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Abstract

In this work, the Fourier-Ritz approach is used to calculate the natural non- dimensional frequency of composite plate and compo-site
spherical shell with different arrangements of layers (cross and angle ply and symmetrical and anti-symmetrical layers) and dif-ferent
boundary conditions. The Fourier-Ritz approach is the modified Fourier series in connection with a Ritz technique to de-duce the formu-
lation based on the classical shallow shell theory. Additionally, the Finite Element method (FEM) (ANSYS Software Version 17.2) is
used in this work for predicting the natural non- dimensional frequency of composite plate and composite spherical shell. The effect of
(b/a) ratio on non- dimensional frequency of composite plate and composite spherical shell is studied for differ-ent layers arrangements
when the boundary conditions are (CCCC) and (SSSS). The comparisons between the non- dimensional frequency results are made.

Keywords: Fourier-Ritz Method; Finite Element Method; ANSYS, Free Vibration; Composite Spherical Shell; Composite Plate.

1. Introduction

A shell can be defined as a three dimensional body confined by
two parallel surfaces unless the thickness is varying and the dis-
tance between those surfaces is small compared with other shell
parameters. Shallow shell is one of common shell structural ele-
ments and can be defined as an open shell that has small curvature
(i.e. if the radii of curvature are larger than other shell parameters
such as length and width). The shallow shell can be classified
according to types of curvature into circular cylindrical, spherical,
ellipsoidal, hyperbolic and paraboloidal or can be classified ac-
cording to types of planforms into triangular, trapezoidal, rectan-
gular, circular, and others. The shallow shells are widely used in
aircraft structures, space vehicles, deep-sea engineering equip-
ment, aerospace structures, , civil engineering applications and
other fields of engineering. Several works dealt with vibration of
shallow shell considering isotropic material and these researches
proposed and developed various shell theories. Shell theories can
be classified into three main categories:

1) Thin shallow shell theory [1-12] (e.g., classical shell theory
or CST).

2) Thick shallow shell theory [13-17] (e.g., HSDT and three-
dimensional (3-D) elasticity theory or higher-order shear de-
formation theory).

3) Moderately thick shallow shell theory [18-21] (e.g., first-
order shear deformation theory or FSDT).

In additional to Shell theories, several methods of solution were
proposed in these researches like numerous analytical (wave prop-
agation method [9]), semi-analytical and numerical methods (fi-
nite element method (FEM) [19] and Rayleigh-Ritz method [3-7]).
Qatu [22] has looked clearly at the natural vibration of fully free
laminated composite shallow shells that are of two types triangular
and trapezoidal using the five-levels -of- freedom shallow shell

theory. Khdeir and Reddy [23] has added a propagated modal
approach for the prediction of free and force vibration of the arch-
es of cross- ply laminated composite shallow. Soldatos and Shu
[24] have exactly predicted the stress analysis of cross-ply lami-
nated plates and shallow shell panels with a rectangular plan-form.
Reddy et al [25] and Qatu [26] have examined the wide interest in
vibration actions of laminated composite shallow shells. Most of
the previous studies on this subject are limited to the classical
boundary conditions and their integrations (i.e., clamped, simply-
supported, free and shear-diaphragm boundaries). It is obvious, in
mesh free method which is based on the wavelet collocation, is
used by Ferreira et al. [27] to compute the static deformation and
frequencies of doubly-curved composite shells. The two kinds of
vibration analysis static or free of the doubly-curved shells has
been performed by Ferreira et al. [27,28] with the radial standard
of the collocation features. Qatu and Asadi [29] have introduced
the first understandable free vibration project of isotropic shallow
shells which are subjected to arbitrary boundary circumstances of
Ritz method. Fazzolari and Carrera[30] has developed a hierar-
chical trigonometric Ritz formulation which is related to free vi-
bration and dynamic reaction analysis of doubly-curved aniso-
tropic laminated shallow as well as deep shells. Guoyong Jinet el
at [31] has studied a defined Fourier-Ritz approach for free vibra-
tion analysis of laminated effectively stepped shallow shells with
widespread boundary conditions in the scope of first-order sheared
figuration shallow shell theory. Qingshan Wang et.al [32] has
finished the vibration works of composite laminated circular pan-
els and shells with common elastic restraints revolution and also
improved a connecting adequately accurate analytical procedure to
achieve some beneficial results of the target problem which may
be used for evaluating future researchers. The first shear distorted
order shell theory is used to formulate the theoretical model.
Wang et.al [33] have introduced a semi- analytical method for
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feasibly graded carbon nanotubes that in return emphasized a
composite shallow shells with general boundary conditions by
using the Rayleigh—Ritz method. This method has used the devel-
oped Fourier series to explain the admitted function of shells, four
different unique types of the doubly curved panels are studied
comprising with the cylindrical shallow, spherical shell, hyperbol-
ic paraboloid shallow and flat plate. The arbitrary boundary condi-
tions are adopted by presenting the artificial spring boundary
technique. In this work, the Fourier-Ritz approach and finite ele-
ment method (FEM) are used to calculate the natural frequency of
composite plate and composite spherical shell with different ar-
rangements of layers (cross and angle ply and symmetrical and
anti-symmetrical layers). The effect of (b/a) ratio on frequency is
studied.

