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Abstract 
 

A two-step method for designing controller for a single area power plant (SAPP) is proposed. In the first step, a lower-order (lth-order) 

model for a higher-order (hth-order) power plant is obtained using dominant pole retention and Padé approximation method and a con-

troller is designed for this model. This controller is then implemented to original higher-order power system in the next step. The method 

preserves stability and disturbance rejection is also satisfactory. 
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1. Introduction 

Mathematical modelling of large engineering systems often leads 

to higher order differential equations. The analysis of such high 

order system is not only difficult but costly for online implementa-

tion. Moreover, designing a controller of original model seems to 

be difficult or even impossible. Most of the control systems de-

signs are based on second-order approximation to whatever order 

the process happen to be, and these control system work, usually 

quite well. It is, therefore desirable and sometimes necessary to 

replace these higher-order systems (HOS) by a lower-order model 

(LOM). A large variety of methods have been proposed both in 

frequency as well as in time domain [1], [2]. 

A very powerful method involving simple algebraic calculation is 

Padé approximation [3] method. This method, however, has the 

drawback that the model derived using this method sometimes 

produces unstable models for stable HOS. Many methods have 

appeared in literature such as Routh approximation and impulse 

energy approximation [4], [5] to ensure stability.  

Another method for deriving LOM is Krylov subspace method 

[6]. It can handle systems of several thousand orders but it has a 

drawback that it does not ensure stability of LOM. Recently, H


and fuzzy based methods have also been presented [7]. An im-

portant group of reduction method is dominant pole retention and 

pole clustering [8, 9]. These methods ensure stability of LOM and 

are simple to implement. Methods based on ISE minimization 

have also appeared in the literature [10]. In these methods, Pare-

seval’s theorem is used which changes ISE in denominator and 

numerator of lower-order transfer function. 

In this paper, a mixed method is proposed. In the first step, a sta-

ble LOM, using dominant pole retention and Padé approximation 

is determined. The controller is derived corresponding to this 

LOM and then implemented to HOS in the second step. The de-

nominator parameters of LOM are obtained using dominant pole 

retention method and numerator parameters of LOM are deter-

mined by Padé approximation. The method is applied for design-

ing a controller for a single area power plant. 

2. Problem formulation 

Suppose the HOS is given by ( )G s
h

. In the first step, a lower-

order controller ( )C s
l

is derived for this ( )G s
h

represented by:  

 

1 2...
1 2( )

1 2...
1 2

h hd s d s d
hG s

h h hh s c s c s c
h



  

   
                                   (1) 

 

Or 

 

1 2...
1 2( )

( )(s )...( )
1 2

h hd s d s d
hG s

s p p s ph
h h hn



  

  
                                 (2) 

 

Where 
1 2
, ...,

h h hn
p p p    are poles of HOS and a LOM of the 

following form is to be derived. 

 

1 2ˆ ˆ ˆ...
1 2( )

(s )(s )..( )
1 2

l ld s d s d
lG s
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Where ,...,

1
p p
d dl

   are the dominant poles of the LOM. 

 

2.1. Determination of denominator of LOM 

The dominant poles are those poles which are closer to j axis. 

The denominator ( )D s
l

 of the ROM is determined by retaining r 

dominant poles of (2) in the form as shown in (3). Once the domi-

nant poles (s )(s )..( )
1 2

p p s p
d d dl

    are determined, the 

denominator ( )D s
l

 is easily obtained as: 

 

1 2ˆ ˆ ˆ( ) ...
1 2

l l lD s s c s c s c
l l

                                         (5) 

2.2. Determination of numerator of LOM 

Padé approximation is used to determine numerator of LOM. 

