

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.31) (2018) 511-515

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

An Automated Code Optimizer of Design Patterns for
Reducing Energy Usage in Green Computing

Jamilah Din*, Ooi Chiew Wei and Muhammed Basheer Jasser

Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

*Corresponding author E-mail: jamilahd@upm.edu.my

Abstract

With the trend towards green computing, researchers are looking for more energy efficient software solutions. One of the approaches is
optimizing the software design patterns. Studies have shown that adopting certain design patterns (especially Decorator, Observer) leads
to a higher energy consumption. Fortunately, there are studies for proposing optimization rules to reduce the energy consumption of such
patterns. However, due to the lack of guidance, designers do not adopt these optimization rules. This research aims to identify the factors
that cause energy inefficiency during the implementation of software design patterns and to provide a tool to automate the optimization
of software design patterns. Based on the experimental results, the adopted automated optimization rules in the proposed tool reduce the
energy consumption of the design pattern of interest meeting the research objective in automating the design pattern optimization, which
makes it easier to adopt design patterns in green computing.

Keywords: Green Computing; Code Optimization; Design Patterns; Energy Consumption.

1. Introduction

In recent years, green computing is getting popular. Green
compting is an environmental friendly computing, in the sense that
the practice consumes less resources or causes less damage to the
environment [9]. As new technologies are introduced, they do not
only bring in improvements and conveniences but also damages
and cost to the environment. For example, current famous cloud
computing environments are expected to consume 47 billion kWh
by 2019, which stands for 4.7 billion dollars and 50 million MT
carbon dioxide [18].
New non-functional requirements have been introduced to define
greenness in computing, since existing attributes are not meant for
green computing. In [12, 16], Sustainability has been defined as
the new non-functional requirement that represents greenness. It
means that the software system or service shall contribute to pre-
serving environment and human well-being. It includes resource
consumption, greenhouse gas emission, social sustainability, and
recycling. Some other terms are introduced as well. For example,
Procaccianti et. al. [14] claims that energy hotspots are elements
or properties at any level of abstraction of the system architecture,
which has a measurable and significant impact on energy con-
sumption.
There are two general ways to categorize green computing. The
first way is green in computing and the second way is green by
computing. Existing research studies have been done on architec-
tures [1, 3, 7, 10], while some other studies focus on the hardware
issues [11]. In terms of green in computing, many works focus on
the design phase [10].
Numerous research works have been done to bring greenness into
software engineering. However, it is not easy to practice green
computing [15]. Many of the research works require manual im-
plementation. There is a need to bring these works to practitioners.
It is hard for practitioners, more specifically the software design-

ers, to adopt “green” design. Thus, there is a need to aid designers
through automating the transformation processes of software de-
signs into greener ones.
There are many research studies done on the effect of design pat-
tern from the green perspective [4, 8, 2, 5, 22]. Noureddine and
Rajan [5] proposed transformation rules that can be applied onto
the design pattern so that energy consumption could be reduced.
However, applying these rules is difficult if the approach requires
manual transformation. Designers need to learn about the trans-
formation rules before performing them manually [20]. This extra
works leads to unwillingness to adopt green computing. Thus,
there is a need to improve green computing adoption.
The main aim of this research is to enhance green computing
adoption by providing a tool that helps to transform selected de-
sign pattern to an optimized (in term of green) design pattern. Our
work automates the transformation rules as an alternative way to
the manual transformation. Our work considers the design of the
software and then translates it to code. Then, transformation rules
are implemented on the code. Three main objectives of this work
are as follows:
• Identify the energy consumption of design patterns
• Identify existing transformation rules.
• Develop a tool to automate the transformation rules
The paper is structured as follows. Section 2 presents the back-
ground and literature review including the studies on energy con-
sumption of design patterns, the causing factors for that, some
optimized design patterns and some tools for development assis-
tance. Section 3 introduces the design and implementation of the
targeted design pattern and its optimized one. Section 4 presents
the tool and its evaluation. Section 4.2 discusses the results. Sec-
tion 5 concludes the work.

