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Abstract 
 

Existing encryption techniques ensure or safeness, either effectiveness, but not both. most circuits even show the order of cipher tupelos , 

that allow opponents to accurately estimate the plain text values. This paper present -tree, hierarchic cipher index, which can be safely 

located in a cloud and effectively distorted. It is based on the arrangement, which was designed for cipher requests using the encryption 

method Аsymmetrical scalar produce handling encryption (ASPE). 
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1. Introduction 

The article presents R̂ -tree , hierarchic encoded index such can be 

reliably located in the cloud and effectively distorted. It is based 

on a machinery that was designed for encoded requests for a half-

space range in dR , applying asymmetrical encryption 

Asymmetric scalar produce canning coding (ASPE). 

Data holders be able to customize settings. 

R̂ -tree for achievement the required safety and efficiency 

We also present performance evaluation experiments R̂ -tree. Our 

effects show such queries R̂ -tree performed in encoded data bank 

and show much little information than contesting techniques. 

2. State of the problem 

The term "cloud computing" relates to a wide diapason of 

outsourcing attendance for storing and computing [1]. This pattern 

is becoming more popular because clients keep practically 

unlimited exchequers, but above substantially, because they are 

released of the drag of controlling these exchequers. Therefore, 

outsourcing great databases plant oneself a good-studied theme. 

But, this pattern has its expenses. Outsourced information many 

be encoded to maintain confidentiality and integrality, but 

encryption creates it difficult to execute requests. Usual 

encryption circuits, such as unit – ciphers, do not directly maintain 

the sorting of similes, quests and other operations required to 

process requests sans deprivation of confidentiality. Therefore, 

new encryption circuits [2, 3, 4, 5] to provide requests for encoded 

data. 

 

 
Fig. 1: Scheme of the Search Model Based on R̂ -Tree. 

 

Safeness and performance are significant thoughts while develop-

ing such coding schemes. several schemes [2, 4] reach perfor-

mance by identifying the relative order of the encrypted data full 

stop, but the adversary can use the information to order the data 

accurately using order statistics [6]. Query schemes based on 

predicate-based encryption (PRE) [4], [7 - 9] provide reliable 

protection for encryption, but with high computational costs. 

Costs in these circuits increase greatly with a diapason of queries 

or the required accuracy. 

Some leakage of order information is probably unavoidable, but 

the task is to minimize either leakage. For example, 

bouquetization schemes [3] create an exchange between the regu-

lation of data about order and performance. 

1) Formulation of the problem 

An innovative method has been developed to perform encrypted 

requests for a half-space range in d
R  over the full stops encoded 

since ASPE. This machinery can provide multi-faceted requests 

for cipher information. Applying this machinery, we provide R̂ -

tree, indexing circuit for cipher and outsourced data bank. R̂ -tree 

utilizes ASPE to encode request ranges. The information itself 

may be cipher in every another method. R̂ -tree is a hierarchic 

bouquetization circuit, yet, unlike the actual bouquetization 

circuit, encrypted indices R̂ -tree be kept and requested bodily in 

the cloud, and not on the site of the information holder. R̂ -trees 

allow us to more efficiently transfer data to data control. 

2) Asymmetric encryption ASPE 
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In [10] was offered asymmetric encryption using a scalar product 

(ASPE) to perform kNN requests at encrypted data points in dR . 

Encryption uses as a secret key ) (( 1 1)d d+  +  inverse matrix M . 

Data and requests are encrypted differently, which is reflected in 

our notation. 

( )_ ,Point Enc P M P→  . It function takes a facts full stop. 

dP R  and ) (( 1 1)d d+  +  crucial array M and displays the cipher 

text P   of P . Initially makes a full stop 1dP R +

+
 , either that 

20.5( | ( ))T TP P P
+
= −  - Euclidean norm P . Encryption p equals 

TP M P
+

= . 

( )  1
_ ,Query Enc Q M Q

−
→ . It function takes a request full stop. 

dQ R  and 1M − , inverse key matrix M . She gives out  Q , 

cipher text Q . First he creates a point 1dQ R +

+
 , either, such 

20.5( | ( ))T TP P P
+
= − , where r  - random positive number. En-

crypted dot   1Q M Q−
+

= . 

