

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.15) (2018) 496-501

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

A Logging Scheme for Reducing Update Workloads in Flash
Storage

Seong-Chae Lim, Hyuck Han, and Chang-Sup Park

Dept. of Computer Science

Dongduk Women’s University, Seoul 136-714, South Korea
{sclim, hhyuck96, cspark}@dongduk.ac.kr

*Corresponding author. Email: cspark@dongduk.ac.kr

Abstract

By caching dirty pages in memory space of a buffering pool, a database system can reduce expensive physical I/O’s required in page updates.
If any data page cached has constant updates on itself, it seems to stay long in the buffering pool without flushing-out. Although the existence
of such aged dirty pages can reduce the amount of physical updates in storage, it is apt to prolong time taken for recovery procedure after
system failure. To prevent such a delayed recovery time, database systems usually take an approach of flushing aged dirty pages in a
background mode. Even though the approach may be beneficial in the case of HDD storage, this may not be the case for flash storage because
of its high update costs. To solve this problem, we proposed a new logging scheme and a recovery algorithm running with it. Since aged dirty
pages in our method are written into a dedicated log file, rather than into data area in storage, we can evade frequent updating of them. To
reduce the amount of log data written for that purpose, our logging scheme uses a small size of snapshot log. Since the write of a snapshot log
record can put the redo start point forwards, we can guarantee the fast recovery procedure, while reducing the number of page updates. Due to
reduced update workloads, our method can improve the overall throughput of flash storage.

Keywords: flash memory, database recovery, logging algorithm, storage system

1. Introduction

Thanks to a distinguished I/O advantage in random reads, flash
memory has been regarded as a promising storage media,
superseding the hard disk drive (HDD) (Baumann, Nijs, Strobel &
Sattler, 2010; Colgrove et al., 2015). In particular, as the price per bit
gets cheaper at a fast rate, flash storage seems to be used for large-
scale database systems in the future. In this light, many researches
have been done for the purpose of adopting NAND flash for those
systems. Most of those researches are devoted to efficiently handling
the inherent poor performance of random updates in flash memory
(Ganim, Mihaila, Bhattacharjee, Ross & Lang, 2010; Do, Zhang,
Patel, DeWitt, Naughton & Halverson, 2011; Gupta, Kim &
Urgaonkar, 2009; Jeong, Kim & Lim, 2015; Moon, Lim, Park & Lee,
2011; Lee & Moon, 2007; Lim, 2016; Wang, Goda & Kitsuregawa,
2009; Wu, Kuo & Chang, 2007)
To reduce the occurrences of costly update I/O’s in flash storage, the
previous researches take two different approaches, that is, a logging
based approach (Gupta, Kim & Urgaonkar, 2009; Moon et al., 2011;
Wang, Goda & Kitsuregawa, 2009) and a buffering based approach
(Do et al., 2011; Ganim et al., 2010; Jeong, Kim & Lim, 2015; Li,
He, Yang, Luo Y Yi, 2010; Lim, 2016; Xu et al., 2010;). In the
former approach, histories of updates in databases are recorded as
log data without physical reflections on storage directly. Then, a
collection of updates are flushed into storage at once before their
involved log data are cleaned. Since the I/O cost for storing log data

and doing batch-style updates is usually cheaper than that for
executing individual updates, that approach gains I/O advantages in
flash storage. In the case of the latter approach, extra space is
reserved in main memory for the use of a buffering area. By
updating data within the buffering memory, the approach diminishes
the number of I/O’s needed for hot pages. Although the buffering
based approach demands the usage of extra memory, it is reported to
be very efficient for handling updates in B-trees stored in flash
storage (Li et al., 2010; Xu et al., 2010;).
Unlike the earlier approaches, for less update workload we pay
attention to the way a recovery algorithm works. This research point
has not been a major interest in previous researches. Modern
recovery algorithms are usually based on the WAL (write-ahead-
logging) protocol and the NO-FORCE policy in buffer management
(Kornacker, Mohan & Hellerstein, 1997; Mohan & Levine, 1992;
Lim, 2016). Therefore, hot pages are repeatedly updated in a
buffering pool, without being written (or flushed) to storage. The
existence of such dirty pages long staying in a buffering pool is apt
to delay the recovery time after system failure because of more redo
actions performed. To avoid such a delay of the recovery time,
periodic flushing of dirty pages is acceptable. Note that flushing of
dirty pages normally arises at buffer replacement times. Although
such background-mode flushing does not impair the performance of
HDD-based database systems, it can be not true in flash storage
because of asymmetric performance between updates and other sorts
of I/O’s (Baumann et al., 2010; Colgrove et al., 2015; Do et al.,