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET

512 International Journal of Engineering & Technology

2. Background and Literature Review

Design patterns have been used to optimize the system perfor-
mance and promote re-usability of the system design. Research
works in [2, 4, 5, 8, 22] have been carried out to investigate effect
of adopting design pattern on energy consumption. The results
show that different design patterns affect the energy consumption
differently. Some design patterns reduce the energy consumption,
while some other design patterns increase the energy consumption.
This section is divided into four subsections. Section 2.1 discusses
the existing studies regarding energy consumption of design pat-
terns. Section 2.2 reviews the factors that cause energy consump-
tion in design patterns. Section 2.3 exhibits existing work on al-
ternative design patterns. Section 2.4 presents some tools that
assist developers in adopting green computing

2.1. Energy Consumption of Design Pattern

Litke, A. et. al. [4] have selected three design pattern from the
categories (creational, behavioral, and structural). The authors
found out that the observer pattern increases the power consump-
tion dramatically.
Sahin et. al. [8] investigates the power profiles of software appli-
cation using design patterns and without using design patterns. In
this research, the authors selected fifteen design patterns as sub-
jects of research, five from each category (creational, structural,
and behavioral) proposed by Gamma et. al. They found out that
design patterns have different power profile regardless of their
categories.
Noureddine and Rajan [5] have proposed a compiler optimization
approach to reduce energy consumption without sacrificing design
patterns in software engineering. The authors aim to show that it
is possible to further reduce energy consumption of design pattern
implementation. In this research, they have studied fourteen pat-
terns (Mediator, Observer, Strategy, Template, Visitor, Abstract,
Builder, Factory, Prototype, Singleton, Bridge, Decorator, Fly-
weight and Proxy) written in C++ and other seven patterns (Chain,
Command, Interpreter, Iterator, State, Adapter and Composite) in
Java regarding the energy consumption of design pattern code
against non-design pattern code. The authors have compared the
source code with design pattern and source code without design
pattern in their experiment. The effect of adopting design pattern
in source code varies. While some design patterns reduce the en-
ergy consumption, some others increase the energy consumption.
The results show that the Mediator design pattern, Observer de-
sign pattern, and deco- rator design pattern have the highest in-
crease in energy consumption.
Bunse et. al. [2] have conducted their research in mobile platform.
They have used six design patterns (Facade, Abstract factory,
Observer, Decorator, Prototype) and Template method in Java
language in the experiment. The experiment subjects are separated
into two categories, with design pattern and without design pattern.
Similar to Noureddine’s experiment, Bunse compares the energy
consumption and execution time of Java application with design
patterns and Java application without design pattern. The results
show that Prototype and Decorator topped the lists with the high-
est energy consumption and execution time difference, while other
design patterns (Facade, Abstract Factory, Observer) and Tem-
plate Method show only a little difference. In this experiment, they
have used PowerTutor App to measure the energy consumption.
Feitosa et. al. [22] investigates the effect of design patterns in
more sophisticated systems, which contain the investigated design
pattern and additional functions. In [22], three design patterns
have been selected: Strategy, State, and Template patterns and
their alternatives. The alternatives are codes that provide the same
functionality but have different implementation. The results show
that three of the selected design pattern increase energy consump-
tion. In their work, they use the following software to measure the
energy consumption: PowerAPI, pTop and Jalen. PowerAPI and

pTop are used to measure the energy consumption at the operating
system level, while Jalen is used to measure the energy consump-
tion at the method level.