 _ ( , ) {' , 0,1}Dist Comp P P Q    → . It function takes to encrypted 

facts points , 'P P    , encrypted request point  Q  and returns 1 if 

, P  closer to Q , than 'P . It outputs a logical value. 

 ( ' ) 0P P Q  −    . now, 
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Wherever P Q−  - Euclidean spacing betwixt P  and Q . This 

term is positive if P  nearer to Q , wherewith 'P . The kNN 

request identify k  immediate full stops by simile the spacing 

from the full stops of request Q  to every facts full stop P . 

2.1. Half-space range requests 

Half-space range requests (hRQ) are a radical issue in calculative 

geometry, because either shape of search for an algebraic diapason 

may be transformed in it .If da R , 0a  and b R , then the 

hyperplane H  determined by the kit dRx  so, that T b=a x . H  

breaks down d
R  on the inner half space H , corresponding 

T ba x  and outer half space H , corresponding T ba x > . Each 

S dR  is broken H  into two dislocate subkits 
H

S = S H   and 

H
S = S H  . 

Given the many points 
1 2

S , ,...{ },
n

P P P=  and hyperplanes H  in d
R , 

request for a range of half range requests 
H

S . 

2.2. Order statistics 

Order statistics is an significant instrument in non-parametric 

statistics. [6]. Let be 
1 2
, ,...,

n
X X X  – random variables with density 

and distribution functions ( )f x  and ( )F x  respectively. Let be

i
X  sorted to get 

( ) ( ) ( )1 2
...

n
X X X   . now 

k
X  called statistics k - 

order. It can be shown that the density function 
k

X  is given by 

the formula: 

 

( )
( ) ( ) ( )( )

11
1

1 1k

k n

x

k

X

n n
f f x F x F x

k

− −−  
= −  

− 
   


 


                              (1) 

 

 

 

2.3. Overview 

Now we will present our circuit and safeness pattern and give an 

overview R -tree. Our access , in contradistinction to [10], utilizes 

an index to acceleration requests . In addition, we separate the 

encryption of facts full stops of query and index data. 

2.3.1. Scheme pattern 

Our pattern identifies two objects: the facts holder and the cloud 

service producer (Fig. 2). The fact holder accommodates the ci-

pher facts and the appropriate index. R -tree in the cloud that en-

sures the infrastructure for calculation and keeping . The fact 

holder makes and transmits cipher requests for diapasons of con-

cern to the cloud. The cloud executes cipher requested in the index 

R -tree and give back the request effects to the fact holder. 

 
Fig. 2: R -Tree and R̂ -Tree. 

 

The facts holder makes R̂ -tree, initially creating a orderly R -tree 

for adjusted kit of points S dR . MBR diapasons are cipher utiliz-

ing ASPE to getting R̂ -tree. Parent-child relationship R̂ -tree not 

encrypted. Although the MBR ranges R -tree cipher utilizing 

ASPE to aid diapason requests, facts points in S  can be cipher 

whatever of each other using other encoding circuits, such as ci-

phers-unit. d - measured diapason may be determined by its two 

extreme tops. R -tree in Fig. 2 comprise knots with MBR 

1 1 2
( )R ,V V= , 

12 2
R ( ),V V=  and 

13 2
R ( ),V V= . The data set comprised 

in 
2

R  and 
3

R , represents 
2

S  and 
3

S accordingly. 

MBR diapasons in R̂ -tree encoded by using ASPE to every 

extreme peak utilized to determine the diapason . so demonstrated 

in fig. 2, conforming to R̂ -tree comprises three knots 

     ( )1 1 2
,R V V= ,      ( )2 4 2

,R V V= ,      ( )3 1 3
,R V V= . 

The facts points within every MBR sheet are encoded applying the 

usual coding circuit . encoded releases 
2

S  and 
3

S  are 
2

S  and 
3

S . 

The data holder makes encoded diapason requests and transmits 

their to the eddy. 

Cloud is looking for R̂ -tree, performing crossing reactions in 

stages as usual R -tree, and passes to the child nodes if and only if 

the bounding rectangle of the node intersects the range of requests. 

