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Abstract

Generally, chemical reactions from atmospheric chemistry models are described by a strongly coupled, stiff and nonlinear system of ordinary
differential equations, which requires a good numerical solver. Several articles published about the solvers of chemical equations, during the
numerical simulation, indicate that one renders the concentration null when it becomes negative. In order to preserve the positivity of the
exact solutions, recent works have proposed a new solver called Modified-Backward-Euler (MBE). To improve this solver, we propose in this
paper an iterative numerical scheme witch is better fitted to stiff problems. This new approach, called Iterative-Modified-Backward-Euler
(IMBE), is based on iterative solution of the P-L structure of the implicit nonlinear ordinary differential equations on each time step. The
efficiency of the iteration process is increased by using the Gauss and Successive-Over-Relaxation (SOR). In the case of fast/slow chemical
kinetic reactions, we proposed an other variant called Iterative-Quasi-Steady-State-Approximation (IQSSA). The numerical exploration of
stiff test problem shows clearly that this formalism is applicable to a wide range of chemical kinetics problems and give a good approximation
compared to the recent solver. The numerical procedures give reasonable accurate solutions when compared to exact solution.
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1. Introduction

The tools used in human activities are a major force affecting the chemical composition of the Earth’s atmosphere. We are now witnessing
a climate change that is causing significant damage. Air pollution forecast is becoming more and more important nowadays to predict
some climate change. Chemical kinetic equations is an important component of air pollution models. Generally, chemical reactions from
atmospheric chemistry models are described by a strongly coupled, stiff and nonlinear system of ordinary differential equations, which
requires a good numerical solver. The difficulty in treating these stiff problems is the stability limitation placed on the step-size of explicit
schemes [12]. This limitation usually forces the use of an implicit scheme which requires the solution of a nonlinear system of equations at
each step.
Over the past decades, numerous papers about chemical equation solvers have been proposed such as Quasi-Steady-State-Approximation
(QSSA), Modified QSSA, HYBRID, Modified HYBRID, LSODE, GEAR, ...etc (cf [1], [2],[3], [5] and there related references). However,
these solvers cannot preserve the nonnegativity of the exact solutions. Therefore, in the calculation, the negative numerical concentration
values are usually set to zero artificially, which may cause simulation errors.
Recently, Fan Feng et all [2], [3] proposed a new method that can unconditionally preserve the nonnegativity of the exact solutions called
Modified-Backward-Euler (MBE) algorithm which is much faster and more precise than the traditional solvers such as LSODE and QSSA.
In this paper, we propose an improvement approach of this algorithm called Iterative-Modified-Backward-Euler (IMEB). Then, we examine
a methodology for combining implicit solution techniques with iterative methods in a novel way to produce new iterative time differencing
methods with enhanced stability characteristics. This approach use one step integration method and composed on two steps numerical
schemes. The first one, is to give an improvement of MBE by using an iterative approach for full implicit system which is better fitted than
MBE for stiff problem, and the second hand to define a Gauss-Seidel and Successive over relaxation fixed point iterations associated to these
to approach.
The paper is organized as follows: we first present in section 2 a mathematical modelling as preliminaries on nonlinear stiff system of
differential equations arising from chemical atmospheric problem. In section 3 we first formulate Iterative-Modified-Backward-Euler method
and then introduce the Gauss-Seidel and Successive Over Relaxation variants and the technical adapted step-size. To take into account the
case of Fast-Slow reaction, we introduce in order section 4 the Iterative-Quasi-Steady-State-Approximation method. Numerical illustrations
are provided in section 5, and conclusions are given in section 6.

Copyright © 2018 Author. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.
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2. Mathematical modelling

In order to give the user a simple writing of the mathematical formulation easy to implement in a digital setting; we give in this section the
different models of chemical kinetics problems.
Most Chemical Reaction (CR) systems are usually represented by a set of elementary chemical reactions, rated ri for i = 1,2, ... ; for example
:

r1 : B1 −→ A1
r2 : A1 +A2 −→ 3A1
r3 : B2 +A1 −→ A2 +B3
r4 : A1 −→ B4

(1)

and each elementary chemical reaction is given by :
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where A1,A2, ... and B1,B2, .... designate the molecular chemical species of each RC system. The B j denoting external species whose
concentration is constant or known. An RC system with species external is said to be open, otherwise it is said to be closed.
The constants kq,s designate rate of each reaction constants and the coefficients αs

k , β s
k are integers and can be null.