2. Governing equations and solution

Vibration problems such as classical laminated thin shallow shell
theory (CSST), higher order shear deformation shallow shell theo-
ry (HSST) and first order shear deformation theory (FSDT). In
this work, the classical shallow shell theory (CSST) is used in
order to study the free vibration of isotropic and orthotropic spher-
ical shell with different boundary conditions.

For the case of coordinates of principal curvature, the reduced
equations of motion for the laminated shallow shell can be written
in terms of force and moment resultants as [26]:

ON] x/ox+ [ON] xy/oy+q x=-1_s (0”2 u)/(0"2 t)

Generally, the reduced equations of motion for the laminated shal-
low shell can be written in terms of displacement and rotation
components as [26, 34, and 35]:

L1y Ly Lia I, 0 O0yru A
Loy Ly Lyg|—w?®|0 L Off|v)|=|dy
31 Lz Las 0 o rtwl lg. 1)

Where L; ;are coefficients of the linear operator and can be written
as:
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In order to solving equations of motion, modified Fourier method
is used to derive these displacement functions and the following
displacement functions are assumed:

u(xy.t) = Ulx.y)el = {+ |

v(x.y. ) = V(x.y)e/®t = [

w(x.y.t) = W(x. y)e/t = [

Where:
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Ay, Baun and ¢... are the Fourier coefficients.

A Abn Bin, Biu, crand et are the coefficients of Mhe supple-
. mentary ferms,
PR L
22%‘1 All these coefficients are treated individually as an independent
set of generalized coordinates and they are required to be deter-
mined. w is the natural frequency of the shell.
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The general boundary conditions of thin shallow shell are consid-
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Using Raleigh—Ritz method to carry out minimization of the La-
grangian function (£) by differentiation the Lagrangian function
(£) with respect to constants found in equations (24)( i.e. constants
Ay Afps "-’q\lé]m! Byns Bins ‘Bfaﬂ! Cons Cén and 6—?4:)-

For Free vibration, the solutions are truncated numerically to M
and N. Therefore, equation (1) can be written as:

(K— 0’M)G=0 )
Where, M and K are mass and stiffness matrices of the shallow

shell respectively. They are both symmetric and are expressed as:
expressed as:
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The detail expression for these matrices are given in Appendix A,
G is the vector of the expanded and supplemented coefficients, is
written as:

G=[6" & G"]" (12)
Where;
G [cAgg- - - Appgyg - oe - ApN-ATg e e vee e Ay ALg e AL ALY ]
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The characteristic equation of the generalized Eigen value prob-
lem is used to determine the all the natural frequencies and corre-
sponding modes. Once the coefficients of @ are determined, the
displacement functions are obtained by substituting these coeffi-
cients in the standard displacement functions. Mode shape is con-
structed from these displacement functions.