2.2. Causing Factors of the Increase of Energy Con-
sumption

The works in [2, 4, 5, 8, 22] further infer the underlying factors
that cause the increase of the energy consumption. Result are dis-
played in Table 1. Table 2 shows the factors caused by design
pattern individually and the alternatives used to do the comparison.
In Litke’s research [4], Observer pattern introduces additional
classes and methods. This leads to a longer code, more method
calls, and more number of memory access, as compared to a non-
patterned subject. Thus, the authors infer that these are the reasons
behind the increase of energy consumption.
Meanwhile, Sahin et. al. [8] stated in their research that the gen-
eral factors that cause the increase in energy is due to more object
instantiation, method calls and number of parameter passing.
However, the authors believe that what causes the 700% increase
in energy usage of Decorator pattern is due to creating complex
objects without inheritance.
Bunse et. al. [2] and Noureddine and Rajan [5] both agree that
more object instantiations and method calls cause the hike in ener-
gy consumption.
Lastly, Feitosa et. al. [22] have investigated the energy consump-
tion of design patterns with two criteria which are line of code and
number of method invocations/calls [22]. The authors believe that
these are primary factors that cause the energy inefficiency. Based
on their experiments, they notice that design patterns are not bene-
ficial for less complex design problems. In addition, they notice
that when dealing with complex situations, the effect of polymor-
phism weakens.

2.3. Design Pattern Alternatives Based on Energy Con-
sumption

This section focuses on the optimization of design patterns in term
of energy consumption. From the literature review, there are two
research studies [5, 22] in which optimization rules are proposed.
Noureddine and Rajan [5] in their work apply modifications on
specific design patterns. In their work, decorator transformation is
done through replacing multiple object construction (an object and
its decorators) with a single object creation. As for observer, opti-
mization is done through transforming multiple function calls and
memory accesses into a single call.
In [22], the alternative design patterns are selected from popular
research studies. There are two alternatives design pattern in [22]:
State/Strategy and Template. State/Strategy’s alternative adopts
replacing polymorphism with the use of conditional statement.
This alternative omits some cases like abstract class or interfaces.
As for the Template design pattern, the authors focus on reducing
method calls.

2.4. Existing Works on Assisting Developers in Adopting
Green Computing

There are not many models or tools that are available to support
developers in adopting greenness.
Gamez et. al. [13, 19] focus on addressing energy consumption at
the architectural level. The authors propose HADAS that can
identify the energy consumption at different hotspot, store, com-
munication, compression, security, data access, notification, syn-
chronization, user interface, code migration, and fault tolerance.
HADAS displays the expected energy consumption to the user.
HADAS automates the green configuration chosen by the user.
The optimization requires the predefined optimization rules, with-
out which the optimization cannot be performed.

International Journal of Engineering & Technology 513

Table 1: Factors Causing Higher Energy Consumption

Table 2: Factors Causing Higher Energy Consumption Based on Design Pattern and Comparison with Alternatives

Manotas et. al. [21] investigate how software practitioners think of
energy in software development processes. Manotas et. al. con-
clude that software practitioners do care about green computing;
however, they do not really practice it because there are no guide-
lines or assistance to practice green computing.

3. Design and Implementation

This section discusses the targeted design pattern, the concept
behind the modification onto it and how it is implemented as a
prototype. This section is divided into two subsections. Section
3.1 presents the Decorator design pattern. Section 3.2 presents the
optimized Decorator design pattern.
For the Decorator pattern, Noureddine’s optimization rules [5]
have reduced the object instantiation by placing all the methods of
multiple objects into one single object. While the authors in [5] do
this manually converting the source code, this research applies the
optimization in a different way. The proposed tool uses the similar
optimization concept, which is reducing object instantiation by
putting all the methods in multiple objects into one object. In this
case, the tool implements the optimization rules automatically
onto the source code.
The proposed automation tool takes the source code as input and
changes the source code to fit the optimization. In this case, the
automation relies on the naming convention of the method inside
the class file.

3.1. Decorator Design Pattern

Decorator design pattern is mainly used for designing a flexible
and reusable object-oriented software. The design pattern allows
behaviors to be added to an individual object, without affecting
the behaviors of other objects from the same class [23].

A basic Decorator design pattern class diagram is shown in Figure
1. In Decorator design pattern, the Window is” decorated” through
multiple object instantiation. HorizontalScrollBarDecorator and
VerticalScrollBarDecorator contain additional functions that are
to be added or decorated onto the SimpleWindow.