http://creativecommons.org/licenses/by/3.0/

International Journal of Engineering & Technology 497

2011; Lee & Moon, 20017; Ganim et al., 2010; Wang, Goda &
Kitsuregawa, 2009)
To solve this problem, we propose new logging and recovery
schemes that can guarantee the fast recovery time without flushing
of aged dirty pages. To this end, we made some modifications to the
conventional logging scheme so that it creates snapshot log for aged
dirty pages and uses those log data for physical redos during the
recovery time. By storing the snapshot log in a log file, we can put
forward the redo start point of the redo process. Since the writing of
snapshot log does not incur updates in storage, we can reduce the
number of page update operations needed for flushing dirty pages.
Since the snapshot log size recorded for an aged dirty page is less
than half its page size, we can save overall I/O bandwidth during the
normal processing time. Additionally, because the physical redos are
used for restoring aged dirty pages, our method can enhance the redo
time. Those benefits are evaluated based on a storage cost model that
is proposed in the paper.
This paper is organized as follows. In Section 2, we introduce some
background knowledge about the conventional logging and recovery
schemes. In Section 3, we sketch the idea of the proposed method
and address the detailed algorithms needed for writing log data and
recovering a failed system. The performance advantages of the
proposed method are estimated in Section 4. Then, we conclude this
paper in Section 5.

2. Preliminaries

In modern database systems, a logging mechanism is vital for
preserving the ACID properties of transactions. For this, the WAL
protocol is usually implemented along with a buffering scheme used
for caching update operations in memory (Do et al., 2011; Li et al.,
2010, On, Hu, Li & Xu, 2010). Since the buffering scheme works
with the NO-FORCE policy for fast processing of transactions, some
dirty pages may not be written for a long period of time because of
their frequent references. Although the existence of such aged dirty
pages can be useful for reducing I/O workloads, it adversely affects
the recovery time in face of system failure. This is because we have
to pay more time for redoing abrupt updates involved with the aged
dirty pages.

To understand that, one needs to know about the redo process during
a recovery time. Note that a recovery algorithm performs a redo
process for redoing failed updates after it has analyzed a log file for
recovery. Most of recovery algorithms like ARIES (Kornacker,
Mohan & Hellerstein, 1997; Mohan & Levine, 1992). make
periodically checkpoints to capture the states of a buffering pool and
in-progress transactions. As checkpoint data for dirty pages in the
buffering pool, ARIES-style logging schemes save page ID’s of

dirty pages and LSNs (Log Sequence Numbers) of recovery log
records of them. Note that the log file location of the recovery log
record is used as its LSN (Mohan & Levine, 1992).

To see the notion of the recovery log record, consider a page X that
was buffered at time t1. Then, if page X is first updated at time t2 (t2
> t1), then a log record recording the update at t2 is referred to the
recovery log record for X. If page X is written to storage, then it is
removed from a dirty page table (DPT) along with the information
about its recovery log record. Because every log record R preceding
the recovery record at time t2 has been already reflected on storage,
there is no need for redoing log R. In other words, the redo process
is performed from the recovery log record. Therefore, we can move
the redo start point forwards by flushing a dirty page whose recovery
log record is oldest. Since the redo time accounts for a majority of
the recovery time, it is fundamental to put forwards the redo start
point.

To this end, previous recovery algorithms usually flush aged dirty
pages in a background mod. Such background flushing of dirty
pages may not be problematic in the case of traditional HDD
storage. However, this is not the case for flash storage because of its
high update costs. To prevent delay of the redo process without
recovery-purpose flushing, we devise a new logging scheme that can
put forward the redo start point without flushing of dirty pages.

3. Proposed Method

3.1. Proposed Logging Scheme

To prevent update workloads caused by background-mode flushing
of dirty pages, as described before, we store physical redo logs for
aged dirty pages, rather than flushing those dirty pages. The physical
redo log for such a purpose is called the snapshot log. In general, a
log record made in a database contains both of redo log data and
undo log data for each update. In the case of redo log data,
physiological redo data is common for the considerations of log
sizes and locking granularity (Lee & Moon, 2007; Kornacker,
Mohan & Hellerstein, 1997; Mohan & Levine, 1992). Unlike the
traditional logging scheme, we save only redo log data in a snapshot
log record, since it is not used for doing undos. In addition, log data
in a snapshot log record is physical log data that saves the after-
image covering updated data area in a page.

