9397 0.0479 0.0118 0.0006 

 
3 0.9750 0.0128 0.0119 0.0002 

 
4 0.0000 0.0000 0.0000 1.0000 

65+ 1 0.7363 0.1875 0.0716 0.0046 

 
2 0.9592 0.0325 0.0078 0.0004 

 
3 0.9708 0.0149 0.0140 0.0003 

  4 0.0000 0.0000 0.0000 1.0000 
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Table 4: Probabilities of transitions for female 

Age Health at  
Health at  

1 2 3 4 

15-19 1 0.7018 0.2091 0.0837 0.0055 

 
2 0.9814 0.0149 0.0035 0.0002 

 
3 0.9848 0.0078 0.0072 0.0001 

 
4 0.0000 0.0000 0.0000 1.0000 

20-24 1 0.7265 0.1938 0.0749 0.0048 

 
2 0.9802 0.0159 0.0037 0.0002 

 
3 0.9745 0.0131 0.0122 0.0002 

 
4 0.0000 0.0000 0.0000 1.0000 

25-29 1 0.7438 0.1828 0.0691 0.0044 

 
2 0.9788 0.0170 0.0040 0.0002 

 
3 0.9736 0.0135 0.0126 0.0002 

 
4 0.0000 0.0000 0.0000 1.0000 

30-34 1 0.7397 0.1854 0.0704 0.0045 

 
2 0.9736 0.0211 0.0050 0.0003 

 
3 0.9698 0.0154 0.0145 0.0003 

 
4 0.0000 0.0000 0.0000 1.0000 

35-39 1 0.7381 0.1864 0.0710 0.0046 

 
2 0.9727 0.0218 0.0052 0.0003 

 
3 0.9638 0.0185 0.0174 0.0003 

 
4 0.0000 0.0000 0.0000 1.0000 

40-44 1 0.7335 0.1893 0.0725 0.0047 

 
2 0.9701 0.0239 0.0057 0.0003 

 
3 0.9653 0.0177 0.0167 0.0003 

 
4 0.0000 0.0000 0.0000 1.0000 

45-49 1 0.7353 0.1882 0.0719 0.0046 

 
2 0.9680 0.0256 0.0061 0.0003 

 
3 0.9693 0.0157 0.0147 0.0003 

 
4 0.0000 0.0000 0.0000 1.0000 

50-54 1 0.7306 0.1912 0.0735 0.0047 

 
2 0.9654 0.0276 0.0066 0.0004 

 
3 0.9636 0.0186 0.0175 0.0003 

 
4 0.0000 0.0000 0.0000 1.0000 

55-59 1 0.7594 0.1726 0.0639 0.0041 

 
2 0.9713 0.0230 0.0055 0.0003 

 
3 0.9751 0.0128 0.0119 0.0002 

 
4 0.0000 0.0000 0.0000 1.0000 

60-64 1 0.7459 0.1814 0.0684 0.0044 

 
2 0.9714 0.0229 0.0054 0.0003 

 
3 0.9834 0.0085 0.0079 0.0001 

 
4 0.0000 0.0000 0.0000 1.0000 

65+ 1 0.7458 0.1815 0.0684 0.0044 

 
2 0.9809 0.0153 0.0036 0.0002 

 
3 0.9806 0.0100 0.0093 0.0002 

 
4 0.0000 0.0000 0.0000 1.0000 
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