Fig. 1: Window Decorator

3.2. Optimized Decorator Design Pattern

The goal is to reduce the object instantiation. While there are
many ways to modify the code, this research follows the optimiza-
tion rules proposed by Noureddine and Rajan [5]. The employed
concept is creating a new abstract class and moving existing func-
tions from all the other decorator classes into this new abstract
class. The alternative for the Windows Decorator is shown in Fig-
ure 2.

514 International Journal of Engineering & Technology

Fig. 2: Alternative Design Pattern for Window Decorator Design Pattern

This alternative design pattern reduces multiple object instantia-
tion to one simple object instantiation. Consider the number of
objects in original source code as Noriginal the optimized code
will have Noriginal -1 less objects, as compared to original source
code. The final form of the optimized design pattern has less ob-
ject instantiation while having similar number of function calls.
This allows the number of function calls to be a constant in the
experiment.

4. The Tool Evaluation and Results

This section discusses how the experiment is carried out in this
study and the evaluation of the data collected from the experiment.
This section is divided into two subsections. Section 4.1 presents
setup of experiment. Section 4.2 presents the data evaluation and
discusses the results.

4.1. The Proposed Tool and Experiment

The experiment is done on a conventional computer. The specifi-
cation is shown on Table 3. The objective of the experiment is to
compare the original source code and optimized source code, and
to measure which one consumes more energy during execution
time. In this case, the test subjects (source codes) and energy
measuring tools (PowerAPI) are tested on the same computer,
which means the data collection and analysis for this experiment
are not affected by the computer specification.

Table 3: Computer Specification Used
CPU Intel®,Pentium® CPU G620 @ 2.60GHz
Memory 1.8gb
Operating,System LinuxMint,18.3 cinnamon

There are many power measuring tools used in the literature, such
as pTop, Jalen, PowerAPI and Intel Power Gadget. However,
many of these tools are no longer supported by the development
team. Due to this difficulty, this experiment uses PowerAPI which
still have a good support. On top of that, PowerAPI allows user to
selectively measure the power consumption of application, which
definitely fits the purpose of this experiment and allows to identify
the power consumption of a single application at one time.
Subjects of experiment are the source code with the decorator
design pattern and also optimized source code with the optimized
design pattern. The Decorator source code is a general source code
collected from an online source [23]. As for the optimized source
code, it is generated with the help of the proposed tool.
The flowchart of the conducted experiment is shown in Figure 3.
The main objective is to identify the energy consumption of two

test subjects and compare both readings. The first step is to get the
test subject for the experiment. Next, is to setup the testing envi-
ronment. Due to the constraint posted by PowerAPI, which re-
quires Linux environment, a virtual machine is installed on the
computer to host the operating system. Afterwards, the power
monitoring tool is tested.

Fig. 3: Flow of Experiment

The prototype of the proposed tool is developed in Java program-
ming language, and it is used to generate the optimized source
code. Figure 4 shows the flowchart of the prototype. This early
prototype only provides the optimized design pattern structure to
the designer, so that designer still need to apply changes to the
function naming and calling part in the source code in order to
make it executable.

Fig. 4: Flow Chart of Prototype

The original and optimized source codes are then tested for the
energy consumption during execution and data is collected. Lastly
comparison is made and results are discussed.

4.2. Results and Discussion

Five readings have been obtained during the experiment. Figure 5
and Table 4 clearly show that the energy consumption of original
source code (Eoriginal) is more than the energy consumption of
optimized source code (Eoptimized). Although the reading of
Eoriginal varies, the average reading is higher than Eoptimized,
which is 193% higher. This shows that the proposed tool does
help to create a less energy consuming application.

