

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestrict-

ed use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (3.24) (2018) 721-723

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

A Functional Programming Language in Tamil: The Use Of

Native Language for Programming

S. Hemavathi1*,K.Jayasakthi velmurugan2

1 Faculty, Computer Science and Engineering, Sri Sai Ram Engineering College, Chennai, Tamil Nadu, India

2Faculty, Computer Science and Engineering, Jeppiaar Engineering College, Chennai, Tamil Nadu, India

*Corresponding author E-mail: hemavathi.cse@sairam.edu.in

Abstract

Learning a new programming language has always been a daunting task for the students who feel difficult to understand the program.

Most of the programming languages that are used for teaching purpose is present in English language. Learning in mother tongue is en-

joyable and thus create technically sound citizens for the development of society which increases the learning curve. The purpose of this

work is to create a programming language which uses Tamil characters to create programs with current technology. The goal is to make

programming easier for students whose native language is Tamil. The system will provide all the necessary tools for learners to create

programs and understanding the concepts which are widespread among the available languages. It includes all the phases of compiler

along with the creation of set of keywords. The system can be implemented by creating an interpreter that will run the code and will

execute on console like all widely used programming languages. It will implement concepts that are rudimentary basics which are pre-

sent in other programming languages. User can interact with the interpreter either using a REPL (Read Evaluate Print Loop) or by writ-

ing the program in a text-file and run it using the command line argument. The interpreter will be available as an installable package for

running the program. Thus, students can learn programming easier in their native language and get exposed to the concepts of program-

ming which can be enhanced for future technologies.

Keywords: Programming; language, Tamil; learning, functional programming, learning difficulties, native language;

1. Introduction

The technology is growing at a very fast pace and newer type of

technology are flourishing every day. In order to maintain this

growth and advancements more it requires a larger community

with students and developers. Learning a programming language

helps people to contribute and implement their idea using it. One

of the most commonly overlooked barrier is the language to that

is used for programming. Almost all of the programming lan-

guages that are available today are understandable only to people

who knows English. If this impediment is removed then even

more people with various background can use technology and

accomplish many things.

We are creating a programming language that helps people to

program in Tamil language in order to break this language barrier
[3]. The language has a functional programming design with less

syntactic sugar [1]. The functional programming [6] is a program-

ming paradigm where the functions are treated as first-class

members. I.e. a function can be created, passed as an argument,

returned as a value. It has closure and anonymous function crea-

tion features which can be used.

2. Ease of Use

2.1 Repl

The REPL Read-Evaluate-Print-Loop also known as lan-

guage shell is a text based interactive platform in which users

enters an input which is the program and upon each entry it will

produce some information to the user. As the name suggests the

REPL reads the input and sends the input to eval which refers to

evaluation. The evaluation is done based on the previous lines of

code and resources available at the current entry point. The print

is different from ordinary printing to the console as the print part

returns the value of the entered code or some warnings and errors

if they are present in the entered lines of code. The language

shell also supports the POSIX signals in the Linux platform

where users can send signals that can stop the current operation,

kill the program or send signals to the parent process that in-

voked the currently executing process.

2.2 Reader and Printer

The reader accepts code written in Tamil characters and can

store them in the same format. The printer writes the output to

console and also prints the errors and warnings if any of them are

present. It supports UTF-8 encoding format which has complete

character specification for Tamil characters.

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET

722 International Journal of Engineering & Technology

Both the reader and printer require a terminal which supports the

UTF-8 format otherwise the user cannot read the characters. The

reader also understands the POSIX signals that are sent to the

application. It can print the output either in the terminal or to a

text file based upon the choice of the user.

3. Existing System

3.1 Ezhil Language

Ezhil, in Tamil language script, is a compact, open source, inter-

preted, programming language, originally designed to enable

native-Tamil speaking students, K-12 age-group to learn com-

puter programming [4], and enable learning numeracy and com-

puting, outside of linguistic expertise in predominately English

language-based computer systems. In this programming lan-

guage, Tamil keywords and language-grammar are chosen to

easily enable the native Tamil speaker write programs in the

system. It allows easy representation of computer program closer

to the Tamil language logical constructs equivalent to the condi-

tional, branch and loop statements in modern English based pro-

gramming languages. It was the first freely available program-

ming language in the Tamil language and one of many known

non-English-based programming languages. The language was

officially announced in July 2009, while it has been developed

since late 2007.

The syntax of Ezhil is broadly similar to that of BASIC, blocks

of code are run in sequential order, or via functions definitions,

in a common control flow structures include while, and if. The

termination of function block and statement blocks should have

the termination keyword, similar to END in BASIC. Declara-

tions are not necessary as it is a dynamic typed language, though

type conversions must be made explicitly.

3.2. Swaram Language

Swaram is a full-fledged static-typed programming language,

with a feature set resembling C-programming language. It has

inspired some of the choice of keywords in the Ezhil language.

