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Abstract 
 

The net theory based on elliptic sequences is widely used as a computational tool in cryptographic pairing. The theory of this net is origi-

nated from non-linear recurrence relations which also known as elliptic divisibility sequences. In this study, at first we review the history 

of elliptic net such as recurrence sequences and elliptic divisibility sequences with the important properties. Next, we address scalar mul-

tiplication in elliptic curve cryptography. We further with division polynomials used in the elliptic net and followed by an elliptic net 

scalar multiplication. Finally, this study stated the future research directions of elliptic net and its scalar multiplication. The findings from 

this study will help other researchers to explore and to expand recent topics of applied mathematical sequences in cryptography. 
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1. Introduction 

Elliptic nets introduced by [1] is an alternative method to compute 

cryptographic pairing. A single-round Tripartite Diffie-Hellman 

key exchange method was created by a cryptographer, Joux [20]. 

Tate pairing was the first pairing computation which employed 

elliptic nets [1] This was followed by Weil-, Ate-, as well as opti-

mal-pairing [10]. Nevertheless, Tate pairing via elliptic net pro-

vides faster computation since Tate pairing calculation will be 

decreased by terms of an elliptic net formulation. Other than pair-

ing, the same theory of the elliptic net has been applied to calcu-

late elliptic curve scalar multiplication [14].  

The famous principle stated by [2] (i.e. it is possible to reduce an 

elliptic curve’s discrete log to a finite field), bring many research-

ers with new exploration of constructing cryptosystem using linear 

recurrence sequence or applying scalar multiplication and pairing 

in cryptography using non-linear recurrence sequence. Interesting-

ly, the capability of the computation has become a main issue for 

elliptic curve cryptosystems, scalar multiplication and pairing.  

In this paper, we introduce a special group of sequences namely as 

the recurrence sequences and an elliptic divisibility sequence. 

Next, we state through elliptic nets, elliptic curves are related with 

elliptic divisibility sequences, pairings and scalar multiplication. 

Finally, a presumptive study on elliptic nets (in terms of the ranks, 

periodic nature, as well as cryptographic applications of elliptic 

nets) was postulated. 

2. Group of Recurrences 

Mainly, the group of mathematical recurrences can be divided to 

two sequences of linear and nonlinear equations. The Lucas se-

quence [3] which denoted by Ur and Vr - is a second-order linear-

recurrence relation. It is extensively studied in cryptosystem and 

was first applied in LUC [4]. Meanwhile an analogous of 

LUCELG and Cramer-Shoup cryptosystem has been designed by 

[5]. The formulated equations of linear-recurrence include the 

equations of Ur =GUr-1 – HUr-2 and Vr =GVr-1 – HVr-2 with G 

and H being the quadratic equations’ values. 

The Somos sequences [6] and elliptic divisibility sequences [5, 8], 

appear as nonlinear recurrence relation that have divisibility prop-

erties. In [7] has explored Lucas sequences and their features. 

Subsequently, he came up with a generalized form of the afore-

mentioned relation as follows: 

 

hr+t hr-t(h1)2 = hr+1hr-1 (ht)2 – ht+1ht-1(hr)2                           (1) 

 

In (1) has been transformed to a new notation of elliptic net rank 

one by the form of, 

 

W(r +t)W(r - t) W(1)2 = W(r+1)W(r -1)W(t)2 – W(t+1) 

W(t -1)W(r)2           (2) 

 

Using t = 2 and 2
1 1h = , an elliptic divisibility sequence (which 

also gave explicit formulae for Weierstrass equation coefficient) 

was formed in (1) by [5]. 

If we swap r and t to m and n, then the above-mentioned se-

quence ,...,...,1,0 nhhh contains integers which are adequate solu-

tions in (1) with 1 nm and satisfy the divisibility property 

such that nh divides mh . If we proceed substituting the condition 

for m and n with ,00 =h then we can derive two properties of 

proper elliptic divisibility sequences denoted by 

 
2

12
2

1222 +−−+ −= nnnnnnn hhhhhhhh                              (3) 
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3

212 +−++ −= nnnnn hhhhh                         (4) 
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In (3), 2n denotes an even-numbered term, while the 2n+1 in (4) 

illustrates an odd-numbered term. Using 0 0h  , in [8] generated 

the following feature of an improper elliptic divisibility sequence: 

 

3
1 1

2 1 3
2

  for even number n

    for odd number n

n n
n

n n

h h
h

h h

− +
+

+


= 
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For instances, the integer sequences of {0, 1, 1, -1, 1, 2, -1, -3, -5, 

7, -4, -23, 29, 59, …} and {1, 1, -3, 11, 38, 249, -2357, 8767, 

496035, -3769372, -299154043,…} constitute the proper and 

improper forms of the said sequences that meet the condition such 

that for n m then 
n mh h . Evidently, proper sequences are ini-

tialized by 0 10, 1h h= = and have a condition of h2h3≠0 (otherwise 

the sequence will be improper). 