To explain the notion of the snapshot log record, we use Figure 1. In
the figure, the notation of U[s, e] represents the existence of updates
in an area of a buffer frame. Here, integral numbers s and e are
offsets within a buffer frame caching involved updates. By

Fig. 1: Use of an update area for covering updates in a buffer frame.

498 International Journal of Engineering & Technology

increasing the update area of U[s, e], we can locate a wider range of
updated data. To see this, let us assume that three times of updates
have occurred in frame X of Figure 1. When the i-th update is
denoted by ui, and its update area is expressed with U[si, ei]. In the
figure, the update area is finally set to U(s2, e3), which covers the
update ranges of u1, u2, and u3. At that case, we save the binary
image between U[s2, e3] in a snapshot log record for frame X. When
update positions of u1, u2, and u3 are scattered, area U[s, e]
inevitably includes many non-updated areas, thereby increasing the
sizes of snapshot records. To reduce such an undesirable increase of
snapshot log, we use two different update areas for each frame, that
is, one for updates in the data area and the other for updates in the
metadata area. By saving log data for two different areas each, we
can reduce the sizes of snapshot log records being stored.

To elaborate the usage of the snapshot log record, we use Figure 2,
where a buffering pool contains three dirty pages of X, Y, and Z. In
the DPT, the LSNs of their recovery log records are saved as rec-lsn.
Here, the value of ‘normal’ means the corresponding dirty page has
no snapshot log record. In this figure, the redo start point equals the

LSN of X’s recovery log record. If any traditional recovery scheme
attempts to put the redo start point forwards, then it flushes page X
and deletes it from the DPT. Then, LSN z is used as new restart
point.

Unlike that, our logging scheme saves a snapshot log record for page
X, At the same time, we update its values of rec-type and rec-lsn
with ‘snapshot’ and the LSN of the newly created snapshot log
record, respectively. Note that the new rec-lsn is always greater than
y of Figure 2. In our scheme, the page X is not deleted from the
DPT, because its in-frame image has not been written to storage.
Therefore, if page X has to be evicted from the buffering pool at a
buffer replacement time, then its in-frame image will be written to
storage and it is removed from the DPT.

Figure 3 shows the algorithm that is periodically executed to put
forwards the redo start point. When the algorithm is invoked, it
receives the LSN of the latest log record, that is, lsn of Figure 3.
Then, for each dirty page existing in the DPT its rec-len is compared
with lsn in line 2. For exposition convenience, we denote that dirty
page in comparison by N. If the LSN gap is

Fig 2: Algorithm for saving snapshot log records for aged dirty pages.

Fig. 2: Manipulation of a DPT that saves the LSNs of recovery log records.

larger than max_lag, then page N needs either flushing or logging
for the fast redo process. For that decision between flushing or logging, the overall size of two

update areas is calculated in line 4. If that size is greater than half the

International Journal of Engineering & Technology 499

frame size, then node N is flushed as in lines 6 to 7; otherwise, a
snapshot log record is made for N and its DPT entry is updated as in
lines 9 to 13. Then, two update areas of N are copied into a snapshot
log record. After this logging, the value of rec-lsn of N is modified
with the LSN of a newly created snapshot record. With this
algorithm, we can put the redo star point forwards for very cheap I/O
costs.

3.2. Recovery Algorithm

To recover from system failure, our recovery procedure begins with
reading the latest checkpoint record in a log file. After rebuilding a
DPT using the log data saved in that checkpoint record, log analysis
is conducted by scanning the log file. Then, the processes for doing
redos and undos are performed in this order. Since our method for
the undo process is very similar to the traditional one (Jeong, Kim &

Lim, 2015; Kornacker, Mohan & Hellerstein, 1997; Lee & Moon,
2007; Mohan & Levine, 1992). , we mainly address the other
processes for log analysis and redo actions.

The proposed recovery algorithm is given in Figure 4. In the log
analysis process of lines 2 to 7, the algorithm sequentially reads log
records and looks up the log types of them. If a log record retrieved
has a type of ‘snapshot’, then the DPT is updated to reflect its log
information. More specifically, its data of rec-lsn and page ID are
saved as a DPT entry; otherwise, it is used for updating an undo
transaction list. The way for manipulating the undo transaction list
is not different from the previous ways in (Kornacker, Mohan &

Hellerstein, 1997; Mohan & Levine, 1992). Those conditional
actions depending on log types are performed in lines 4 to 7.