To its credit Swaram is the first programming language in Tamil,

in the true sense with a JIT compiler from source and a virtual

machine (VM). In reporting, the authors justify the need for a

complete language rather than plain pre-processors, and other

syntactic sugar. It is not publicly available, which severely limits

language development, system use, community support and im-

provement. It is strongly typed and allows mixed English &

Tamil identifiers.

4. Proposed System

4.1. Tamil Programming Language

The proposed system is an Interpreter which is available for ma-

jor Platforms as an installable package. Users of this Interpreter

doesn’t require English proficiency [3]. Just Tamil knowledge is

enough. The programming Language implemented using this

Interpreter will have minimum learning curve and it is easy to

understand and to do coding with[5].

The created programming Language will be available as an easy

installable package. It is also free of cost and is made available

with GNU public license, so that anyone who wishes to modify

the Language can do so and streamline it to his convenience,

wish & will. Since it doesn’t require English knowledge, teach-

ers can find it very easy to teach the same to Tamil Medium

Students [2][3]. The Interpreter will be made available as an inter-

active Programming Language, such that when a user gives an

input, it will provide information about how the given input was

processed and whether it contains any error or not.

4.2 Advantages of the Proposed System

It has an automatic garbage collector which captures unused

ports and non-referenced memory locations. To avoid fragmenta-

tion in the memory, it has a built-in vector pool compaction func-

tion the re-organizes the stored memory areas such that the free

memory space is made available as a whole. It can send POSIX

signals to the Kernel in Linux Operating System, so that users

can view the information about the process and manage it exter-

nally. It has complete support for UTF-8 Character Encoding

Scheme that allows users to enter the program in Tamil Charac-

ters. It is available free of cost and hence can be used by anyone.

The Syntax of this Language is Simple, easy to understand and

can be learned quickly [6]. Since it has less Syntactic Sugar, stu-

dents who are learning this language can easily learn other lan-

guages too, without much trouble, as they are not tied up to any

language specific features [6].

5. System Design

5.1. Components of the System

Both the source code and the libraries are given by the user to the

interpreter for evaluation. Inclusion of libraries are done by the

user and any external libraries can also be used in it. The pro-

gram is both written in a file and executed by the interpreter or

can be given through the REPL loop. The code that is entered in

the REPL will not be saved whereas the code written in a file can

be saved and used later.The lexical analyzer reads the given input

and removes any commented lines present in it. It also checks for

any errors and separates the lines into tokens which are used later.

It treats all the white space as the same and waits till the expres-

sion to be completed before reading it. The syntax analyzer

checks the syntax such that if there are any unbalanced brackets

or not. It also checks whether if any keywords are being used as

identifiers which will result in improper execution of the code.

Semantic analysis does checks the types of operations made on

the data. If any mathematical operation is done between the

string and an integer it will throw an error regarding the type

mismatch.

The program environment contains the declaration and definition

of functions and data structures. It uses the dynamic binding

which is more common and easily understood by the learners.

Whenever a variable is out of scope it then recycled by the gar-

bage collector. Each of the element stored in the environment

stored is referred to as a node. Each node has a name, type and a

value. Since the programming language is a functional program-

ming all of the functions are treated the same as the variables.

Lambda functions are used to create anonymous functions which

can be unnamed and passed as a value or can also be named and

used as an ordinary function.

The garbage collector is run automatically whenever the memory

is low and calls the memory allocator to add some storage to the

interpreter. Since the memory space is dynamically allocated the

main memory required to run the interpreter with small programs

are relatively very low. It does not wait for the memory to be

completely filled before the new allocation. When the low level

of free space memory is detected then additional memory is be-

ing added to the free space.

5.2 Parser

The parser is the front end of the interpreter. It takes the typed

code and converts it into an internal tree structure based upon the

given input. The parser is a top down parser that is, all of the text

International Journal of Engineering & Technology 723

is parsed from the top. A parser is a program that interprets the

physical bit stream of an incoming message and creates an inter-

nal logical representation of the message in a tree structure. The

parser also regenerates a bit stream for an outgoing message

from the internal message tree representation. It is called when

the bit stream that represents an input message is converted to

the internal form that can be handled by the broker; this invoca-

tion of the parser is known as parsing. The internal form, a logi-

cal tree structure, is described in Logical tree structure. It is de-

scribed as a tree because messages are typically hierarchical in

structure.

5.3 Syntax Analyzer

The syntax analyzer has two main purposes. It checks if the pro-

gram to be compiled is syntactically correct. It converts the pro-

gram, which is given as a string of characters, into an abstract

syntax tree, which is a representation of the program that is

much easier to use for the code generator.

Syntax Analysis or Parsing is the second phase, i.e. after lexical

analysis. It checks the syntactical structure of the given input, i.e.

whether the given input is in the correct syntax (of the language

in which the input has been written) or not. It does so by building

a data structure, called a Parse tree or Syntax tree. The parse tree

is constructed by using the predefined Grammar of the language

and the input string. If the given input string can be produced

with the help of the syntax tree (in the derivation process), the

input string is found to be in the correct syntax. Headings, or

heads, are organizational devices that guide the reader through

your paper. There are two types: component heads and text heads.