3. Finite element model

In addition to Fourier-Ritz method, two — dimensional finite ele-
ment model using ANSY'S software (version 17.2) is built. In this
model, the Shell element (SHELL281) is used. The number of
elements is about (20000) element and the number of nodes is
about (70000) node. The suitable size of element is tested in order
to minimize the error in calculation.

4. Validation

In this work, MATLAB code is built for the present composite
plate and spherical shell and the MATLAB code is examined by
studying its validity for free vibration frequencies of isotropic and
composite plates and spherical shell. The validation of this work
can be divided into:

1- Isotropic Plate: In this case, the non — dimensional frequency
parameters of an isotropic material with Modulus of Elasticity (E)
= 1 (GPas.) and Poisson Ratio () =0.3 are calculated using pre-
sent and finite element method and compared with the non — di-
mensional frequency parameters calculated by Wang [36] who
used B-spline Rayleigh Ritz method. Table (1) shows the compar-
ison among these three methods for two types of boundary condi-
tions (all edges are simply supported (SSSS) and all edges are

clamped (CCCC)). Where the non — dimensional frequency pa-
rameter is:

@=wa’ /1’ ph/D
Where;

D =Eh®/12(1- 1/%)

and ~# is the Density.

Table 1: Comparison Among the Values of Non-Dimensional Frequency
Parameter Calculating by Different Methods for Isotropic Plate with Two
Types of Supporting When Modulus of Elasticity (E) =1 Gpas. and Poison
Ratio (1) =0.3

SSSS Present

Mode CCCC Present ANSYS Wang

Number g’g]s NETEY [36]

1 1.999 1.9983 2 3643  3.6446 3.6461
2 4996  4.9966 5 7525  7.4333 7.4364
3 4996  4.9966 5 7525  7.4333 7.4364
4 7.989  7.9932 8 10.953 109597  10.9647
5 10 9.9942 10 13.324 13.3258  13.3321
6 10 9.9942 10 13.388 13.38968 13.3321
7 12.987 12.9893 13 16.69 16.7106  16.7183
8 12.987  12.9893 13 16.69 16.7106  16.7183

The maximum absolute error percentage between results of
present method and that calculating by Wang [36] is (0.1375%) in
(SSSS) supporting and (1.19 %) in (CCCC) supporting. In the
other hand, the maximum absolute error percentage between
results of Finite Element method (FEM) and that calculating by
Wang [36] is (0.0823%) in (SSSS) supporting and (0.04725%) in
(CCCC) supporting.

2- Orthotropic Plate: In this case, the non — dimensional frequency
parameters of two types of orthotropic materials and these types
are cross ply and angle ply. Table (2) shows the comparison
among the non — dimensional frequency parameters calculating by
the three methods (present, finite element and B-spline Rayleigh
Ritz method) for two types of boundary conditions (all edges are
simply supported (SSSS) and all edges are clamped (CCCC))
when the symmetrical cross play composite plate [00/900/00/
900/00] is used. For anti-symmetrical cross play composite plate
[00/900/00/ 900], Table (3) shows the comparison among the non
— dimensional frequency parameters calculating by the three
methods for two types of boundary conditions. In this case , the
non — dimensional frequency parameter is:

@ =wa’z°hplE;
And the mechanical properties of orthotropic material are:

E2 =1 GPas., E1 = 40*E2, G12 = 0.6*E2, G13 = G23 = 0.5*E2,
{12 = p13 = 23 = 0.25.

From Table (2), the maximum absolute error percentages between
results of present method and that calculating by Wang [36] are
(2.286%) and (2.3%) in (SSSS) and (CCCC) respectively and
appeared in eighth mode. Also, the maximum absolute error
percentages between results of Finite Element method and that
calculating by Wang [36] are (0.07982 %) and (0.1023 %) in
(SSSS) and (CCCC) respectively. In Table (3), the maximum
absolute error percentages between results of present method and
that calculating by Wang [36] are (6.216%) and (1.4715%) in
(SSSS) and (CCCC) respectively and the maximum absolute error
percentages between results of Finite Element method and that
calculating by Wang [36] are (6.682%) and (0.0835%) in (SSSS)
and (CCCC) respectively.