The cloud thus receives all the layers that intersect the range of 

requests, and it returns the encoded data points in these sheets to 

the data holder. The cloud cannot request the data points 

themselves, so far as they are encoded severally. R̂ -tree can enter 

spurious positives in the request effects, yet defends the order 

information within every sheet MBR a sensible compromise. 

Exact request patterns [4, 8], whether comeback an exact kit of 

encoded tuples in a diapason of requests , can eventually leaks. 

Given sufficient diapason request effects, the opponent can restore 

the ordering of the tuples from the associations and crossing of 

these clusters of results. 

2.3.2. Safeness pattern 

We accept an "honest, but curious" pattern for our opponent, the 

eddy server. Its purpose is to study open texts for encoded facts. 

He can see some lore of the outsourced data kit and attempt to 

utilize this lore to get the point senses in the data kit. Else, he 
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scrupulously follows the protocol determined by the owner of the 

data and returns the correct results of the query. 

ASPE, whether we utilize to encode diapasons of indexes and 

requests, is protected from famous plain text assails [10]. 

However, the enemy can create above compound assails. For 

example, it may get some data of the ordering of encoded data 

senses when handling requests. An opponent can see the cleartext 

allocation of every data full stops and the values of some facts 

points. It will attempt to evaluation the assails of another facts 

points applying either information. 

We begin with the assumption that the opponent knows the order 

of the encrypted data points. Some encoding circuits, such as [2, 

4], clearly show this ordering. In another events, it can be probable 

to derive this ordering above time of requests. It is as will fre-

quently probable to get allocation of data assails or of publicly 

available founts, or by studying another accessible and parallel 

data gets. 

Utilization this lore of allocations and ordering, an opponent may 

utilize method statistics to evaluate plaintext assails for encoded 

tuples. For one-dimensional data, let's tell that the opponent is 

studying the assails of the plaintext m  data points 

1 2
...

i i im
y y y   . It utilizes these points so endpoints for deriving 

ranges. 1m −     1 2 1
, ,..., ,

i i im im
y y y y

−
. He see the order of the en-

coded tuples in every diapason and may anon get better estimates 

of the plain text values of the encrypted tuples in each diapason 

applying order statistics. For multidimensional data, the opponent 

may execute the same assail in order to rather evaluate the senses 

of the encoded tuples for every measurement. 

R̂ -trees do not disclose the complete order of data points, but 

contain data about the leakage of information about the ordering 

of sheet MBRs. We will examine the performances of the assaults 

described up ward on R̂ -trees. 

2.3.3. Half space range request for encrypted data 

Requests in [10] inquire whether encoded data points in d
R  near-

est to the present encoded request point. Then technique turns 

every data point to d
R  to point to 1d +

R , further measurement in-

cretion the distance of the point from the descent. Even so, request 

points are not demanded to transmit such interval information. Our 

treatment to encoded half-space diapason requests (EhQ) is binary 

to this way and should test whether of the two request points is 

nearer to the top in the MBR R̂ -trees. Consequently, the request 

points are included with the interval information in our circuit , 

whereas the points conforming to the peaks of the MBR are not. 

We build requests for half-space, as in Fig. 3. For hyperplane H  

and appropriate half spaces H  and H  we choose the pivot points 

H   and H  , equidistant from H  such that cut ( , )    

orthogonal H . Each point on H  now equidistant from    and  

, but points in H  nearer   , a point in H  nearer   . We may 

test if the percent point V  in H  or H , testing if V  nearer to   

or   , As in ASPE. 

2.3.4. Index lookups as the intersection of hyper-intersections 

Search R̂ -trees requires to determine if hyper crosses a rectangle 

d - dimensional query hyper rect index in node R̂ -trees. We cre-

ate the regular aadmission that the coordinate axis is orthogonal 

and that every front of a hyper rectangle is orthogonal to some 

axis. 

 

 
Fig. 3: Query the Half-Space Range. 