( )
h

G s as given in (1) is expanded in Taylor series as: 

 

(about 0)

( about )

1( ) ... ...
1 2

1 2 ... ...
1 2

s

s

hG s t t s t s
h h

hM s M s M s
h



 

    

      
 (6) 

 

Where 
1 2 3
, , ,...t t t and 

1 2 3
ˆ ˆ ˆ, , ...M M M  are the time moments (TM) and 

Markov parameters (MP) of the HOS. Similarly ( )
l

G s  is expanded 

in Taylor series as: 

 
1

1 2

1 2

1 2

ˆ ˆ ˆ( ) ... ... (about 0)

ˆ ˆ ˆ... ... (about )

l

l l

l

l

G s t t s t s s

M s M s M s s



  

     

      
                           (7) 

 

Where 
1 2 3
ˆ ˆ ˆ, , ,...t t t and 

1 2 3
ˆ ˆ ˆ, , ...M M M  are TM and MP of the lower-

order model. The problem is formulated for l even. For l odd, it 

may be formulated in the same way. 

For the LOM to be stable, the l equations as given in (8) are to be 

satisfied. 

 
ˆ 0

j j
t t   and ˆ 0

j j
M M   ( 1, 2, ..., / 2)j l                                         (8) 

 

It may be verified that the time moments and the Markov parame-

ters are related with the numerator and denominator coefficients as  

 

1

ˆ ˆˆ ˆ

1 1

and for  1,2,3,..., / 2
l j k l j k j k j k

j j
d t c d M c

k k

j l
    

  

 

            (9) 

 

Now, matching required number of TM and MP in accordance 

with (8) and (9) of the HOS and LOM, numerator coefficients 

1

ˆ ˆ, 2, ...ˆ
l

d dd LOM is computed as: 

 

1 2 3

1 2 3ˆ ˆ ˆ ˆ( ) .....
l l l l

l l
N s s d s d s d s d

  
                                                     

(10) 

2.3. Controller design 

Consider a unity feedback control system [11] as shown in Fig. 

2.1. In the classical approach, the controller ( )C s is designed by 

specifying the desired closed-loop (CL) transfer function ( )
d

T s  and 

equating it to the CL transfer function of the system. Then, this 

equation is solved for finding the controller. 

 

 
Fig. 2.1: Controller Configuration. 

 

The transfer function of the CL system for Fig. 2.1 is obtained as 

 

( ) ( )
( ) 

1 ( ) ( )

h

o

h

C s G s
T s

C s G s




                                                                          (11) 

 

Since overall all transfer function is chosen as desired model 

 

( ) ( )
( ) 

1 ( ) ( )

h

d

h

C s G s
T s

C s G s




                                                                          (12) 

 

Solving for controller ( )C s  

 

( )
( ) 

( )[1 - ( )]

d

h d

T s
C s

G s T s



                                                                         (13) 

 

If, 
( )

h
G s

is reduced to 
( )

l
G s

 by a suitable reduction method, as 

shown in Fig. 2.2, for the same desired transfer function, the low-

er-order controller configuration 
( )

l
C s

is expressed as  

 

( )
( ) 

( )[1 - ( )]

d

l

l d

T s
C s

G s T s



                                                                         (14) 

 

 
Fig. 2.2: CL Control with ( )

l
G s  and ( )

l
C s . 

 

The overall CL transfer function combining LOM and lower-order 

controller is expressed as  

 

( ) ( )
( ) 

1 ( ) ( )

l l

ol

l l

C s G s
T s

C s G s



                                                                      (15) 

 

The CL control configuration combining HOS and lower-order 

controller is shown in Fig.2.3 

 

 
Fig. 2.3: CL Control with ( )

h
G s  And ( )

l
C s . 

 

The overall transfer function of Fig. 2.3 is 

 

( ) ( )
( ) 

1 ( ) ( )

l h

oh

l h

C s G s
T s

C s G s



                                                                      (16) 
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Following numerical example is used to describe the step-by-step 

procedure of the proposed algorithm. 

3. Numerical example 

Consider a linearized SAPP [12] as shown in Fig. 3.1 In the Fig. 

3.1, the governor dynamics is given by 
( ) 1 ( 1),

gov gov
G s T s 

 load and 

machines dynamics is given by 
( ) ( 1),

lm p lm
G s K T s 

 and the droop 

characteristics is given by 1 / R . The non-reheated turbine dynam-

ics is represented as 
( ) 1 ( 1)

nrt nrt
G s T s 

 with dit
P

(in p.u. MW) rep-

resented as the load disturbance. After appropriate reduction, Fig. 