Table 2: Comparison Among the Values of Non-Dimensional Frequency
Parameter Calculating by Different Methods for Cross Ply Composite
Plate [0°/90°0° 90°/0°] with Two Types of Supporting when (E2 = 1
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Gpas., E1 = 40*E2, G12 = 0.6*E2, G13 = G23 = 0.5*E2, p12 = pu13 = u23

= (0.25).
Mode SSSS Present
Num- ANSYS Wang V(\Z/aCnCC[;g]esent ANSYS
ber [36] g
4206 32354 4oa7g
6668 09875 413
1909 19131 1914 0% 10443 OO0
. 3961 39724 3974 O 4 1o
6584 6653  6.657 11.429
g 7581 76517  7.656 ‘111'32 4 ;1-437
8104 81464 8151 11775
. 1053 4 062 ;7 6 LL.783
. 1416 10618 5 oo 15132 2.
> 9 2 1418 1 4 :
14.176 6 18.171
8 1444 14772 1478 ;8'16 3 38-189
6 2 4
1969 o0 20156
2 8 5

3 6.127 61587 6.182 8383  8.4526  8.4585
4 8.41 8.4692 8487 1110 11203 11.211
5 10.13 10236 1025 9 1 2
6 6 5 4 1316 13311 13321
7 1146 11603 1164 8 2 6
8 1266 6 6 1450 14729  14.742
9 12798 1282 7 16.113 5
2 6 15.93 18.795  16.127
1502 15185 1521 1857 1
5 1 7 7 18.814
5

Table 5: Comparison among the Values of Non-Dimensional Frequency
Parameter Calculating by Different Methods for Angle Ply Composite
Plate [45°%-45°/45°-45°] with Two Types of Supporting when (E2 = 1
Gpas., E1 = 40*E2, G12 = 0.6*E2, G13 = G23 = 0.5*E2, p12 = u13 = pu23

Table 3: Comparison among the Values of Non-Dimensional Frequency
Parameter Calculating by Different Methods for Cross Ply Composite
Plate [0°/90°/0°/ 90°] with Two Types of Supporting when (E2 = 1, Gpas.,
El = 40*E2, G12 = 0.6*E2, G13 = G23 = 0.5*E2, pul12 = p13 = p23 =

0.25)
Mode
Num- SSSS Present ANSYS CCCC Present ANSYS
b Wang [36] Wang [36]
er
1.8795
1.8702 55"0396 1.7539 3.8685
5.037 5.009 38664  8.0083
1 5.037 2'0396 5.009 gggg? 80035 80083
2 6.9661 70154 - 80035  10.772
0470 7.91201
3 10922 | 10890 19200 1
4 8 30y 8 20 107648  14.94
5 10967 ;" 10890 O, gu 4 14.953
6 12194 5 0. 8 ST 14975 9
7 8 : 12003 149416 16.721
7 16.6194
8 12200 8 166104 167076 5
12104 2% 12003 16 167076 16721
E 12200 8 g
2

=0.25)
Mode
SSSS Present ANSY'S Wang CCCC Present ANSYS
Num-
b [36 Wang [36]
er
2.4726
7 S oog 36788 37318 37341
5.5156 55957 5.4618 9 9 7.4912
1 5.5156 5' 5.4618 7.4066 7.4859  7.4912
9.5402 ' 7.4066 7.4859  12.019
2 5.5257  9.6458
3 4 5 10.027 11.852 12.008 4
9.9462 ’ 4 7 12.849
4 96511 8
5 2 10.01 10.141 12771 12838 1
10.132 ' ’ 12820 8 12.915
6 10.161 6
7 3 6 15.008 9 12904 2
15.033 ’ 17973 18.069 18.089
8 15.041 2
4 3 15008 O 2 !
15041 2 ’ 17.973 18.069  18.089
15.033 ' 9 9 1
2 3