 

Our method is based on the observation that d - dimensional 

hyper query rectangle Q  can be defined as a space enclosed by 

hyperplanes 
1 2 2

H ,H ,...,H
d

, certain of it 2d  facets. We accept the 

agreement that the scope of the request is defined in H
i

  for each 

i . That is, the hyperplanes are so refined that the points of 

interest x  satisfy the condition T

i i
ba x . Under these conditions, 

we will have 
1 2 2d

Q H H H  =   . Fig. 4 shows a two-

dimensional request rectangle deermined by four queries in a half-

space range, or eight control points. Half spaces H
i

  and H
i

  

defined by two reference points 
i

   and 
i

  . Choose 
i

   randomly 

in H H
i i

 − . 
i

   will be its rerepulse in the hyperplane H
i

. We 

itemize every index of the hyper rectangle. R d R  in the node R̂

-trees their two peaks , as demonstrated in Fig. 2 

In fig. 4 demonstrates three events of two-dimensional rectangular 

intersections. It is clear that we cannot verify the intersection of 

the rectangles simply by checking whether one vertex is embed-

ded in another. Vice, we should check which the peaks are in the 

corresponding half-spaces defined by the query fronts. Q . 

 
Fig. 4: Right Rectangle ABCD. 

3.3. Our scheme 

Our approach to the EhQ works as follows. To encode the request 

1 2 2d
Q H H H  =   , we create anchors 

i
   and 

i
   for every 

hyperplane H
i
. We then generate an encoded discriminator. 

Hi

  

for every H
i

. Applying
Hi

 , we can define below encoding 

whether this cipher point is located V  в H
i

  or in H
i

 . 

3.3.1. Encryption range peak and request algorithms 

Our technique apply the next algorithms. 

( )  _ ,Enc Vertex V M V→ . The data holder apply this algorithm to 

encode the peak . V  MBR node R̂ -trees, using your secret key 

M , inverse matrix ) (( 1 1)d d+  + . 
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(A) Case1 (B) Case 2 (C) Case 3 

 
 

 

Fig. 5: Three Events of Crossing of Rectangles. 

 

For a given vertex ( )1 2
, ,...,

T

d
V v v v=  the algorithm premier adds 

extra measurement to make ( )|1
T

TV V
+
= . Peak V  encode to 

  1

1
V rM V−

+
= , where 

1
r  – random positive number. 

_ H) )( ( ,
i i

Gen Anchor   → . This algorithm take a given 

hyperplane. H , defined by arguments a  and b  and prints pivot 

points 
i

   and 
i

  , recumbent in H  and H  accordingly. He 

randomly chooses a point. H H
i

  −  and calculates    as its 

reflection in H  in the following way. If a    and    – vectors 

representing    and    accordingly, we require their vector 

difference   −  was orthogonal to H . of lineal algebra we see 

that the vector a  orthogonal to H . Let be T b  − =a . We have 

T b  − = −a , ( ) 2T    − =a . Because a  and    known we 

can get 
2

2

|| ||


  = − a

a
. 

(_ , )
H

Gen Discr    → . This algorithm takes pivot points 

1 2
( , ,..., )T

d
      =  and 

1 2
( , , )..., T

d
      = , corresponding 

hyperplanes H , and displays the discriminator 
H

 . Former, he 

adds distance data to reference points to get 
2(( ) | ( 0.5 || || ))T T    

+
= −  and 2(( ) | ( 0.5 || || ))T T    

+
= − . Further 

 

+
 and  

+
 encrypted using M  as TM  

+
  =  and TM  

+
  =

. Eventually, the algorithm chooses a casual positive sense. 
2

r  and 

makes an encoded discriminator 
H 2

( )r    =   −   . 

3.3.2. Half-space range requests in encrypted vertices of 

the MBR 

The cloud performs an encrypted half-space range request at en-

coded MBR peaks applying the incoming algorithms. 

 ( )H H
_ V , VHalfspace Qry  → . This office takes a kit of encode 

MBR peaks. [V]  and hyper plane discriminator 
H

  and prints a 

lot 
H

V V H =  . 

It works by vocation the incoming office to check every point in 

[V] . 

_ ([V] {, ) 0,1}
H

In Halfspace  → . The office takes an encoded point. 