If the external system species are removed from the reactions, then any elementary chemical reaction will be written as :
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2.1. Stoichiometric space

Definition 1. Complex will be called any linear combination of chemical species that to the right or left of the symbol (−→).

The complexes of the previous example are :

B1,A1,B2 +A1,A1 +A2,3A1,A2 +B3,B4 (4)

Let NC be the set of indices of the complexes and NE the set of indices of the chemical species defined as:

NE = {1, ...,n} NC = {1, ...,nc} (5)

where n,nc represent respectively the numbers of species and complexes of CR systems. Generally, these two integers are different due to
the presence of networking species (i.e species engaged in more than one elementary reaction).
Any elementary reaction (3) will be represented by :

C(i)−→C( j) (6)

where i and j two indices in NC and C(i) and C( j) symbolize two distinct complexes.
Generally, the number of chemical species is different from the number of complex. Each complex C(s) of the system was :

C(s) = α
s
1A1 +α

s
2A2 + ...+α

s
nAn (7)

which we associate the following vector :

α
s = (αs

1,α
s
2, ...,α

s
n)

t (8)

Let S a subspace of Rn defined by :

S = Espα
i−α

s such that C(i)−→C(s) exists (9)

S is called the Stoichiometric space.

2.2. Complex matrix and kinetic matrix

Let α1, ...,αnc , nc vectors associated with the complex systems. We denote by Y the matrix (nc×n) which the ith column is the vector α i.
A is called the complex matrix of the CR system.
Let K the matrix (nc×nc) whose coefficients k(i, j) are given by :

k(i, j) = constant rate of the reaction C( j)−→C(i) if it exists
= 0 if not

K is called the kinetic matrix of the CR system.
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2.3. Vector species training

Let u(t) = {u1(t), ...,un(t)}t ∈C([0,T ],Rn) where ui(t) denotes the concentration of the specie Ai at time t.
All previous CR system leads to the system of differential equations defined as follow :

du
dt

= F(u, t) = ∑
q,s

rq,s(u)vq,s

u(0) = u0 given.
(10)

where

vq,s = α(q)−α(s) and α(e) = (αe
1 , ...,α

e
n)

t (11)

and
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In order to write the equation (10) in the P-L structure form, we define the training vector application F as follow :{ du
dt

= F(u, t) = P(u, t)−L(u, t)u

u(0) given.
(13)

which is also written as :{ dui

dt
= Pi(u, t)−Li(u, t)ui for i ∈ {1, ...,n}

ui(0) given.
(14)

where, the vector P and the diagonal matrix L are defined by :

• The term Pi(u, t) = ∑
q,s

rq,s(u)α
q
i is the production term of the reaction.

• The term Li(u, t)ui = ∑
q,s

rq,s(u)αs
i is the loss term of the reaction.

For the matrix writing, we define the training vector application F as follow :

F : Rn→ Rn

u→ F(u) = A.(K−dg(Kt .1)).uA (15)

where uA = (uα i
, ...,uαnc

)t ; uαs
= uαs

1
1 uαs

2
2 ...uαs

n
n and 1 = (1, ...,1)t and dg(Kt .1) denotes the diagonal matrix. The species of the training

vector is given by (15).

1. Y.dg(Kt .1).uY is the loss term.
2. Y.K.uY is the production term.

To find the training vector species (10), we set

F(u) = ∑
i, j

k(i, j)uα j
(α i−α

j) (16)

where k(i, j) denote the coefficients of the kinetic matrix.