Table 5: Comparison among the Values of Non-Dimensional Frequency
Parameter Calculating by Different Methods for Angle Ply Composite
Plate [45°%-45°/45°-45°] with Two Types of Supporting when (E2 = 1
Gpas., E1 = 40*E2, G12 = 0.6*E2, G13 = G23 = 0.5*E2, p12 = u13 = n23

In angle ply composite plate, two types of angle play composite
plates were used. The first one was symmetrical angle ply
composite plate [45°/-45°/45°/-45°/45°] and Table (4) shows the
comparison among the non — dimensional frequency parameters
calculating by the three methods for (SSSS) and (CCCC).(
1.597%) was the maximum absolute error percentage between
results of present method and that calculating by Wang [36] in
(SSSS) and (CCCC). Also, the maximum absolute error
percentages between results of Finite. Element method and that
calculating by Wang [36] were (0.4026%) in (SSSS) and
(0.5966%) in (CCCC). The second type of angle ply was anti-
symmetrical angle ply composite plate [45°/-45°/45°/-45°] and
Table (5) shows the comparison between the three calculating
methods. The maximum absolute error percentage between results
of present method and that calculating by Wang [36] in (SSSS)
and (CCCC) were (1.1177%) and (1.3896%). Also, the maximum
absolute error percentage between results of FEM and that
calculating by Wang [36] in (SSSS) and (CCCC) were (1.177%)
and (0.10991%).

Table 4: Comparison among the Values of Non-Dimensional Frequency
Parameter Calculating by Different Methods for Angle Ply Composite
Plate [45°%-45°/45°-450/45°] with Two Types of Supporting When (E2 =1
Gpas., E1 =40*E2, G12 = 0.6*E2, G13 = G23 = 0.5*E2, u12 = u13 = u23

=0.25)
Mode
Num- SSSS Present ANSYS CCCC Present ANSYS
b Wang [36] Wang [36]
er
2.4726
7 3'4849 o470 36788 37318 37341
5.5156 55057 5.4618 9 9 7.4912
1 5.5156 5' 5.4618 7.4066 7.4859 7.4912
9.5402 ’ 7.4066 7.4859 12.019
2 1 5.5257  9.6458 11852 12 2
3 5 10027 1185 L
9.9462 4 7 12.849
4 9.6511 8
5 2 10.01 10.141 12,771 12838 1
10.132 ’ ' 12820 8 12.915
6 10.161 6
7 3 6 15.008 9 12.904 2
15.033 ’ 17.973 18.069 18.089
8 15.041 2
& 3 15008 © 2 .
15041 2 ’ 17.973 18.069 18.089
15.033 3 ’ 9 9 1

4

=0.25)

Mode

Num- SSSS Present ANSYS Wang CCCC Present ANSYS
ber [36] Wang [36]

1 2426 24242 2434 3909 3.8986  3.922
2 4956 4977 4986  7.103 71418  7.1464

From the previous comparisons, excellent agreements can be
noted be-tween the present method and FEM with B-spline
Rayleigh Ritz method.

5. Results and discussion

In this work, effect of aspect ratio were studied for composite
plates and composite spherical shells considering direction of ply
(cross and angle ply) and the number of plies (symmetric and anti-
symmetric plies) when the supporting conditions are (SSSS) and
(CCCC). The mechanical properties of orthotropic material are:
E2 =2 GPas., E1 = 15*E2, G12 G13 = G23 = 0.5*E2, p12 = u13
= u23 = 0.25 and the density is 1500 kg/m?.
1) Composite plate: Fig.(1) shows the comparison between the
non-dimensional frequency parameters of the first and sec-
ond mode of the symmetrical Cross Ply Composite Plate
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[00/900/00/900/00] due to change in aspect ratio (b/a Ratio)
when the supporting conditions is (CCCC).

—— Isf Mode.

— Zmd MWode.

¥

=
S

Nou - Dimensional Frequency Parameter.
LN

o
@ s r 1.5

(i) Ratio,
Fig. 1: The Comparison between the First and Second Non-Dimensional
Frequency Parameter Due to Change In (B/A) Ratio of Cross Ply Compo-
site Plate [0°/90°/0°/90°/0°] with CCCC Supporting.