[V] , discriminator 
H

  and gives a bit specify which V H  

calculate [V]
H

  . Because 

 

1 2

1

1 2

1 2

2 2

1 2

[V] ( ) [V]

(( ) ( ) V

( ) V

(|| V || || V || ) V,

H

T T T

T

T

r r

r r M M M

r r

r r

 

 

 

 

 

  −

+ + +

 

+ + +

 

+ +

 =   −   =

= − =

= −

− −



=

= −



 

 

[V] 0
H

   , if V  is in H . Function exits 1, if V  is in H  and 0 

other. 

3.3.3. Hyper rectangle intersection 

We display how to define the intersection between encoded d - 

spatial request and hyper rectangles of the index based on queries 

in the range of a half-space. We require that each surface of the 

hyper rectangle be orthogonal to the coordinate axis. That is,every 

front is a hyperplane 
1 1 1

H ,..., , , ,...,( )
i i i i d

x x c x x
− +

=  , where 
i

c  – 

constant ,but 
i

x  not limited. This restriction is necessary, so far as 

crossing checks applying half-space requests can not operate on 

common polyhedra, so we shall spot. 

Hyperrect Index R dR  now completely determined by its 

extreme vertices , dV V R
⊥


•

, defined as follows. If a 

1 2
, ,...,( )

d
V v v v=  represents the top R , then we define

( )1
,...,{ } { }

d
V min v min v

⊥
= , ( )1

,...,{ } { }
d

V max v max v=
•

, where min  

and max  taken on all heights V  of R . 

Nevertheless, the hyperdirect of a query is defined in fee of half-

spaces defined by its fronts, since 
1 2 2

Q H H H
d

  =   . 

Hyper The index rectangle is decrypted as follows.

( )  _ R, REnc Index M → . Given the hyper rectangle index 

,( )R V V
⊥

=
•

 and clef array M  this algorithm displays encryption 

R  as    ([ ]),R V V
⊥

=
•

, _[ ] ),(V Enc Vertex V M
⊥ ⊥
=  and 

_[ ] ),(V Enc Vertex V M=
• •

. 

( )_ ,Enc Query Q M Q→ . This algorithm takes a key matrix and a 

request area. Q , given as the crossing of half spaces 

1 2 2
H H H

d

    . For each H
i
 he first calls ( )_ H

i
Gen Anchor , 

To obtain 
i

   and 
i

  . Then he gets 
i

H , causing 

_  ( , )
i i

Gen Discr    . It returns the area of the encrypted request. 

2 21H H H
Q = ( , , , )...

d

     . 

([_ R],Q 0,1) { }Xsect Index → . This function accepts query and 

index hyper rectangles, either encoded. It exits a Boolean value 

specify which the hyper rectangles cross. when either V
⊥

 and V
•

 

defined as lying outside H
i

  for some H
i
, algorithm returns 0 and 

1 else (spot Algorithm 1). 

Algorithm 1. _Xsect Index  

 

input:    ([ ]),R V V
⊥

=
•

, 
1 2H H

Q = ( ,. )..,
d

     

output: {0,1}  

1) for each 
1H

Q    do 

2) if not 
1H

_ ([V ], )In Halfspace
⊥
 , and not 

1H
_ ([V ], )In Halfspace 

•
 

then 

3) return 0 

4) end 

5) end 

6) return 1 

3.3.4. Versatile request region 

Our circuit may cultivate voluntary protuberant versatile request 

areas, yet it can bring in pseudo positives. The two events demon-

strated in fig. 6, can not be outstand. (a) No crossing (b) crossing 

 
(A) (B) 

  
Fig. 6: Can Not Be Outstanding. (A) No Crossing (B) Crossing. 
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Fig. 6. Half-space requests applying a multi-faceted area Both 

cevents comeback the same results if we e half-space requests for 

the peaks of the hyper rectangle of the index using H
i

 , determi-

nant the scope of lateen queries. nevertheless, our circuit is secure 

for prominent multifaceted request areas, so far as it does not enter 

pseudo negatives in accordance with proposition 1. 

Proposition 1. _ R , Q([ ] )Xsect Index    gives out 0, if the convex 

region of the versatile request Q  and index diapason R  do not 

cross. 