Table 4: Experimental Results
 Original Source Code Optimized Source Code

Reading,1 8272.7272mW 4550mW
Reading,2 8272.7272mW 4550mW
Reading,3 4550mW 4550mW
Reading,4 13650mW 4550mW
Reading,5 9100mW 4550mW

International Journal of Engineering & Technology 515

Fig. 5: Experimental Results

Internal Validity: One of the biggest concerns is the sensitivity
of the tool. Due to the scale of the test subjects, the execution time
is very fast. It is hard for the tool to get the reading for every exe-
cution of lines of code. Furthermore, the tool can only measure in
miliWatt (mW), and any smaller scale is not captured.
However, in this experiment, the need is to show that optimized
code consumes less energy than the original code. For that, this
issue can be neglected.
External Validity: Different environments might gain different
results. This is because different types of processor consume dif-
ferent amount of energy during runtime. However, this shall not
affect the result where optimized source code consumes less ener-
gy than the original source code.

5. Conclusion

More energy efficient software solutions are required in the con-
text of green computing. Optimizing the software design patterns
is a way of achieving this in software that employ design patterns,
especially those which increase the energy consumption in the
software that employ them. Studies have shown that adopting
certain design patterns (especially Decorator, Observer) leads to a
higher energy consumption. Optimizing rules to reduce the energy
consumption of such patterns have been introduced. However,
these optimization rules still lack the necessary guidance and au-
tomation making these rules not being adopted by designers.
This research aims to identify the factors that cause energy ineffi-
ciency during the implementation of software design patterns and
to provide a tool to automate the optimization of software design
patterns.
Based on the experimental results, the adopted automated optimi-
zation rules reduce the energy consumption of Decorator design
pattern meeting the research objectives.
While full automation is yet to be achieved, further works could
be done in order to achieve that. In addition, there are other types
of design patterns that require attention in order to be greener.
Also, there are more to be discovered in green computing in the
aspect of design patterns. Future works can be done with bigger
size of test subjects and systems.

Acknowledgement

Thank you to the Ministry of Higher Education (MOHE) and Re-
search Management Center, Universiti Putra Malaysia (UPM) for
the financial supports through FRGS Vote No: 08-01-15-1726FR

References

[1] Beik, R.: Green cloud computing: An energy-aware layer in soft-
ware architecture. In Engineering and Technology (S-CET), Spring
Congress on (pp. 1-4). IEEE, (2012).

[2] Bunse, C., Schwedenschanze, Z., and Stiemer, S.:On the energy
con- sumption of design patterns. In Proceedings of the 2nd Work-
shop EASED@ BUIS Energy Aware Software-Engineering and
Development (pp. 7-8), (2013).

[3] Jagroep, E., van der Werf, J. M., Brinkkemper, S., Blom, L., and
van Vliet, R.: Extending software architecture views with an energy
con- sumption perspective. Computing, 1-21, (2016).

[4] Litke, A., Zotos, K., Chatzigeorgiou, A., and Stephanides, G.: En-
ergy consumption analysis of design patterns. In Proceedings of the
Interna- tional Conference on Machine Learning and Software En-
gineering (pp. 86-90), (2005).

[5] Noureddine, A., and Rajan, A.: Optimizing energy consumption of
design patterns. In Proceedings of the 37th International Confer-
ence on Software Engineering-Volume 2 (pp. 623-626). IEEE Press,
(2015).

[6] Ramirez, R. I., Rubio, E. H., Viveros, A. M., & Herna´ndez, I. M.
T.: Differences of energetic consumption between Java and JNI
Android apps. In Integrated Circuits (ISIC), 2014 14th International
Symposium on (pp. 348-351). IEEE, (2014).

[7] Rangaraj, G., and Bahsoon, R.: Green software architectures: A
market-based approach. In The Second International Workshop on
Software Research and Climate Change (WSRCC), (2010).

[8] Sahin, C., Cayci, F., Gutie´rrez, I. L. M., Clause, J., Kiamilev, F.,
Pollock, L., and Winbladh, K.: Initial explorations on design pattern
energy usage. In Green and Sustainable Software (GREENS), 2012
First International Workshop on (pp. 55-61). IEEE, (2012).

[9] Wang, D.: Meeting green computing challenges. In Electronics
Pack- aging Technology Conference, 2008. EPTC 2008. 10th (pp.
121-126). IEEE, (2008).