F 3 K AF

When aspect ratio increases, the non-dimensional frequency pa-
rameter of the first and second mode will be closed to each other
and this appears also in Fig. (2).

o

. — I5F Mode.
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No - Dimenstonal Frequency Parmmeter.
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Fig. 2: The Comparison between the First and Second Non-Dimensional
Frequency Parameter Due to Change in (B/A) Ratio of Cross Ply Compo-
site Plate [0°/90°/0°/90°/0°] With SSSS Supporting.

when the supporting conditions is (SSSS) and for the same
composite plate. Generally, the non-dimensional frequency
parameter of (CCCC) is larger than that of (SSSS) for the first and
second mode as shown in Fig.(3) and Fig.(4).

0

—rC

L ms

2 25 K] s
(b/a) Rario.

Fig. 3: The Comparison between the First Non-Dimensional Frequency

Parameter of CCCC and SSSS Supporting Due to Change In (B/A) Ratio

of Cross Ply Composite Plate [0°/90°0°90°0°].
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Fig. 4: The Comparison between the Second Non-Dimensional Frequency
Parameter of CCCC And SSSS Supporting Due to Change in (B/A) Ratio
Of Cross Ply Composite Plate [0°/90°%0°90°/0°].

Also, the aspect ratio in the first mode is larger than that in second
mode (see the decreasing rate). For the anti-symmetrical Cross Ply
Composite Plate [0°/90°/0°/90°], Fig.(5) and Fig.(6) show the
comparison between the non-dimensional frequency parameters of
the first and second mode due to change in aspect ratio (b/a Ratio)
when the supporting conditions is (CCCC) and (SSSS)
respectively for the same composite plate.
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e T Vol

¥ —

z? 25 K is
(b)) Ratfo.

Fig. 5: The Comparison between the First and Second Non-Dimensional

Frequency Parameter Due to Change In (B/A) Ratio of Cross Ply Compo-

site Plate [0°/90°/0°/90°] with CCCC Supporting.
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Fig. 6: The Comparison between the First and Second Non-Dimensional
Frequency Parameter Due to Change in (B/A) Ratio of Cross Ply Compo-
site Plate [0°/90°/0°/90°] with SSSS Supporting.

Fig. (7) and Fig. (8) show the comparison between the supporting
condition for the first and second mode respectively. The aspect
ratio in the first mode is larger than that in second mode (see the
decreasing rate in Fig. (7) and Fig. (8)).
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Fig. 7: The Comparison between the First Non-Dimensional Frequency
Parameter of CCCC and SSSS Supporting Due to Change in (B/A) Ratio
Of Cross Ply Composite Plate [0°/90°/0°/90°].
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Fig. 8: The Comparison between the Second Non-Dimensional Frequency
Parameter of CCCC And SSSS Supporting Due to Change in (B/A) Ratio
of Cross Ply Composite Plate [0°/90°/0°/90°].

For the symmetrical angle Ply Composite Plate [45°/-45°/45°/-
45°/45°], Fig. (9) and Fig.(10) show the comparison between the
non-dimensional frequency parameters of the first and second
mode due to change in aspect ratio (b/a Ratio) when the support-
ing conditions is (CCCC) and (SSSS) respectively for the same
composite plate.
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Fig. 9: The Comparison between the First and Second Non-Dimensional

Frequency Parameter Due to Change in (B/A) Ratio of Angle Ply Compo-

site Plate [45°%-45°/45°-45°/45°] with CCCC Supporting.
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Fig. 10: The Comparison between the First and Second Non-Dimensional
Frequency Parameter Due to Change in (B/A) Ratio of Angle Ply Compo-
site Plate [45°/-45°/45°/-45°/45°] with SSSS Supporting.