3.  Elliptic Curve 

Normally, algebraic interpretations have solution sets which com-

prise elliptic curves that are expressed as baxxy ++= 32 (with 

a as well as b being real numbers). Meanwhile, elliptic curves [9] 

can be generalized by a Weierstrass equation:  

 

64
2

2
3

31
2: axaxaxyaxyayE +++=++                          (6) 

 

with all values of a being integers and the remaining unknowns 

being rational numbers. The above equation consists the succeed-

ing equations of  

 

2
2
12 4aab +=                           (7)  

 

3144 2 aaab +=                                          (8) 
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36 4aab +=                                          (9) 
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48
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2 9278 bbbbbbbD +−−−=                                     (11) 

 

In (7) until (10) display the typical values of elliptic curves, while 

D in (11) represent the discriminant. The auxiliary polynomials, 

i.e. ,n n  , can be formed and utilized by  
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2

−+−= nnnn x                                        (12) 

 
2

12
2

124 +−−+ −= nnnnny                                       (13) 

 

For the polynomials ( ) nnn P  ,,  that connected to the elliptic 

curve by a scalar n then the x and y coordinates can be depicted as, 
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The polynomials in (6) are comparable to the division polynomials 

n in x, y. The following equations denote the initial 4 polynomi-

als: 

,2             ,1 3121 axay ++== 
         (15) 
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For 2n , the division polynomial, n , contains the following 

recurrence relations:  

 

( )2
12

2
1122 +−−+ −= nnnnnn hy                       (18) 

 

3

11

3

212 +−++ −= nnnnn 
                      (19) 

3.1 Elliptic Curve Scalar Multiplication   

The rise of the elliptic curve scalar multiplication begins after the 

implementation of elliptic curve cryptography protocols like Ellip-

tic-Curve Diffie-Hellman [19]. For a given point P that belongs to 

the elliptic curve with an integer k, then the elliptic curve scalar 

multiplication is used to calculate a new point Q such that Q = kP 

for k times. 

 

Example 1: 

Let a point P = (1,2) on a nonsingular elliptic curve E over ration-

al numbers that satisfies 2 3 5 8y x x= − + , then find Q = 2P = P 

+P. From [15],   
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Therefore, .
2
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3.2. Elliptic Net 

In (14)-(17) – represent elliptic net rank 1 and use the same type 

of elliptic curve. In [10] came up with generalized forms of elliptic 

divisibility sequences in higher-order dimensions as well as spe-

cific fields. In the second rank, elliptic nets are functions of W: A 

→ R from finite-rank free Abelian groups, A, to integral domains, 

R, which uphold the said feature. 

 

W(a+b+d)W(a-b)W(c+d)W(c)+W(b+c+d) 

W(b-c)W(a+d)W(a)+W(a+c+d)W(c-a)W(b+d)W(b)=0,  

for all a,b,c,d∈A         (20) 

 

In (20), the starting values constitute 

( ) ( ) ( ) ( ) 01,11,00,10,0 ==== WWWW  and with ( )2,1W  and 

( ).2,0W Owing to the fact that there are associations between 

elliptic nets and curves, it is possible to generate the net polyno-

mials ( )KE n
v  by generalizing the division polynomials, 

with the condition that nv  . With reference in (14), 

when ( )Q, EQP   and the construction of formal linear for point 

P as well as Q are taken into consideration, the following trans-

formation can be constructed: [f]P +[g]Q <—> Wf,,g 

 

We propose the following lemma related to elliptic net. 
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Lemma 1: The number of the proper sequences in the elliptic net 

of rank two over 
pF  is ( ) .1

2
pp −  

Proof: If ( )0,nW  is a proper sequences in the elliptic net of rank 

two with ( ) 00,0 =W , then ( ) 00,2 W  and ( ) .00,3 W  In this 

situation, there are p – 1 case for selecting ( ) 00,2 =W and 

( )0,3W  or ( ) 00,3 =W and ( ).0,2W So, there are ( )21−p se-

quences. For another situation such that  ( )0,4W  is divisible by 

( )0,2W , there are p case for selecting ( )0,4W . Therefore, the 

number of the proper sequences in the elliptic net of rank two over 

pF  is ( ) .1
2

pp −  

3.2.1. Properties of Elliptic Net 

For a given ( )11, yxP = and ( )22 , yxQ =  from an elliptic curve 

of the form BAxxy ++= 32 with initial values of 

( ) ( ),0,1,0,0 WW ( )1,0W  and ( )1,1W  is equal to one, then some 

important properties of elliptic net rank two were derived by [10] 

as follow: 