3.1 takes the form as shown in Fig. 3.2. 

 

                    
                

+

 

 

+

Governor

( )G sgov

Turbine

( )G snrt

Load &Machines

( )G s
lm

Droop 

Characteristics
1

R

dP

fu

 
Fig. 3.1: Linearized SAPP. 

 

  C(s)
-

+
+

-

P
d



Y(s)R(s)
( )G s

h

 
Fig. 3.2: Controller Configuration of SAPP. 

 

With 120
p

K  , 20
lm

T  , 0.3
nrt

T  , 
0.08

gov
T 

, 2.4R  , the transfer function 

( )
h

G s
 turns out to be 

 

3 23
( )

250

15.88 42.46 106.2
G s

s s s


  

250

( 13.2858)( 1.2971 2.5122)( 1.2971 2.5122)s s j s j


                                    (17) 

 

In the first step, a LOM for l =2 is obtained retaining two domi-

nant poles ( 1.2971 2.5122)s j  of (17), the 
( )

l
D s

 as given in (5) be-

comes 

 
2

( ) 2.5948 7.994
l

D s s s  
                                                              (18) 

 

The numerator polynomial of LOM is obtained using (9) and (10) 

as  

 

( ) 18.82
l

N s 
                                                                                 (19) 

 

Thus, the LOM turns out as  

 

2

18.82

2.5948 7.994
( )

2 s s
G s 

                                                            (20) 

 

In the second step, ( )
l

C s is derived by choosing 
( )

d
T s

in such a way 

that it satisfies the frequency domain control specifications (damp-

ing ratio (  ), undamped natural frequency ( n


), etc.). Currently,, a 

second-order ( )
d

T s  is chosen having  = 0.7 and natural frequency 

n


= 1.5 rad /sec. Thus 

 

2

2.25
( ) 

2.1 2.25
d

T s
s s


                                                                     (21) 

 

The 
( )

l
C s

is derived using (14) as  

 
2

2

0.1196( 2.5947 7.994)

2.1
C ( )

2
s s

s s
s

 


                                               (22) 

 

Now, ol
T and oh

T are obtained using (15) and (16) respectively as 

 

2

2.2508

2.1 2.2508s s
T

ol


                                                                   (23) 

 

3 2

29.9

15.38 27.9 29.9
oh

T
s s s


                                                            (24) 

 

The Fig.3.3 contains the step responses of (17) and (20). It is seen 

that they quite close. The Fig. 3.3 also includes responses of ol
T

 

and oh
T  also. It is clearly found that they are also close to each oth-

er.  

 

 

Fig. 3.3: Step Responses Of HOS and LOM and or
T

 oh
T . 

 

A disturbance of 0.01
dit

P   is applied at t=2 sec. as shown in Fig. 

3.2. The response with disturbance and without disturbance is 

plotted in Fig. 3.4. It is clearly observed that the disturbance rejec-

tion is also satisfactory. 

 

 
Fig.3.4: Step Responses of HOS and LOM Without Controller and with 
Controller. 
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4. Conclusion 

This note presents a two step procedure to design a controller for a 

single area power plant using concept of model reduction. In the 

first step, the HOS is simplified to a LOM. The dominant poles 

are retained for the purpose of deriving denominator of LOM 

while numerator of LOM is derived with help of Padé 

approximation. In the second step, the controller is designed for 

the LOM obtained in step 1 and then impelented to HOS in step 

two. As seen by the step resonses, the controller design shows 

satisfactory performance. A disturbance of -0.01 p. u. Mw is 

injected to the system to check the performance of proposed 

controller ‘with and without controller’ situations.. The 

disturbance rejection is also found satisfactory.Methods based on 

intelligent conrollers have also been suggested in literature [14]. It 

would be interesting to compare the performance of proposed 

controller with other intelligent controllers and the problem is 

open for investigation. 
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