The aspect ratio in the first mode is larger than that in second
mode (see the decreasing rate in Fig. (11) and Fig. (12)). The same
comparisons can be seen in Fig. (13)-Fig. (16) for the anti-
symmetrical angle Ply Composite Plate [45°/-45°/45°/-45°].
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Fig. 11: The Comparison between the First Non-Dimensional Frequency
Parameter of CCCC and SSSS Supporting Due to Change in (B/A) Ratio
of Angle Ply Composite Plate [45°/-45°%45°/-45°/45°].
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Fig. 12: The Comparison between the Second Non-Dimensional Frequen-
cy Parameter of CCCC And SSSS Supporting Due to Change in (B/A)
Ratio of Angle Ply Composite Plate [45°-45°/45°/-45°/45°].
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Fig. 13: The Comparison between the First and Second Non-Dimensional
Frequency Parameter Due to Change in (B/A) Ratio of Angle Ply Compo-
site Plate [45°/-45°/45°/-45°] With CCCC Supporting.
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Fig.15: The Comparison between the First Non-Dimensional Frequency
Parameter of CCCC and SSSS Supporting Due to Change in (B/A) Ratio
of Angle Ply Composite Plate [45°/-45°/45°/-45°].

o0
A —cee
£
= — S
Ew
=
=
g
H
g‘w
-
= W0
g
=
g 30
g
]
=
;:;_ Fi

@

@ as il L5 2 25 3

(Iva) Ravio.
Fig.16: The Comparison between the Second Non-Dimensional Frequency
Parameter of CCCC And SSSS Supporting Due to Change In (B/A) Ratio
of Angle Ply Composite Plate [45°/-45°/45°/-45°].
2) Composite Spherical Shell:

For symmetrical cross ply composite spherical shell
[0°/90°/0°/90°/0°], Fig.(17) and Fig.(18) show the comparisons
between the non-dimensional frequency parameters of the first and
second modes due to change in aspect ratio (b/a Ratio) when the
supporting conditions is (CCCC) and (SSSS) respectively.
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Fig. 17: The Comparison Between the First and Second Non-Dimensional
Frequency Parameter Due to Change In (B/A) Ratio of Cross Ply Compo-
site Spherical Shell [0°/90°/0°/90°/0°] with CCCC Supporting.
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Fig. 18: The Comparison between the First and Second Non-Dimensional
Frequency Parameter Due to Change in (b/a) Ratio of Cross Ply Compo-
site Spherical Shell [0°/90°/0°/90°/0°] with SSSS Supporting.

Fig. (19) and Fig. (20) show the comparisons between the non-
dimensional frequency parameters of (CCCC) and (SSSS) due to
change in aspect ratio (b/a Ratio) .
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Fig. 19: The Comparison between the First Non-Dimensional Frequency
Parameter of CCCC and SSSS Supporting Due to Change in (B/A) Ratio
of Cross Ply Composite Spherical Shell [0%/90°/0°/90°/0°].
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Ratio Of Cross Ply Composite Spherical Shell [0°%/90°/0°/90°/0°].

Also, Fig. (21)-Fig. (24) show the same comparisons for anti-
symmetrical cross ply composite spherical shell [0°/90°/0°/90°].
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Fig. 21: The Comparison between the First and Second Non-Dimensional
Frequency Parameter Due to Change in (B/A) Ratio of Cross Ply Compo-
site Spherical Shell [0°/90°/0°/90°] with CCCC Supporting.
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Fig. 23: The Comparison between the First Non-Dimensional Frequency
Parameter of CCCC and SSSS Supporting Due to Change in (B/A) Ratio
of Cross Ply Composite Spherical Shell [0°/90°/0°/90°].

cy Parameter of CCCC And SSSS Supporting Due to Change in (B/A)
Ratio of Cross Ply Composite Spherical Shell [0°%/90°/0°/90°].