At the beginning of a redo process, the recovery algorithm performs
physical redos for the pages having snapshot log records. For this,
the recovery algorithm reads each DPT entry and check its rec-type.
If that type is the same as ‘snapshot’, then a physical redo is
executed to restore the up-to-date image of the associated page P.
Such a redo action is done in line 12, where the function
DoPhysicalRedo() for the physical redo overwrites the data logged
in the snapshot log record within the in-frame image of P. Then, the
up-to-date image of P is written to storage within the function. Since
the LSN of page P is modified with that of its recovery log record,
redo log records preceding the After the physical redo actions using
snapshot log record will be ignored during the redo process later.
Therefore, the proposed recovery algorithm can save the time taken
for traditional redo actions.

After the physical redo actions using snapshot log records, the
traditional undo actions are executed in lines of 13 to 17. For this,
the redo start point is decided and the file pointer of the log file is set
with that start point as in lines 13 and 14. Then, by reading each redo
log record the recovery algorithm performs the remaining steps of
the redo process. During those steps, physiological redos are
performed as in the traditional recovery schemes. Finally, to restart
the database system, undo actions are performed to roll back update
effects from aborted transactions.

Fig. 3: Algorithm for the recovery after system failure.

500 International Journal of Engineering & Technology

4. Performance Analysis

As a dirty page with constant updates seems to be a winner at
buffer replacement times, it is apt to stay long in the buffer
pool without being flushed. This situation seems to increase the
time for system recovery. For this reason, the mechanism of
background-mode flushing is usually employed in HDD-based
database systems. Since the background-mode flushing easily
incurs the number of update operations, however, it can harm
storage performance in the case of SSD-based database.

Table 1: Notations and meanings of I/O parameters.
notations meanings values

 #. of pages made in a flash block 64 - 128

of logging blocks used for page

address 30 - 50

Averaged # of flash blocks involved in

a full-merge 20 - 30

Probability of a full-merge occurrence

w.r.t an update

 Size of a flash block in Kbytes 128 - 256

I/O cost for a single write to an empty

page 200 – 250 us

 I/O cost for erasing a flash block 200 – 250 ms

Differently from such background-mode flushing used for fast
recovery, the proposed method based on snapshot logging
provides two advantages in the I/O respect. First, our method
does not incur any update operations since snapshot log records
are stored into clean pages. When clean pages of a log file are
exhausted, storage space of that file is freed to a file system via
the I/O calls of TRIM or UNMAP (Wu & He, 2012). Through
those kinds of I/O calls, we can largely save I/O costs because
of the reduction of updates, while guaranteeing fast recovery.
Second, since the size of snapshot log record is less than half
the page size, our method can reduce the overall amount of data
written. Thanks to those two characteristics, the proposed
method can support the reliable I/O performance of a flash-
based database system against heavy update workload.

To assess the performance advantages in more detail, we
introduce a I/O cost model based on the parameters of Table 1.
In that table, the value of relies on the two factors, that is,
real I/O request patterns in the system and the internal mapping
mechanism of an FTL (Flash Translation Layer) used in flash
storage. Since the hybrid addressing for the FTL is usually
accepted nowadays (Gupta, Kim, Urgaonkar, 2009; Moon et al.,
2011; Wang, Goda & Kitsuregawa, 2009; Wu & He, 2012), we
also assume the same addressing mechanism for our cost
model. That is, a portion of storage is dedicated for the use of
the log block area, and that area is used for saving updated
pages until it becomes full. Under this assumption, actions for
full-merging arises when log blocks are all consumed for
saving updated pages in flash storage (Moon et al., 2011;
Wang, Goda & Kitsuregawa, 2009). From this, we can compute
approximately the probability such that =

.

While a page is being updated according to a page addressing
mechanism of an FTL, its new image is first written to a clean
page existing in a log block. If there is no clean page in the log
block area, that update operation leads to a full-merge for

reclaiming some space in the log block area. By considering
that hidden cost for full-merging, the I/O cost for updating a
page can be estimated as follows:

Here, the fraction of 0.7 is the storage utilization rate of the
data block. Therefore, 70% of pages within a block are
rewritten for saving valid pages. Since the size of a snapshot
log record is less than half the page size, we can compute the
performance benefit as follows:

In literature (Do et al., 2011; Lee & Moon, 2007; On et al.,
2010; Wu, Kuo & Chang, 2007), it was reported that the black
erase cost of is at least 100 times higher than the write cost
of . When the number of log blocks is the same as 20 and a
block contains 64 pages, the rates of becomes around
20%. Although this performance may vary according to the real
values of , the proposed method can improve the flash
storage performance by reducing update workloads in database
systems.