Evidence. R  certain by the formula ( )1
,...,{ } { }

d
V min v min v

⊥
=  and 

( )1
,...,{ } { }

d
V max v max v=

•
, its extreme peaks. If in 

1H
_ ([V ], )In Halfspace

⊥
  and 

1H
_ ([V ], )In Halfspace 

•
 output 0 for 

floor space query 
1H

Q   , either V
⊥

 neither V
•

 is not in H . 

Because V
⊥

 and V
•

 keep, accordingly, the littlest and biggest 

projections together the axis i , then neither 2d - vertices in R  

cannot be in H . It's clear that Q  and R  do not cross. 

3.3.5. Design and request R̂ -trees 

Tree R̂  can be considered as R -tree, whose MBR is encrypted, 

but the relationship between parents and children is not. Itsinfor-

mation points are encoded aside. Thes encoded information points, 

encoded indexes R̂ -trees and procreator-child relationships are 

located in the cloud. We check the overlapbetwixt encoded request 

diapasons and encoded MBR trees applying the new encoded Half 

space request (EhQ) arrangement. 

Our EhQ treatment is safe and effective and can be utilized to 

quest for encrypted another compound data textures , such as BNL 

trees and trees. We decided to basis our index R̂ -tree на R -tree, 

so far as the family R -trees has a lower information escape than 

bunching circuits, k - tools, BNL-tree, kD - a tree, etc., so 

demonstrated in [3]. 

R̂ -trees built as in algorithm 2. Let S  and S  denote encrypted 

versions of the data set. For an MBR sheet, have SR designate the 

data points that fall in R , but 
R

S  denote encrypted texts 
R

S . Let 

be T  and T̂  note R -tree and the conforming R̂ -tree accordingly. 

Let be PC  denotes a kit of parental -child relations in T . 

The incoming office, developed in algorithm 3, prize all the leaves 

of a tree. that cross the specified diapason request. 

( )ˆ_ ,ˆ Qtree Qry− →R T L  This function accepts a request as input. 

Q   encrypted range, R̂ -tree T . Her exit - kit of encoded leaves 

L , whose MBR cross Q  . 

3.4. Safeness analysis 

Our analysis display that outsourcing circuits that eliminate simple 

tuple encryption cannot provide reliable confidentiality ensures. 

Such order information frequently allows an opponent to 

accurately assessment the senses of the encode tuples. We start by 

analyzing the safety of the circuit utilized to encrypt the 

hypersurfaces of the index and request in R̂ -trees. Then we col-

late the confidentiality ensures given that by our circuit with those 

given that by contesting circuits, particularly when the opponent 

was able to detect fractional data around the senses of the encoded 

tuples. 

 

Algorithm 2. Construction R̂ -tree 

input: T , M  

output: T̂  

1) ˆ T =  

2) PC =  stack =   

3)  = node T .root 

4) if node  NULL then 

5) . ( )stack Push node   

6) end 

7) else 

8) return   

9) end 

10) while stack   do 

. ()node stack Pop=  

// .R  '  MBRnode denotes node s   

11) [ [R _ .R )] ,(Enc Index node M= ) 

12) if node has children then 

13) for each child do 

14) Save the parent-child relationship to PC  

15) end 

16) end 

17) if node is not a leaf then 

18) for each child do 

19) 
( ).stack Push child

 
20) end 

21) // Generate a node for T̂  

22) ={[R]}onode  
23) else 

24) Encrypt data points in R
S

 to obtain R
S

 

25) R
={[R], }Sonode

 
26) end 

27) Add onode  to T̂  

28) end 

29) Add PC  to T̂  

30) return T̂  

 

Algorithm 3. R̂ -tree Qry 

entrance:  Q , T̂  

1) L =  

2) stack =   

3) ˆ .node root=T  

4) if ( .[ ]_ R ), QXsect Index node    then 

5) 
( ).stack Push node

 
6) end 

7) else 

8) return   

9) end 

10) while stack   do 

11) ().node stack Pop=  ) 

12) if node is a leaf  then 

13) nodeL = L  
14) end 

15) else 

16) for each node’s child do 

17) if ( .[ ]_ Q )R ,Xsect Index child    then 

18) . ( )stack Push child  
19) end 

20) end 

21) end 

22) end 

23) return L  

 
Table 1: Encrypted Database Schemas. N  Tale of Tuples C  - the Extent 

of the Bouquet. (Maximum Burden logN  [2], [4] May Merely Be 

Reached for One-Dimensional Data) 

circuit request Overheads Indicate course? 