3. Iterative-Modified-Backward-Euler method (IMBE) and its variants

Let consider a subdivision (ti)i=m
i=0 strictly increasing such that t0 = 0 and tm = T ([0,T ] is the time interval) with step-size ∆t such that

tk+1 = tk +∆t and Ik = [tk, tk+1].
By the P and L definition in (14) or in (15), we have : for i = 1,2, ...,n Pi ≥ 0, Li ≥ 0. And in each time step interval Ik for k = 0, ...,m−1,
we have to resolve the following implicit differential equation :{ du

dt
= F(u, t) = P(u, t)−L(u, t)u

u(tk) given
(17)
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3.1. Iterative-Modified-Backward-Euler method (IMBE)

Using the following notations : Assume known uk
i an approximation of ui(tk), we get u j+1

i the approximation of ui(tk+1) in Ik by :

uk+1
i −uk

i
∆t

= Fk+1
i = Pk+1

i −Lk+1
i uk+1

i (18)

where

Pk+1
i = Pi(uk+1

1 , ...,uk+1
n ), Lk+1

i = Li(uk+1
1 , ...,uk+1

n ) and Fk+1
i = Fi(uk+1

1 , ...,uk+1
n )

In order to define the Modified-Backward-Euler method [2] and [3], we suppose that, for t ∈ [tk, tk+1] = Ik :

Pi(u(t))−Li(u(t))ui(t)∼ Pi(uk)−Li(uk)ui(t) (19)

Then we have :
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i
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i

(20)

This scheme presents two major advantages :
- the uncoupled evaluation of the components ui(tk+1),
- the conservation of positivity.

The implicit euler method associated to (18) is defined by the iterative fixed point iteration as follow : In each time step interval Ik, let
consider the fixed point application T 1 in C(Ik+1,Rn) defined by :

T 1(v) = w where w is a solution of the follow problem :
w−uk

∆t
= F(v) where v in neighbor of uk.

(21)

Suppose that the function F is µ-Lipschitz then we have the following proposition :

Proposition 1. If ∆t is chosen such that ∆tµ < 1, then the fixed point application T 1 is an contraction with constant of contraction less than
1.

Proof 1. By definition of the fixed point application T 1, for w and w̃ such that w = T 1(v) and w̃ = T 1(ṽ) then with a simple calculation, we
show that ‖w− w̃‖ ≤ ∆tµ‖v− ṽ‖ and if ∆t is such that ∆tµ < 1 then T 1 is contraction with respect to the uniform norm ‖.‖.
To respect the notation of the successive iterative methods, the fixed point application T 1 can be defined by :{

vl+1 = T 1(vl)

v0 = uk for all l = 0,1, ....
(22)

Finally, the fixed point application T 1 have an fixed point noted uk+1, solution of (17) at tk+1 and gradually, we calculate all the approximations
of the vector u over the interval [0,T ].
But this choice of fixed point application has major drawbacks. In some cases, ∆t is very small and in practice the constant µ is too large and
therefore ∆t will be close to 0. On the other hand, this application does not retain positivity.
For these reasons, we propose here a new method that allows the conservation of positivity :
The Iterative-Modified-Backward-Euler is an iterative fixed point iteration defined by{

w = T (v)
v neighbour of uk (23)

where w is solution of the following equation :

For i = 1, ...,n wi−uk
i

∆t
= Pi(v)−Li(v)wi

v neighbour of uk.

(24)

The fixed point of application is therefore defined as follows :{
vl+1 = T 1(vl)

v0 = uk for all l = 0,1, ....
(25)

where v∗, the fixed point of T , is solution of the problem (24).
We have :

wi−uk
i

∆t
= Pi(v)−wiLi(v)

which can be written as :

wk =
u j

k +∆tPk(v)
1+∆tLk(v)

By the definition of u, P and L, the uk
i , Pk and Lk are non-negative. Then we have the following properties :
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i ) The fixed point iteration T preserve the positivity.
ii ) The fixed point of application T is contracting if the condition of the proposition 1 is verified.
iii ) The Modified-Backward-Euler method corresponds to a single iteration of the fixed point application T .