For symmetrical angle ply composite spherical shell [450/-
450/450/-450/450], Fig. (25) - Fig.(28) show the comparisons
between the non-dimensional frequency parameters of the first and
second modes due to change in aspect ratio (b/a Ratio) when the
supporting conditions are (CCCC) and (SSSS).
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Fig. 25: The Comparison between the First and Second Non-Dimensional
Frequency Parameter Due to Change in (B/A) Ratio of Angle Ply Compo-
site Spherical Shell [45°/-45°45°/-45°/45°] With CCCC Supporting.
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Fig. 28: The Comparison between the Second Non-Dimensional Frequen- -
cy Parameter of CCCC And SSSS Supporting Due to Change in (B/A) (b/a) Ratio.

Ratio of Angle Ply Composite Spherical Shell [45%/-45%/45°/-45%/45°). Fig. 32: The Comparison between the Second Non-Dimensional Frequen-
cy Parameter of CCCC and SSSS Supporting Due to Change in (B/A)

Also, Fig. (29) - Fig. (32) show the same comparisons for anti- Ratio of Angle Ply Composite Spherical Shell [45°/-45°/45°/-45°].

symmetrical cross ply composite spherical shell [45°/-45°/45°/-

450] From figures (17) — (32), the following points can be seen:

1) The non-dimensional frequency parameter of (CCCC) is
larger than that of (SSSS) for the first and second mode.
—— Ist Mode. 2) The effect of (b/a) ratio on the non-dimensional parameter
Zud Mods. of the first mode is larger than that of second mode when
the boundary condition is (CCCC) or (SSSS).
3) In alarge (b/a) ratio, the non-dimensional parameter of the
second mode converges to that of first mode.
3) Comparison between the Composite Plate and Spherical
Shell
Fig. (33) shows the comparisons between the non-dimensional
frequency parameter of the first mode of the four types of compo-
site plate and spherical shell when the boundary condition is
(CCCC). Also, the comparisons between the non-dimensional
frequency parameter of the second mode of the four types of com-
v o5 : P 5 25 3 P posite plate and spherical shell is shown in Fig.(34) when the
(b/2) Ratio. boundary condition is (CCCC). For (SSSS), Fig. (35) and Fig.
Fig. 29: The Comparison between the First and Second Non-Dimensional  (36) show the comparisons between the non-dimensional frequen-
Frequency Parameter Due to Change In (B/A) Ratio of Angle Ply Compo- ¢y parameter of the first and second mode of the cross and angle
site Spherical Shell [45°/-45%45°/-45°] With CCCC Supporting. plies. From these figures:
1) The non-dimensional frequency parameter (first and second
—— 1ot Mo, mode) of the composite plate is smaller than that of the
200 Mo, composite spherical shell.
2) From the difference between the maximum and minimum
values of the non-dimensional frequency parameter, the ef-
~__ fect on the non- of (b/a) ratio dimensional frequency param-
eter of the composite plate is larger than that of the compo-
site spherical shell.
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site Spherical Shell [45°/-45°/45°%/-45°] With SSSS Supporting.
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Fig. 34: The Comparison among Non- Dimensional Parameter of the
Second Mode for Different Arrangements of Composite Plates and Spheri-
cal Shells when the Supporting is CCCC.
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cal Shells When the Supporting Is SSSS.

6. Conclusion

From the results, the following points can be concluded:
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1) For isotopic and composite plates, excellent agreements can
be noted between the Fourier Ritz method and FEM with B-
spline Rayleigh Ritz method.

2) The non-dimensional frequency parameter of (CCCC) is
larger than that of (SSSS) for the first and second mode of
composite plate and composite spherical shell.

3) The effect of (b/a) ratio on the non-dimensional parameter
of the first mode is larger than that of second mode of com-
posite plate and composite spherical shell. when the bound-
ary condition is (CCCC) or (SSSS).

4) In a large (b/a) ratio, the non-dimensional parameter of the
second mode converges to that of first mode of composite
plate and composite spherical shell.

5) The non-dimensional frequency parameter (first and second
mode) of the composite plate is smaller than that of the
composite spherical shell.

6) From the difference between the maximum and minimum
values of the non-dimensional frequency parameter, the ef-
fect of (b/a) ratio on the non-dimensional frequency pa-
rameter of the composite plate is larger than that of the
composite spherical shell.
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