Bucketization [3] High: /( )O N C  No. 

course canning [2] Low: logN  Yes. 

Predicate encoding[4] Low: logN  Yes. 
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3.4.1. Encryption security 

We encode the subject-heading and request hyperdiacles with 

ASPE, whether was proven to be safe with plain text assaults in 

[10]. Our circuit saves the security attributes of ASPE, because it 

proceeds ASPE, yet does not change the main treatment to encod-

ing in [10]. synthetic dimensions and casual asymmetric cleavage 

more operate in our circuit. 

3.4.2. Comparison since contesting circuits 

We show as order data can be used by an opponent to display 

cleartext senses applying course statistics. so shown in the 

tspreadsheet. 1, the current circuits give either performance or 

solitude defense, yet not either. So, the bouquetization circuit from 

[3] advocates the order data, yet perishes because of the tall re-

quest burden. It as well demands the holder of the data to control 

the bouquet indexes . In relief , [2], [4] permit efficacious requites 

, but display order data on encoded tuples. R̂ -Tree can perform 

highly efficacious requests by cloaking the order of data points in 

every MBR. 

For some causes , we will not conduct a itemized comparison of 

our circuit since the bouquetization circuit [3]. Former, [3] is not a 

genuine outsourcing circuit, so far as the index is stored on the 

data holder's site, and not in the cloud. It as well demands that all 

requests are executed by the data holder, and this means 

significant requirements. Finally, index quest accepts time. 

/( )O N C , that is lineal in the scale of the database if we hold the 

scale of the bouquet invariable. These overheads are superfluous 

ccompared to cotesting circuits. 

Therefore, we collate the stability of our circuit with the ability of 

the circuits in [2], [4]. This is a fitting matching , so far as R̂ -tree 

achieves the same way request intricacy so these schemas. We 

will show that our circuit has more rather stability, an edge that it 

has contrary each circuit such does not mask the ordering of the 

tuples. 

3.4.3. Attack model 

Let be A
O

 denotes an adversary in schemes that reveal 

information to streamline, and let 
ˆ

A
R

 denotes an opponent into 

our circuit. Leaf Index diapasons R̂ -tree are limiting fields per 

clusters of encipher information points. upper layer knots are 

additional clusters of limiting blocks. 
ˆ

A
R

 cannot spot index diapa-

sons at every of the nodes R̂ , because they are cipher using 

ASPE. Even so,
ˆ

A
R

 able to study the ordering of every MBR 

sheets from a sufficient number of query results. 
ˆ

A
R

 can 

selectively take a subspace discriminator 
Hi

  from the received 

requests for the formation of new requests. But these requests can 

help him get an order of leafy MBR. The order of the data points 

within every sheet MBR is more safe. 

purpose 
ˆ

A
R

 is to output the senses of the cipher data points allo-

cable to the knot 
j

  sheet. 
ˆ

A
R

 can examine the plain text senses 

from little cipher data points. Let's pretend that 
ˆ

A
R

 knows the 

lower and upper limits of the diapason in 
j

 , and he too have the 

allocation from point senses. 

For match our circuit since procedures such as [2], [4], which 

show the order of cipher points, we suppose such A
O

 too attempts 

to output the senses of the cipher data points to
j

 . A
O

 Have the 

relative order of every data points, the lower and upper limits of 

the diapason into 
j

  and the allocation from point senses. 