[10] Williams, J., and Curtis, L.: Green: The new computing coat of
arms? IT Professional Magazine, 10(1), 12, (2008).

[11] Zhong, B., Feng, M., and Lung, C. H.: A green computing based
architecture comparison and analysis. In Proceedings of the 2010
IEEE/ACM Int’l Conference on Green Computing and Communi-
cations & Int’l Conference on Cyber, Physical and Social Compu-
ting (pp. 386-391). IEEE Computer Society, (2010, December).

[12] Lago, P., Kazman, R., Meyer, N., Morisio, M., Mu¨ ller, H.A. and
Paulisch, F., . Exploring initial challenges for green software engi-
neering: summary of the first GREENS workshop, at ICSE 2012.
ACM SIGSOFT Software Engineering Notes, 38(1), pp.31-33,
(2013).

[13] Gamez, N., Pinto, M., and Fuentes, L.: HADAS Green Assistant:
de- signing energy-efficient applications. arXiv preprint
arXiv:1612.08095, (2016).

[14] Procaccianti, G., Lago, P., Vetro`, A., Ferna´ndez, D. M., and
Wieringa, R.: The green lab: Experimentation in software energy
efficiency. In Proceedings of the 37th International Conference on
Software Engineering Volume 2 (pp. 941-942). IEEE Press, (2015).

[15] Kern, E., Dick, M., Naumann, S., Guldner, A., & Johann, T.: Green
software and green software engineering–definitions, measurements,
and quality aspects., 87-94, (2013).

[16] Shenoy, S. S., and Eeratta, R.: Green software development model:
An approach towards sustainable software development. In India
Conference (INDICON), Annual IEEE (pp. 1-6). IEEE, (2011).

[17] Stier, C., Koziolek, A., Groenda, H., and Reussner, R.: Model-
Based Energy Efficiency Analysis of Software Architectures. In
European Con- ference on Software Architecture (pp. 221-238).
Springer International Publishing, (2015).

[18] Rubyga, G., and SathiaBhama, P. R.: A survey of computing strate-
gies for green cloud. In Science Technology Engineering and Man-
agement (ICONSTEM), Second International Conference on (pp.
141-145). IEEE, (2016).

[19] Gamez, N., Horcas, J. M., Pinto, M., and Fuentes, L.: A green pro-
gram lifecycle supporting energy-efficient applications. arXiv pre-
print arXiv:1612.08073, (2016).

[20] Becker, C., Betz, S., Chitchyan, R., Duboc, L., Easterbrook, S. M.,
Penzenstadler, B. and Venters, C. C.: Requirements: The key to
sustainability. IEEE Software, 33(1), 56-65, (2016).

[21] Manotas, I., Bird, C., Zhang, R., Shepherd, D., Jaspan, C., Sa-
dowski, C. and Clause, J.: An empirical study of practitioners’ per-
spectives on green software engineering. In Proceedings of the 38th
International Conference on Software Engineering (pp. 237-248).
ACM, (2016).

[22] Feitosa, D., Alders, R., Ampatzoglou, A., Avgeriou, P., and Nak-
agawa, E. Y.: Investigating the effect of design patterns on energy
consumption. Journal of Software: Evolution and Process, 2(29),
(2017).

[23] Decorator pattern. Retrieved from
https://en.wikipedia.org/wiki/Decorator_pattern, July 2018.

	Abstract
	1. Introduction
	2. Background and Literature Review
	2.1. Energy Consumption of Design Pattern
	2.2. Causing Factors of the Increase of Energy Consumption
	2.3. Design Pattern Alternatives Based on Energy Consumption
	2.4. Existing Works on Assisting Developers in Adopting Green Computing

	3. Design and Implementation
	3.1. Decorator Design Pattern
	3.2. Optimized Decorator Design Pattern

	4. The Tool Evaluation and Results
	4.1. The Proposed Tool and Experiment
	4.2. Results and Discussion

	5. Conclusion