3.2. Some variants of the IMBE method

The system of differential equations (17) are a large coupled model and can be decoupled by applying the iterative fixed point as Jacobi,
Gauss-Seidel and Successive-Over-Relaxation (SOR). In the literature [17], [12], many authors use these scheme to reduce computational
cost, to accelerate the convergence or to give a good approximation of the solution.
The previous fixed point iteration IMBE correspond to the modified Jacobi method applied to (17).
The Gauss-Seidel IMBE is an iterative fixed point iteration defined by{

w = T GS(v)
v neighbour of uk (26)

where w is solution of the following equation :

w1−uk
1

∆t
= P1(v1, ...,vn)−Li(v1, ...,vn)wi

and for i = 2, ...,n
wi−uk

i
∆t

= Pi(w1, ..,wi−1,vi, ..,vn)−Li(w1, ..,wi−1,vi, ..,vn)wi

v neighbour of uk.

(27)

and the SOR IMBE is an iterative fixed point iteration defined by{
w = T SOR(v)
v neighbour of uk (28)

where w is solution of the following equation :

w1−uk
1

∆t
= P1(v1, ...,vn)−Li(v1, ...,vn)w1

and for i = 2, ...,n
wi−uk

i
∆t

= Pi(w1, ..,wi−1,vi, ..,vn)−Li(w1, ..,wi−1,vi, ..,vn)wi

wi = ωvi +(1−ω)wi
v neighbour of uk.

(29)

where ω is the relaxation parameter.

3.3. Step-size adaptation

In order to improve the solver proposed in [2]-[3], we will adopt the same control of the step-size which is defined in the following way :
if (|Pk−Lkuk|>critical rate) then

∆tk+1 =
∆tk

decay coefficient
, decay coefficient≥ 1

else

∆tk+1 =
∆tk

growth coefficient
, growth coefficient≥ 1

Besides, min∆t ≤ ∆tk+1 ≤ max∆t where min∆t is used as the initial step-size.

4. Fast-slow cases:

Where the ordinary differential equations system resulting from the mathematical modelling of chemical kinetic problem are stiff (10). Some
authors use an Quasi-Steady State Approximation (QSSA) approach for reducing the model [5], where time-scales are related to chemical
species. We now that the fast species are assumed to react instantaneously and locally equilibrate with respect to slow species. Then, their
concentration can be determined as algebraic functions of the slow ones and the size of the ODE system to be solved reduces to the number
of slow species. In this section we do not give a partition of the term F in two operators F f and Fs which denote respectively the fast and the

slow operator. But we divide the species into slow and fast, according to their lifetimes [4]. Let τi =
1
Lk

i
, for i ∈ NE at time tk, the lifetime

species. For a dynamic partition of the species into slow and fast, at each time step [8] define:

• The species is slow if τi > 100∆t;
• The species is fast if τi < 0.2∆t.

In [14], the authors define :

• The species is fast, if τi < 0.2∆t ;
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• The species is slow, if τi > 5∆t.

For short-lived species these equalities form a system of nonlinear equations which is usually solved by a fixed point iteration scheme. This
is in fact equivalent to solve the system of differential-algebraic equations (DAE) obtained by :

dsui

dt
= Fi(su, f u) for i ∈ JS

0 = Fj(su, f u) for j ∈ JF
(su(t0), f u(t0)) = v0

(30)

where the vector su (respectively f u) is grouped by the nature of evolution species (slow and fast). And where JF is the set of indices
corresponding to the short-lived species and the set JS consists of the remaining indices.
Our Iterative-Modified-Backward-Euler method is defined by the fixed point iteration T s f at each time interval Ik{

( f w,sw) = T FS( f v,sv)
( f v,sv) neighbour of uk (31)

where ( f w,sw) is solution of the following equation :
swi− suk

i
∆t

= Pi(sv, f v)−Li(sv, f v)swi for i ∈ JS

0 = Pj(sv, f v)−L j(sv, f v) f w j for j ∈ JF
( f v,sv) neighbour of uk.

(32)

5. Numerical experiment

In this section, we apply the IMBE method (24) and the IQSSA (32) variant on some famous chemical problems to show its efficiency. All
calculations were performed on a PC equipped with Intel Atom, Quad Core at 1.44 GHz and 2G of RAM using Matlab 2012.