5.4 Semantic Analyzer

The syntax analyzer has two main purposes. It checks if the pro-

gram to be compiled is syntactically correct. It converts the pro-

gram, which is given as a string of characters, into an abstract

syntax tree, which is a representation of the program that is much

easier to use for the code generator. Syntax Analysis or Parsing

is the second phase, i.e. after lexical analysis. It checks the syn-

tactical structure of the given input, i.e. whether the given input

is in the correct syntax (of the language in which the input has

been written) or not. It does so by building a data structure,

called a Parse tree or Syntax tree. The parse tree is constructed

by using the predefined Grammar of the language and the input

string.

If the given input string can be produced with the help of the

syntax tree (in the derivation process), the input string is found to

be in the correct syntax. If there are any type mismatch present,

If any undeclared variables are use, If the reserved identifiers are

misused, If there are multiple declaration of variable in a scope,

Accessing an out of scope variable Actual and formal parameter

mismatch.

5.5 Evaluator and Garbage Collector

The evaluator is the core of the interpreter. If the given code

contains no errors then all of the major work is done by the eval-

uator. It is first applied to all of the arguments and then after all

the nodes are being reduced the function is applied to the main

function. It also uses the symbol table to do the evaluation and

creation of the functions. Garbage collector runs in a constant

space and does not require any additional space for the garbage

collection. It does the memory management and also the ports

that are used.

6.Conclusion
In this work, programming was taught to students us-

ing their native language (Tamil) along with English. Students

have expressed positive sentiments about using both Tamil and

English for teaching programming. The students in the experi-

mental group have expressed strong positive sentiments than the

control group about our intervention. We attribute this increased

positivity in sentiments to the usage of the native language with-

in the classroom. Even though this work was done specifically in

India, the results of our work are applicable for teaching CS

more effectively in many other countries, where English is not

the native language.

References

[1] Anabela Gomes and António José Mendes, “Studies and proposals

about initial programming learning”, 2010 IEEE Frontiers in

Education Conference (FIE).

[2] Adalbert Gerald Soosai Raj, Kasama Ketsuriyonk, Jignesh M. Pa-

tel and Richard Halverson, “What Do Students Feel about

Learning Programming Using Both English and Their Native
Language? “, 2017 International Conference on Learning and

Teaching in Computing and Engineering (LaTICE).
[3] Yogendra Pal and Sridhar Iyer, ”Effect of Medium of Instruction

on Programming ability Acquired through Screencast “,2015

International Conference on Learning and Teaching in Computing

and Engineering.
[4] Sze Yee Lye and Joyce Hwee Ling Koh, “Computers in Human

Behavior “, National Institute of Education, Nanyang Technologi-

cal University, Singapore, 1 Nanyang Walk, Singapore
637616, Singapore.

[5] Walter Cazzola and Diego Mathias Olivares ,“Gradually Learning

Programming Supported by a Growable Programming Language”,
2015 IEEE 39th Annual Computer Software and Applications

Conference.

[6] Kire Trivodaliev, Biljana Risteska Stojkoska, Marija Mihova, Mile
Jovanov and Slobodan Kalajdziski,” Teaching computer

programming: The macedonian case study of functional pro-

gramming”, 2017 IEEE Global Engineering Education Con-
ference (EDUCON).

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Anabela%20Gomes.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Ant%C3%B3nio%20Jos%C3%A9%20Mendes.QT.&newsearch=true
http://ieeexplore.ieee.org/document/5673426/
http://ieeexplore.ieee.org/document/5673426/
http://ieeexplore.ieee.org/document/5673426/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5659688
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5659688
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Adalbert%20Gerald%20Soosai%20Raj.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Kasama%20Ketsuriyonk.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Jignesh%20M.%20Patel.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Jignesh%20M.%20Patel.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Richard%20Halverson.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Richard%20Halverson.QT.&newsearch=true
http://ieeexplore.ieee.org/document/8064423/
http://ieeexplore.ieee.org/document/8064423/
http://ieeexplore.ieee.org/document/8064423/
http://ieeexplore.ieee.org/document/8064423/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8063638
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8063638
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8063638
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Yogendra%20Pal.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Sridhar%20Iyer.QT.&newsearch=true
http://ieeexplore.ieee.org/document/7126225/
http://ieeexplore.ieee.org/document/7126225/
http://ieeexplore.ieee.org/document/7126225/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7125813
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7125813
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7125813
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7125813
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Walter%20Cazzola.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Diego%20Mathias%20Olivares.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7271781
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7271781
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7271781
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Kire%20Trivodaliev.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Biljana%20Risteska%20Stojkoska.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Marija%20Mihova.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Mile%20Jovanov.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Mile%20Jovanov.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Slobodan%20Kalajdziski.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Slobodan%20Kalajdziski.QT.&newsearch=true
http://ieeexplore.ieee.org/document/7943013/
http://ieeexplore.ieee.org/document/7943013/
http://ieeexplore.ieee.org/document/7943013/
http://ieeexplore.ieee.org/document/7943013/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7936435
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7936435