3.4.4. The optimal evaluation criterion of the enemy 

The purpose of the enemy is to display the senses of the cipher 

tuples. For this end, it will utilize a statistic estimate, the perfor-

mance of which should be calculated in terms of the fault it 

introduces. We will utilize the extensively utilized metric of the 

root mean square estimate (MSEE), too utilized in [3], that works 

so tracks. Per rusticity, regard the one-dimensional matter. It is 

frequently necessary to evaluate the sense of a casual alternate. Y

, which itself is not available in terms of the function )(g X , 

available casual alternative X . In our matter Y  is a plain text 

tuple. The opponent select a suitable casual alternate. X . MSEE 

is spotted so 2(( ) ])[Y g X−E . The easiest choice for an opponent is 

)(g X c= , constant. We find the value 
min

c , which minimizes 

MSEE as follows. Beginning with 
2 2 2[( ) { [ ] 2 ( )] },

c c
min Y c min Y c Y c− = −  +E E E  

We differentiate by and set to 0, we get [ ]
min

c Y=E . Minimum 

MSEE now 2[( [ ]) ( )VaY rY Y=−E E . Therefore, the optimal 

estimate for Y  is an [ ]YE , which reaches the minimum MSEE 

value ( )Var Y . 

Therefore, given the encrypted tuple 
i

y  open text 
i

y , taken from 

the allocation simulated by a casual alternateY , better evaluation 

that an opponent may do to 
i

y , equal [ ]YE , reaching MSEE 

( )Var Y . 

3.4.5. Installation attacks since and out of order infor-

mation 

present the continuous diapason ,[ ]
s e

R y y= , containing | |R , 

encrypted tuples 
2 | |1

, ,...,( )
R

y y y , оба adversary A
O

 и 
ˆ

A
R

 try to 

display plain text values ,
s e

y y  cipher tuples in R . We suppose 

both A
O

 and 
ˆ

A
R

 have the meanings of plaintext ,
s e

y y  of the two 

end points of the diapason R . Permit the causal alternate Y  

corresponds to the same allocation so the plaintext senses of every 

cipher tuples that have the solidity function }(f y . Besides, A
O

 

knows how distribution }(f y  open texts and the order of the 

encrypted sets 
i

y . 
ˆ

A
R

 have the allocation }(f y , yet not the order 

of the cipher tuples 
i

y . 

3.4.5.1 Attack ˆ
A

R  (order unknown) 

Let the random variable 
R

Y  matches the same allocation so the 

plaintext senses of the cipher tuples in R . Applying allocation 

)(f y , 
ˆ

A
R

 discovers allocation ( )
RY

f y  for 
R

Y . In 3.4.4, we saw 

that the best estimate 
ˆ

A
R

 for any
i

y R  - [ ]
R

YE . 

3.4.5.2. Attack 
A

O  (order known) 

A
O

 can do much better since he knows the order 
i

y . A
O

 first 

finds ( )
RY

f y . Permit the causal alternate 
( )|

( )
k R

Y y  represents the 

plaintext sense of the kth littlest set in the diapason R , having an 

allocation
( )|

( )
k R

f y . A
O

 gets 
( )|

( )
k R

f y , using ( )
RY

f y  and equation 

(1). Let be 
( )k

y  denotes k  smallest set in R . As in § 3.4.4, the 

best score is A
O

 for 
( )k

y th open text 
( )k

y  - 
( )|

[ ]
k R

YE . 

3.4.6. Metrics   absolute estimation errors 

Let 
ˆ

A
R

 and A
O

 evaluate the true value of the plaintext 
i

y  for 

encrypted tuple 
i

y R , as R̂

i
y  and O

i
y  accordingly. We deter-

mine the stark assessment fault for 
ˆ

A
R

 as 
ˆ ˆ

| |
i

R R

iiy
y y = −  and for 
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A

O
 - | |

i

O O

y ii
y y = − . If a 

( )k
y  - smallest set in R , define 

ˆ

( ) ( )
[ ]| |R

k k R
y Y = −E  и 

( ) ( ) ( )
|]| [O

k k k R
y Y = −E . 

3. Conclusions 

The paper presents R̂ -tree - A hierarchic cipher subject-heading 

that may provide save and effective diapason requires on cipher 

data. R̂ -tree hides the order of internal MBR files to defend data 

privity. Our speculation and experiential assay show that 

identifying order is hazardous for external data, and R̂ -tree has 

more rather stability than circuits out of streamlining information 

security. too developed a system that implements R̂ -tree, having 

good performance. 
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