 

( ) 120,2 yW =          (21) 
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3.2.2. Alternative for Cryptographic Pairing 

In [1] implemented her method in the Tate pairing, a method 

which resembled Miller’s algorithm [11] in terms of the double-

add. Additionally, the former was employed in Ate-, R-Ate-, as 

well as optimal-pairings [12]. Subsequently, in [13] improved the 

said method with the incorporation of double-add and -subtract. A 

few years ago, a novel study which employed elliptic nets to com-

pute scalar multiplications has been published [14]. 

4. Elliptic Curve Scalar Multiplication via El-

liptic Net 

As mentioned by [14], some advantages of elliptic net scalar mul-

tiplication are no inverse operations will be needed for loop itera-

tion, equivalent costing between double step and double add step 

and easy adjustment for different finite fields. This elliptic net 

scalar multiplication concept has been proposed by [13] six years 

after theory of elliptic net using arithmetic of elliptic curve [15] 

and with implementation of elliptic net.  

Consider the elliptic curve over finite field 

( ) ., and ,:/ 11
32 EyxPbaxxyFE q =++=  An elliptic net 

scalar multiplication of rank one using division polynomials can 

be defined as finding ( )kPkP yxkP ,=  with the following: 

 

( ) ( )

( )20,

0,10,1

kW

kWkW
xx PkP

+−
−=                       (26) 

 

( ) ( ) ( ) ( )

( )3

22

0,4

0,20,10,20,1

kWy

kWkWkWkW
y

P

kP

−+−+−
=     (27) 

Note that the block for a scalar k can be constructed as shown in 

Figure 1. Both rows in in the block are eight consecutive term of 

elliptic net sequence with ( )0,iW having its center on ( )0,kW  as 

well as ( )0,1+kW .  

 

(k, 0) 

(k-

3,0) 

(k-

2,0) 
(k-1,0) (k+1,0) (k+2,0) (k+3,0) (k+4,0) 

Fig. 1: Block on k 

 

For a k-centered block vector, V, in [10] presented 2 algorithms 

namely Double (V) and DoubleAdd (V) that constructed blocks 

whose centers were 2k as well as 2k + 1 respectively. 

We provide the following calculation as an example for elliptic net 

scalar multiplication. 

 

Example 2: 

Let 85: 32 +−= xxyE and a point EP = )3,6(  with re-

spect to elliptic net, then calculate 2P. The initial values of elliptic 

net ( )0,iW  and ( )1,iW  for 22 − i  with 2=k  can be ob-

tained from  

 

( ) ,10,1 −=−W  

( ) ( ) ( ) ,11,01,10,1 === WWW ( ) 00,0 =W  

( ) ,6)3(220,2 1 −=−=−=− yW  

( ) .6)3(220,2 1 === yW  

 

Next, we continue to calculate ( )0,3W and ( )0,4W  such that 
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Then,  
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Therefore, for )3,6(=P  then  
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Ward proposed Elliptic Net (1) while Stange Elliptic Net (2). The 

existence of net polynomials in rank two are applicable in third-

rank nets and thus produce a new order of the net. In specific nota-

tion, if [f]P implies Wf and [g]Q implies Wg, thus the extension of 

a third-rank elliptic net whereby,  

 

[f]P +[g]Q +[h]R<—> Wf,,g,h 
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With reference to the nets, a contrast method for locating integer 

points like periodicity relations is usable in second-order ranks or 

higher. In [16] recently researched on intra-sequence periodicity 

relations. With the intention of expanding this topic and referring 

to [17], the elliptic net rank one holds that  
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ssk
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For future cryptographic applications, the basic Tate pairing calcu-

lation via elliptic nets should be modified through the selection of 

hyper-elliptic curves. Evidently, elliptic nets are relevant in super-

singular curves [18]. 

5. Conclusion  

It is possible to generalize elliptic nets in terms of first- and sec-

ond-ranks, apart from different individual non-linear recurrence 

relations. To transform division polynomials into net polynomials, 

a variety of features are needed. These produce cryptographic 

pairing and scalar multiplication computational problem. Besides 

pairing and scalar multiplication, the prospective researches which 

were recommended by this article have the potential to have other 

elliptic net-related applications. 
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