5.1. Belousov–Zhabotinskii reaction

The Belousov–Zhabotinskii reaction [15] may be represented by the following scheme of homogeneous chemical reactions:

(r1) A+Y k1−→ X , k1 = 4.72/mol.s

(r2) X +Y k2−→ P, k2 = 3x109/mol.s

(r3) B+X
k3−→ 2X +Z k3 = 1.5x104/mol.s

(r4) 2X k4−→ Q k4 = 4x107/mol.s

(r5) Z
k5−→ Y k5 = 1./s

Letters A,..., Z denote species taking part in the reactions. Since the Belousov–Zhabotinskii reaction is homogeneous (meaning that all
species are uniformly distributed in the reaction space) we only need to consider variations of the concentrations in time. Each reaction step
is characterised by its reaction rate constant. Obviously, the rate constants differ by several orders of magnitude which indicates the likeliness
of the corresponding ODE system being stiff. The initial conditions are given by initial concentrations of species at t = 0: A = B = 0.066,
Y = X = P = Q = 0, Z = 0.002. We apply (10) or (15), then the equation associated with the set of all elementary reactions is given by :

du1

dt
=−k1u1u2 u1 = 0.066,

du2

dt
=−k1u1u2− k2u2u3 + k1u6 u2 = 0.0,

du3

dt
=−k2u2u3 + k3u3u5−2k4u2

3 + k1u1u2 u3 = 0.0,
du4

dt
= k2u2u3 u4 = 0.0,

du5

dt
=−k3u3u5 u5 = 0.066,

du6

dt
= k3u3u5− k5u6 u6 = 0.002

du7

dt
= k4u2

3 u7 = 0.

(33)

where u1, u2 , u3, u4, u5, u6 and u7 means the concentrations of chemical species respectively A, Y, X , P, B, Z and Q. And if we denote
U = (u1,u2, ...,u7)

t , then (33) is equivalent to :{ dU
dt

= F(U) = P(U)−L(U)U

U(0) =U0

(34)

whith P and L are given by :

P1(u) = 0.0
P2(u) = k1u6
P3(u) = k1u1u2 + k3u3u5
P4(u) = k2u2u3
P5(u) = 0.0
P6(u) = k3u3u5
P7(u) = k4u2

3

and



L1(u) = k1u2
L2(u) = k1u1 + k2u3
L3(u) = k2u2− k3u5 +2k4u3
L4(u) = 0.0
L5(u) = k3u3
L6(u) = k5
L7(u) = 0.0

(35)
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We solve (35) using Iterative-Modified-Backward-Euler at each t in the interval [0,40]. The obtained solution of this problem at the end of
time interval is reported in Table 1 when compared to the solution sol arising from the predefined ode23s function in Matlab. Plots in the Fig.
1 show the concentration of A, Y, X , P, B, Z and Q.

Table 1: Comparison of IBME (5 iteration), MBE and ode23s Matlab at t = 40

IBME / ode23s MBE / ode23s
4,97600539597159e-08 5,52034890438646e-08
5,44689340428401e-08 5,52173491682015e-08
5,34351861870903e-08 5,51993278186808e-08
1,05915964273956e-16 1,93663241892572e-16
3,08385594838256e-13 2,09510186977013e-12
8,45465571839485e-12 7,45487127446156e-13
2,63159444610021e-13 3,52900208272082e-14

Figure 1: The concentration of A, Y, X , P, B, Z and Q.

Figure 2: The comparison between Gauss IMBE and IMBE of A, Y, X , P, B, Z and Q.

6. Conclusion

In this paper, an improvement of recent published Modified-Backward-Euler solver are presented. This algorithm is iterative applied
to implicit P-L structure of system of nonlinear differential equations arising from chemical kinetic problem. The Gauss-seidel and
Successive over relaxation variants are also presented. In the case of fast-slow chemical reaction, a method called Iterative quasi steady state
approximation is proposed. The numerical procedures give reasonable accurate solutions when compared to ode23s Matlab solver and to
MBE method.
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