5. Conclusions

In this paper, we propose a new logging scheme that can evade the
necessity of periodic flushing of dirty pages, thereby reducing the
number of costly update operations. For this, we made some
modification to a dirty page table used for bookkeeping the state of
dirty pages, and proposed an algorithm used for making a decision
between flushing and logging for an aged dirty page. Since the
proposed logging scheme should be valid for recovering a failed
system, we also proposed a recovery algorithm that works correctly
with the proposed snapshot logging scheme. With the proposed
recovery algorithm, we can restore the dirty pages to an up-to-date
state. Since the redo actions are done through physical redos, we can
improve the time for recovery. To show performance advantages, we
introduced a simple I/O cost model. The results from the cost model
show that the proposed method can improve the overall I/O
performance for flash storage.

References

[1] Agrawal, D., Ganesan, D., Sitaraman, R., Diao, Y., Singh, S. (2009).
Lazy-Adaptive Tree: an optimized index structure for flash devices. In
Proceedings of VLDB. VLDB.

[2] Baumann, S., Nijs, G., Strobel, M., & Sattler, K. (2010). Flashing
databases: Expectations and limitations. In Proceedings of ACM
DaMon. ACM.

[3] Colgrove, J., Davis, J., Hayes, Miller, E., Sandvig, C., Sears, R.,
Tamches, A., Vachharajani, N., Wang, & Purity, F. (2015). Building
fast, highly-available enterprise flash storage from commodity
components. In Proceedings of SIGMOD. ACM.

[4] Do, J., Zhang, D., Patel, J., DeWitt, D., Naughton, J., & Halverson, A.
(2011). Turbo-charging DBMS buffer pool using SSDs. In
Proceedings of ACM SIGMOD. ACM.

[5] Ganim, M., Mihaila, G., Bhattacharjee, B., Ross, K., & Lang, C.
(2010). SSD bufferpool extensions for database systems. In
Proceedings of VLDB. VLDB.

[6] Gupta, A., Kim, Y. & Urgaonkar, B. (2009). DFTL: A flash
translation layer employing demand-based selective caching of page-
level address mappings. In Proceedings of ASPLOS. ACM.

[7] Jeong, K., Kim, S., & Lim, S. (2015). A flash-aware buffering scheme
using on-the-fly redo. In Proceedings of ACM CIKM. ACM.

International Journal of Engineering & Technology 501

[8] Kornacker, M., Mohan, C., & Hellerstein, J. (1997). Concurrency and

recovery in generalized search trees. In Proceedings of SIGMOD.
ACM.

[9] Lee, S. & Moon, B. (2007). Design of flash-based DBMS: An in-
page logging approach. In Proceedings of ACM SIGMOD. ACM.

[10] Li, Y., He, B., Yang, R., Luo, Q., & Yi, K. (2010). Tree indexing on
solid state drives. In Proceedings of VLDB. VLDB.

[11] Lim, S. (2016). A new flash-based B+-tree with very cheap update
operations on leaf node. In Proceedings of ETBDA. IIENG.

[12] Mohan, C. & Levine, F. (1992). ARIES/IM: An efficient and high
concurrency index management method using write-ahead logging. In
Proceedings of SIGMOD. ACM.

[13] Moon, S., Lim, S., Park, D., & Lee, S. (2011). Crash recovery in
FAST FTL. In Proceedings of software technologies for embedded
and ubiquitous systems. Springer.

[14] Na, G., Lee, S. & Moon, B. (2012). Dynamic in-page logging for B+-
tree index. IEEE Transactions on Knowledge and Data Engineering,
24(7). 1231-1243.

[15] On, S., Hu, H., Li, Y., & Xu, J. (2010). Flash-optimized B+-tree.
Journal of Computer Science and Technology, 25(3). 509-522.

[16] Wang, Y., Goda, K., & Kitsuregawa, M. (2009). Evaluating Non-In-
Place update techniques for flash-based transaction processing
systems. In Proceedings of DEXA. ACM.

[17] Wu, C., Kuo, T., & Chang, L. (2007). An efficient B-tree layer
implementation for flash-memory storage systems. ACM Transactions
on Embedded Computing Systems, 6(3).

[18] Wu, G. & He, X. (2012). Delta-FTL: Improving SSD lifetime via
exploiting content locality. In Proceedings of European conference on
computer systems. ACM.

[19] Xu,C., Show, L., Chen, G., Yan, C., & Hu, T. (2010). Update
migration: An efficient B+ tree for flash storage. In Proceedings of
DASFAA. DASFAA.

	Abstract

